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RCM Climate modeling over (southern) Africa

Climate change, context, objectives

Bruce Hewitson, Francois Englebrecht, Neil McKellar, Igor Oliveira

Talk #1 of three leading to discussion time

M "downscaling and climate" @ "statistical downscaling"
"dynamical downscaling" m"downscaling and impact"
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1. Comments on context and the $50 000 challenge
2. The best IPCC has to offer

3. RCM attempts to downscale

4. Other approaches

5. Circulation issues

6. Processes: land surface

/. Other modeling

8. Dissemination and communication

9. New Iinitiatives
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Geography 101: where in the world are we?
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The context of modeling in Africa:

a) Poorly understood processes; high degree of variability;
teleconnections of variable stability

b) In-continent funding heavily focused on research results of tangible
societal value

c) Small community of researchers; often playing to the tune of
international agendas

d) The $50 000 challenge: Given
- 2 years
- $50 000
- One Pl and one PhD
- A 4-CPU PC cluster
- Erratic electricity
- A multi-demanding work environment
Design a RCM experiment that at the end of the day a policy person in
government can publicly defend as:
“THIS is the societal value of the $50 000 research”
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Climate Change: RCM downscaling future T anomaly

Two RCMs
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“Single model climate change projections are useless” (Giorgi, 2008)
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Simulations of Climate Change with the

fully coupled CSIRO Mk 3 AOGCM

1961-2100

1961-2000: Forced with observed Greenhouse Gas Concentrations

2001-2100: Forced with predicted Greenhouse Gas Concentrations
corresponding to the A2 SRES Scenario

Forced with SSTs from the Forced with simulated SSTs from the

coupled run and observed coupled run and predicted Greenhouse
Greenhouse Gas Gas Concentrations corresponding to
Concentrations the A2 SRES Scenario
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NCEP predictors, daily precipitation, Addis Ababa

Continental environment, convective rainfall systems, tropical

location.

Method A: three downscalings with different predictor sets

Method B: one downscaling, different predictor set to Method A
Predictors include parameters reflecting lower and mid

troposphere circulation and humidity
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NCEP predictors, daily precipitation, Addis Ababa
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NCEP predictors, daily precipitation, Addis Ababa
Monthly time series (1979-1988)

Observed
Series2
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Overall a credible representation of local climate in terms of both low frequency and
high frequency response to the daily atmospheric predictors

One method over-predicts the frequency of low magnitude rain events - not a major
impact on totals, but relevant to, for example, soil moisture and landscape hydrology

Other method over predicts frequency of high magnitude events marginally = gives
too high totals in some months

No systematic evidence of one set of predictors outperforming another
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Creation of envelope of scenarios

Note: sub-annual projected changes can be very different to mean annual change
Good consensus between downscaled models on broad patter of change

GrADS: COLA/IGES
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No one model is “correct’, no one
timeline into the future is “right”

The models provide a realm of
possibility, and give some idea of
probability

- The envelope also helps identify

what is less likely to happen
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The Western Cape:

Projected changes in
rainfall pattern and
magnitude

Monthly Total

Downscaling to a 0.1°
precipitation grid:

: Jun

6 GCMs

SRES A2 forcing

Future - Control anomaly




Statistically downscaled precipitation change
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Circulation change (as opposed to grid cell change)

CSAG

Example: 15° by 15° window over Cape Town, surface, mid troposphere u,

v, g, t daily fields using Self Organizing Maps (SOM).
(Aside: for those interested see Reusch et al., 2005: EOF/PCA versus SOMs, Polar Geography)

Archetype of
daily synoptic
multivariate
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Frequency of synoptic occurrence
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Climate change and the common circulation deltas?

On the assumption that the GCMs are simplified representations of
reality, and proportionally sensitive to the real world anthropogenic
forcing;

Given empirical downscaling propagates signal and error of the large
scale atmospheric response; and evidence that circulation-delta is
largely consistent across GCMs
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Downscaled annual precipitation scenarios for sites in Morocco by the 2080s
under SRES A2 emissions. Source: World Bank (2007)
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Climate Change Exploration (CCE
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Exploring regional process with RCMs to
iInform climate change understanding
N. MacKellar

Simulate potential climatic impacts of idealised
vegetation change in southern Africa (potential
natural to present day map).

Evaluate the importance of synoptic forcing in
modulating atmospheric response to land-
surface change.

|dentify potential mechanisms through which
vegetation properties may affect summer rainfall
in the region.



Method

* Vegetation maps:

— Potential natural: spatial distribution of PFTs
simulated by Sheffield Dynamic Global Vegetation
Model

— Present day: USGS classification

 Climate model:
— MM5

— 50 km resolution over sub-equatorial Africa; 23 sigma
levels

— NOAH land surface; Betts-Miller convective precip;
MRF PBL

— NCEP initial and boundary conditions
— 3 time periods:
« 1 Aug — 28 Feb 1988-89, 1991-92, 1995-96



Vegetation maps: a) Potential natural (SDGVM) and b) present day
(USGS), with associated differences in c) albedo, d) roughness length and
e) minimum stomatal resistance (USGS minus SDGVM).
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MMS5 simulated precipitation (left column) - mean SON (top) and DJF (bottom) for
all 3 periods compared to CMAP (centre column) and CRU (right).
* Note high precip bias in MM5 — amplitude of diurnal cycle overstimated by Betts-
Miller scheme.

CMAP: SON all

years CRU: SON all years
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MMS5 simulated 2m temperature (left) - mean SON (top) and DJF (bottom) for all 3
periods compared to CRU (right).
* Generally positive bias in MM5 most likely due to excessive incident shortwave

radiation at the surface.
MM5(CURR): SON all years CRU: SON all years
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Mixed response in latent and sensible heat fluxes.
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Extensive increases in lower tropospheric geopotential height
and consequent increases in moisture flux divergence over

continent.
a) 700hPa HGT (m)
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Geopotential height and atmospheric moisture differences

extend to 500 hPa level.

Response is strongest in SON
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Synoptics: archetypal patterns in NCEP boundary conditions as
identified by the SOM. Conditions typical of late winter/spring occur

on the left of the array; summer-type patterns toward the right.
This slide: 850 hPa geopot. height; following slide: precipitable water.
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Synoptics cont...
Precipitable water: 850hPa —> 500hPa (mm)




Precipitation response strongest in CENT and NE for nodes
closer to the right-hand side of the SOM, but SE shows little
change for all nodes.
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850 hPa height response strongest for nodes closer to the

left-hand side of the SOM (ie. late winter/spring).

[2.2]

MMS5 simulated
850 hPa geopot.
height
differences
(present day
minus potential
natural
vegetation)
averaged for
each SOM node.



Land surface change conclusions

* Changing vegetation map in MM5 from potential
natural to present day conditions results in:
— surface cooling through increased albedo;

— subsidence in lower troposphere due to surface
cooling;

— reduced moisture flux convergence due to increased
subsidence;

— surface cooling mitigated by reduced rainfall.

« Synoptic evaluation:

— conditions typical of late winter/spring show strongest
temperature and geopot. height response;

— summer-type conditions show strongest rainfall
response.



Land surface change conclusions
cont...

* Implications?
— altered albedo in spring can potentially impact
summer rainfall onset through altered circulation:

 Implications for land surface feedback under climate
change

« Suggests seasonal forecasts may improve by
incorporating observed albedo?



Africa doing perturbed physics??

» Using the WRF model to explore perturbations in:
— Land Surface Model : 4 parameters
— Radiation Schemes : 2 parameters
— Microphysics : 2 parameters
— Convection : 7 to 10 parameters
— Boundary Layer : 2 parameters




The ‘problem’

* Assuming 3 possible values for each
parameter:

 Total = 524880 simulations

Example

« 80 x 50 points, AT=180 s

* 110 day simulation =6
hours

 All simulations = you do
the math .....

(Dual AMD 1,7Ghz machine)




One ‘solution’

« World Community Grid

Grid Computation solution provided by IBM®

User donated idle CPU time from home computers
oth Super Computer of the world

+700k Devices registered

+110k years of CPU time

Since 2004, hosting health sciences project (Dengue Drugs,
Muscular Dystrophy,Cancer, AIDS etc)

First Climate-related project
WRF “boinced” with help from IBM




AfricanClimate@Home Phase 1

« Just the 4 parameters from the Land Surface Model
being analyzed (34+1=82 simulations)

— LAI, Stom Res, Wilting Point, Porosity
Domain over South Africa
1-year simulation
Simplified output

@ AfricanClimate@Home




AfricanClimate@Home Phase 1

» Main issue for implementations:

— Large input and output files (Large Download
and Upload time)

Small work unit ‘Restart’ Approach

\ (making input smaller)
eolieolwe] sl

378 days (Large work unit)




Rainfall {mm)




Current Status

Phase 1 launched 03.Sep.2007 at
University of Cape Town

Windows and Linux versions running on
the BOINC agent

Mac Intel Version to be released shortly

95% of the first 14-day period already
finished in 15t 3 weeks




Phase 2 Plan:

* Include other WRF schemes
— Convection, PBL, Microphysics & Radiation

 Full-Africa domain(s)

* Multi-Year simulation
— Need to implement data compression




Other developments:

- New Microsoft funded project: Partnership with Hadley Centre, Oxford
University, Washington State University

- Perturbed physics ensembles with HadRM running under MSWindows!!!
- Experiment design still underway

- Initial runs in-house, extension through “ClimatePrediction.net’-type
dissemination

- RCM and Climate change e-learning developments
- Computing not the primary limit; rather it's people

- Question of: with limited resources, what are / should be the priorities of the
Africa climate modeling community

- For seasonal forecasting activities, aerosols, soil moisture, etc, hear from next
speaker.
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