

1934-3

Fourth ICTP Workshop on the Theory and Use of Regional Climate Models: Applying RCMs to Developing Nations in Support of Climate Change Assessment and Extended-Range Prediction

3 - 14 March 2008

Uncertainty in RCM-based regional climate change projections.

Filippo Giorgi ICTP Earth System Physics Section Physics of Weather and Climate Group Strada Costiera 11 P.O. Box 586 34014 Trieste

Uncertainty in RCM-based regional climate change

Filipoo Giorgi Abdus Salam ICTP, Trieste, Italy PCC VG1 Bureau

Fourth ICTP workshop in the Theory and Use of Regional Climate Models Trieste, 3-14 march 2008

Human factors

Natural factors

Different natural and human factors need to be accounted for in climate change studies Incoming solar radiation Absorbed by green Variations of Solar radiation

A Transient Climate Change Simulation

SOURCES OF UNCERTAINTY IN CLIMATE CHANGE PREDICTION

Intrinsic sources of uncertainty in climate change prediction: Unpredictability of natural and anthropogenic forcings

Energy Consumption in China

It is impossible to predict major volcanic eruptions or social/technological developments (scenarios instead of predictions)

Intrinsic sources of uncertainty in climate change prediction: Nonlinearities in the climate system

$\begin{array}{c} \begin{array}{c} & & & \\ & &$

Internal modes and regimes

LOOPE 140°E 180° 140°W 100°W 60

Natural climate variability

Threshold and feedback behaviors

Added sources of uncertainty in climate change prediction: Imperfect knowledge

Models

Processes

Observations (model validation, initial conditions)

"Actual" Climate Change PDF

Predicted vs. "Actual" Climate Change PDF

HOW DO WE CHARACTERIZE UNCERTAINTIES IN CLIMATE CHANGE PREDICTION

Cascade of uncertainty in climate change prediction

Cascade of uncertainty in climate change prediction

IPCC Emission and Concentration Scenarios

CO2 Emissions

CO2 Concentrations

Cascade of uncertainty in climate change prediction

Climate Simulation Segment of the Uncertainty Cascade

Climate Simulation Segment of the Uncertainty Cascade

IPCC – 2007: Global temperature change projections for the 21st century

Model configuration and scenario uncertainty contribute approximately equally to the global warming projection uncertainty

Model configuration uncertainty Regional scale

Regional Temperature Change A2, DJF, 9 AOGCMs

Regional Precipitation Change A2, DJF, 9 AOGCMs

Internal system variability

Climate can evolve differently depending on the initial conditions of its slow components (which we do not know with good accuracy)

Climate Simulation Segment of the Uncertainty Cascade

Uncertainties in regional climate change projections: The PRUDENCE strategy

Sources of uncertainty in the simulation of temperature and precipitation change (2071-2100 minus 1961-1990) by the ensemble of PRUDENCE simulations (whole Europe) (Note: the scenario range is about half of the full IPCC range, the GCM range does not cover the full IPCC range) (Adapted from Deque et al. 2006)

Where does the RCM uncertainty bar come from?

- Use of different dynamics and physics schemes in the models
 - For the same set of LBC different physics schemes provide different simulations of precipitation and other variables
 - The effect is especially important in summer, when local processes are most effective

Performance of the PRUDENCE models over different European sub-regions

Where does the RCM uncertainty bar come from?

- Internal variability of models
 - For the same set of LBC, small perturbations to the IC or LBC produce different simulations which constitute a background variability noise
 - Any physical signal should be outside this background noise

Internal variability experiments over East Asia (Giorgi and Bi 2000)

Sensitivity to initial and lateral boundary conditions

Sensitivity to initial and lateral boundary conditions

Where does the RCM uncertainty bar come from?

- LBC assimilation procedure
 - The LBC assimilation requires interpolation of driving fields in the lateral buffer zone, which is presumably done differently in different models
 - Different LBC assimilation techniques are used (e.g. relaxation vs. nudging)
 - Within the same procedure different set up may be used (width of buffer zone, exponential vs. linear relaxation function etc.)

Where does the RCM uncertainty bar come from?

- Choice of domain and configuration
 - Different models use different grid projections and configurations even at the same nominal resolution
 - The choice of domain and resolution generally affects an RCM simulation
 - Different models use different topography and land-use processing

Conclusions

- The uncertainty associated with the use of RCMs (and other regionalization techniques) should be considered within the overall uncertainty cascade in the climate prediction process.
- Recent results from multi-model projects indicate that the uncertainty associated with the RCM process is higher than previously thought, especially at fine spatial scales
- A full characterization of the RCM-related uncertainty requires carefully designed experiments involving a multiplicity of models.
- The need is there of more coordinated and "recognized" multi-model projects (the current ones are still somewhat scattered), therefore ...

Should we approach WCRP to propose a CMIP-like

framework to explore the RCM uncertainty Hyper-matrix ?

- Several "standard" domains (e.g. Europe, Africa etc.)
- Several "standard" resolutions (e.g. 50, km, 25 km, 10 km)
- Reference period(s) with perfect LBC (e.g. 10 yrs ERA40)
- Set of AOGCM fields for climate change simulations (e.g. 3 time slices, n models) for different scenarios
- Involve a wide community (climateprediction.net-type)
- Ask participants to carry out as many as possible of the experiments above to cover the Hyper-matrix
- Use different computing platforms ("grid" systems, Earth Simulator systems, etc.)
- Connection with the transferability and other intercomparison projects?
- Other regionalization techniques
- Input for AR5 (RCM-based input to AR4 was very limited)
- Do we write a proposal for suitable funding agencies?

A climate change prediction strategy

Large Ensemble of Intermediate Resolution (1-2 Deg.) AOGCM Simulations (Models, Scenarios, IC, Feedbacks)

> Clustering of "Characteristic" Climate Change Simulations

Regionalization of Characteristic Climate Change Simulations (RCM, SD, etc.)

What makes a climate change simulation more reliable?

- Good model performance in reproducing observed features of the historical climate
- High inter-model agreement in the simulation of climate change features
- Good model performance in reproducing reconstructed features of past climates
- Physical soundness of the processes that lead to the simulated changes