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Different natural
and human factors need

to be accounted for in
climate change
studies




A Transient Climate
Change Simulation

Present

)
| -
-
s’
=
)
o
&
)
I_
'©
O
Ae)
O

Control
1 r'd
/VW\‘/\;A\J\/\/\/\A/\/\\/\,\)\/\\.,/\,/\/V\/'\/W

1860 Historical Period 2000  Future Period 2100

Time




SOURCES OF UNCERTAINTY IN
CLIMATE CHANGE PREDICTION




Intrinsic sources of uncertainty in climate
change prediction: Unpredictability of
natural and anthropogenic forcings

Energy Consumplion in Ching

: =
It is Impossible to predict
major volcanic eruptions
or social/technological

developments
(scenarios instead of predictions)




Intrinsic sources of uncertainty in climate
change prediction: Nonlinearities in the
climate system

Natural climate
varlablllty

Internal modes
and regimes

Shut-down of the
ocean C|rculat|on




Added sources of uncertainty in climate
change prediction: Imperfect knowledge

Processes

Interaction

Land Surface

Cryosphe
Sea Ice, Ice Sheets, Glaciers

Changes in/ol Land Surf
Orography, Land U ‘egetation,

Observations
(model validation,
Initial conditions)




“Actual” Climate Change PDF

“Actual” Climate
Change

“Intrinsic” Uncertainty




Predicted vs. “Actual”
Climate Change PDF
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Uncertainty

| Predicted




HOW DO WE CHARACTERIZE
UNCERTAINTIES IN

CLIMATE CHANGE PREDICTION




Cascade of uncertainty in climate change prediction

Socio-Economic Assumptions
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Land Use Change
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Forcings
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Regional Climate Change Simulat.
Regionalization Techniques - 1
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IPCC Emission and Concentration
Scenarios

CO2 Emissions CO2 Concentrations
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Cascade of uncertainty in climate change prediction
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Climate Simulation Segment of the Uncertainty Cascade

Global Climate Change Simulation
AOGCM, Radiative Forcing

Internal System Natural

Model Configuration Jes yariability (IQ) Forcings
~

Regional Climate Change Simulation
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Climate Simulation Segment of the Uncertainty Cascade

Global Climate Change Simulation
AOGCM, Radiative Forcing

Internal System Natural
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IPCC — 2007: Global temperature
change projections for the 215t century
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Model configuration and scenario uncertainty contribute
approximately equally to the global warming projection uncertainty




Model configuration uncertainty
Regional scale




Regional Temperature Change
A2, DJF, 9 AOGCMs
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Regional Precipitation Change
A2, DJF, 9 AOGCMs
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Internal system variability

Climate can evolve differently depending on the initial conditions
of its slow components (which we do not know with good accuracy)
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Climate Simulation Segment of the Uncertainty Cascade
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Uncertainties in regional climate change
projections: The PRUDENCE strategy

Impacts

Storm Surge

: Agriculture
Scenarios Hydrology

HADAM3H Ecosystems
| e Health
ARPEGE Water Res.
FVGCM
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Sources of uncertainty in the simulation of temperature
and precipitation change (2071-2100 minus 1961-1990)

by the ensemble of PRUDENCE simulations (whole Europe)
(Note: the scenario range is about half of the full IPCC range, the GCM
range does not cover the full IPCC range) (Adapted from Deque et al. 2006)
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Where does the RCM
uncertainty bar come from?

e Use of different dynamics and physics
schemes In the models
— For the same set of LBC different physics

schemes provide different simulations of
precipitation and other variables

— The effect is especially important in summer,
when local processes are most effective




Performance of the PRUDENCE models
over different European sub-regions
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Where does the RCM
uncertainty bar come from?

 Internal variablility of models

— For the same set of LBC, small perturbations
to the IC or LBC produce different simulations
which constitute a background variability
noise

— Any physical signal should be outside this
background noise




Internal variability experiments over East Asia
(Giorgi and Bi 2000)

Table 1. List of Sensitivity Experiments Performed in
This Study

Pertubation Pertubation
Area Maximum Magnitude

buffer area U°=1.0,T°=1.0;Q° = 5.0% §
buffer area U° =05T° =05Q° =25%
interior domain  U° =1.0;T° = 1.0; Q° = 5.0%
interior domain ~ U° =0.5;T° = 0.5; Q° = 2.5%
Region 1 (Fig.1) U°=0.5T°=05;Q° =2.5% |
Region 2 (Fig.1) U°=0.5T"=05;Q° =2.5%
whole domain LAI/3

Units are m 5™ for wind speed and Kelvin for temper-
ature.




Sensitivity to Initial and lateral boundary conditions
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Sensitivity to Initial and lateral boundary conditions

(a) Temperature BIAS, JJA, Exp. LBClg (b) Temperature BIAS, JJA, Exp. ICig

(d) Precipitation BIAS, JJA, Exp. IClg
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Where does the RCM
uncertainty bar come from?

e LBC assimilation procedure

— The LBC assimilation requires interpolation of
driving fields in the lateral buffer zone, which
IS presumably done differently in different
models

— Different LBC assimilation techniques are
used (e.g. relaxation vs. nudging)

— Within the same procedure different set up
may be used (width of buffer zone,
exponential vs. linear relaxation function etc.)




Where does the RCM
uncertainty bar come from?

e Choice of domain and configuration

— Different models use different grid projections
and configurations even at the same nominal
resolution

— The choice of domain and resolution generally
affects an RCM simulation

— Different models use different topography and
land-use processing
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Conclusions

The uncertainty associated with the use of RCMs
(and other regionalization techniques) should be
considered within the overall uncertainty cascade In
the climate prediction process.

Recent results from multi-model projects indicate that
the uncertainty associated with the RCM process Is
higher than previously thought, especially at fine
spatial scales

A full characterization of the RCM-related uncertainty
requires carefully designed experiments involving a
multiplicity of models.

The need is there of more coordinated and
“recognized” multi-model projects (the current ones
are still somewhat scattered), therefore ...




Should we approach WCRP to propose a CMIP-like

framework to explore the RCM uncertainty Hyper-matrix ?

Several “standard” domains (e.g. Europe, Africa etc.)
Several “standard” resolutions (e.g. 50, km, 25 km, 10 km)
Reference period(s) with perfect LBC (e.g. 10 yrs ERA40)

Set of AOGCM fields for climate change simulations (e.g. 3 time slices, n
models) for different scenarios

Involve a wide community (climateprediction.net-type)

Ask participants to carry out as many as possible of the experiments above
to cover the Hyper-matrix

Use different computing platforms (“grid” systems, Earth Simulator
systems, etc.)

Connection with the transferability and other intercomparison projects?
Other regionalization technigues

Input for AR5 (RCM-based input to AR4 was very limited)

Do we write a proposal for suitable funding agencies?
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A climate change prediction strategy

Large Ensemble of Intermediate Resolution
(1-2 Deg.) AOGCM Simulations
(Models, Scenarios, IC, Feedbacks)

Clustering of “Characteristic”
Climate Change Simulations

Regionalization of Characteristic Climate
Change Simulations (RCM, SD, etc.)




What makes a climate change
simulation more reliable?

Good model performance in reproducing
observed features of the historical climate

High inter-model agreement Iin the
simulation of climate change features

Good model performance in reproducing
reconstructed features of past climates

Physical soundness of the processes that
lead to the simulated changes




