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outline

e what is Climate Risk Management? — some examples
e statistical tailoring methods for seasonal forecasts

e role of Regional Climate Models — examples from SE Asia



Climate Risk Management examples

¢ index insurance in Malawi
e reservoir management in Manila

¢ malaria mapping and early warning in Africa



Index Insurance and Climate Risk Management

In Malawi, smallholder farmers report they cannot
obtain inputs necessary to address climate variability
—  High yielding seeds require cash the farmers do not have
—  Drought risk prevents farmers from being eligible for loans

—  Malawi farmers report they want to adjust practices to
take advantage of seasonal forecasts but are unable to
obtain appropriate fertilizer and seed
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Mchinji Maize Loss based on Daily WRS}, seasonal KY

. Index insurance risk management package

—  We have designed the contracts for a drought insurance
system that provides the backbone for a package of
loans, groundnut, and maize inputs for smallholder
farmers

—  Drought insurance solves traditional crop insurance pitfalls

—  Partners include Malawi farmers and financing associations
(NASFAM, OIBM MRFC, Malawi Insurance Association),
the World Bank CRMG, Malawi Met Service, CUCRED

—  Project is in its second year of implementation, scaling up
from about 900 farmers last year to several thousand, due to
overwhelming demand

—  Additional pilots underway (e.g. Kenya, Tanzania, South
Africa . ..)

—  We are cooperatively developing packages that provide
price incentives, risk protection, and strategic input
availability so farmers can take advantage of forecasts

—  Farmers report that this program is how they adapt to
climate variability and change

A\ The International Research Institute
for Climate and Society

Contact: Daniel Osgood, deo@iri.columbia.edu



2006-2007 Potential Groundnut Contract -- CHITEDZE

Loan approximation worksheet

Rainfall is measured at Chitedze Research Station.

TOTAL LOAN  4667.35

Upper trigger Lower trigger
Phase 1 35 mm 30 mm
Phase 2 35 mm 30 mm
Phase 3 220 mm 20 mm

Kwacha owed

4000 3000 2000 1000 0

Rainfall amounts may differ from those received at individual fields.

Phase 0:

If there is less than 25mm of rain in each and every one of the following 10-
day periods, the loan is reduced to zero: 11th-20th November, 21st-30th
November; 1st-10th December; 11th-20th December; 21st-31st December,
1st-10th January, 11th-20th January

To use this sheet:

1. For Phase 1,

2. Using a piece of

3. Mark that distance

4. Repeat for the

Loan reduction during Phase 0

4000 3000 2000 1000 0

Historical Payouts of Drought Insurance Contracts, Chitedze
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1500

read the amount
of rainfall
received and
find where it hits
the line.

5. Note that rainfall is measured in 10 day periods, and capped at 60mm per period.
Most years, farmers will not receive a loan reduction.

paper, measure the

distance from the left

side of the graph to
the line.

against the small

graph at the top,

starting at the left
side.

other phases, but in
Step 3, start at the
previous mark.

Payout per Acre (MKW)
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Farmers will not receive more than the loan amount.
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Germination phase: Loan reduction as a function of
rainfall (Dekads 1-3)

Growth phase: Loan Reduction as a function of
rainfall (Dekads 4-6)

Flowering phase: Loan Reduction as a function of
rainfall (Dekads 7-14)
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Downscaling for Philippines Reservoir Inflow

Sea Surface Temperatures
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Forecasted Reservoir Inflows

C. Brown (IRI)
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1. Reservoirs operated without forecasts in risk averse mode
- Anticipating drought of record in every year
2. Forecasts provide enhanced estimate of drought risk
- Identifying opportunities in years when drought risk is low
3. Decision Support System communicates forecast in relevant terms
- Reservoir levels, reliability, water deliveries
4. Risks of forecast use must also be managed

Evaluating options for managing the low probability event
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Seasonal Climatic Subtability for Malaria Transmission Interactive Map
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survival and longevity of the mosquito vecror.
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Climatological Suitabilty for Malaria Transmisslon - Local Anabysis
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Descrigtion

The doeninzat species of malasia in Africa is Pasmodium falcipaum, Its dievelopment rate ks temperature dependent,
The clinatic condilions considersd suitable Tor ioe develapment and transmissian theough the mosquito stage of ns
lif%e cycle ane oempeatanes within the range 16°C w 32°C. Selow [5°C parasioe develapment dedresses significantly,
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“tailoring” of seasonal forecasts

correction of various biases (aka calibration, fcst assimilation)
e spatial “downscaling” of seasonal averages
» local stations
» administrative units, e.qg. districts, to match user needs & ag. data
e user-relevant meteorological “events” (eg dry-spell probability)
e coupling to a sectoral (e.g. crop) model

e probability format: want a “CDF” conditioned reliably on fcst



A probabilistic motivation

Forecast “Assimilation”

model space

p(y;) \/N—\_/%yﬂxf]
observation space

t time tr

Stephenson et al (2005)



statistical approaches

e distinguish methods applied to seasonal or monthly averages (“spatial
downscaling”) versus methods that attempt to construct stochastic daily
weather sequences conditioned on GCM seasonal forecasts

e seasonal averages: regression methods

e daily sequences: analog (resampling) methods and stochastic weather
generators



seasonal averages: “CPT”

i Climate Predictability Tool, ¥. 6.03




Why not multiple Regression?

Multiplicity - Too many grids from which to choose.
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Multicolinearity - Grids are strongly correlated.
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cross-validation

IS essential

1951 Predict Omit Omit Training
1951 1952 1953 period
1952 Omit Predict Omit Omit Training
1951 1952 1953 1954 period
1953 Omit Omit Predict Omit Omit Training
1951 1952 1953 1954 1955 period
1954 Training Omit Omit Predict Omit Omit Training
period 1952 1953 1954 1955 1956 period
1955 Training Omit Omit Predict Omit Omit
period 1953 1954 1955 1956 1957

Ensure that cross-validation window length is at least twice the
decorrelation time

.. Or use retroactive forecasting

1981 Training period Predict Omit
(1951-1980) 1981 1982+
1982 Training period Predict Omit
(1951-1981) 1982 1983+
1983 Training period Predict Omit
(1951-1982) 1983 1984+
1984 Training period Predict Omit
(1951-1983) 1984 1985+
Training period Predict
Utz (1951-1984) 1985




forecast verification

.. an example from CPT

Cross-validated scores

”
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Example from recent ASEAN-IRI
training workshop - anomaly
correlation skill

seasonal ramfall total number of dry days per season

i L e N i b e e e s AT
GCM L1 MAM Amt [ v a GCM L1 MAM Dry

MAM rainfall from ECHAM-CA March 1st hindcasts



conditioning stochastic daily weather sequences on
seasonal forecasts

monthly
fields

S U o 11 ®e 1 s

daily sequences ...



hidden Markov model (HMM)
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seasonal anomalies
at individual stations

(c) Rajasthan - 28 stations

30°NT
28°N . 3
26°N -
24°N . . oy
. -~ © Jun-Sep
2N\ ] 1900-70
70°E 72°E 74°E T76°E 78°E
seas. amount =

(no. of wet days) x (mean intensity on wet days)

Rainfall at individual stations
and station-average

: seasonal total ;

9.3




why are seasonal anomalies of rainfall frequency more
coherent than intensity”

T 4 o€ M v \Zj,' ’-‘-f 3L

Wesg-Seale :Seualklings lasiing faw days ...

intense convection is very fine scale:
may hit or miss a raingauge

organization of rainfall is larger scale

climate forcings integrate across a
season, preferentially acting on
occurrence

V. Moron



role of Regional Climate Models

examples from SE Asia



regional climate models

e “dynamical downscaling” requires 6-hourly
archived 3-dimensional dynamical fields at the
lateral boundaries: - very costly in storage!

e multi-model GCM ensembles (~100 members)
present problems for RCMs in terms of both CPU
and storage costs

¢ RCMs have their own model biases, so some
statistical calibration may still be required

e may play a growing role in the future (although
GCMs are themselves increasing in resolution)

e powerful tool to aid understanding of small-scale
climate processes

e important capacity building role in developing
countries




RegCM3 MOS

ECHAM4.5 MOS

MOS Skills (Pearsons Correlation)
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Climate risk management: Demonstration sites in SE Asia

Diversity of climate hazards + socio-economic systems
Multi-scale partnerships

Quang Tri Angat,
Bulacan

llollo

Guan ?

Indramayu, a
critical rice-growing
district in densely populated
West Java, contributing 1/4 of
Java's rice production. Farmers

Can Tho experience droughts and floods
which can cause significant
losses in rice production
Indramayu =

L i sa Tenggara Timur ( \“
= o Timur IRI



An example of RCM use : recovering subgrid scale teleconnections in Java

(a) Sep—Nov(D) Station Obs (d) Dec(0)—Feb(l) Station Obs
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(El Nine — Climatology) composite of meamonal precipitation (mm/day; shaded), low—level winds
(m /s, vector) and divergence (red contour interval is l1le—5 in c&f). Top panels: observation,
middle: ECHAM4, bottom: RegCM3, Terrailn heighte are shown by blue contours (Intervel 200 m)
El Nino years: 72/73, 82,/83, 86,/87, 91,/92, 94,95, 97,/98; Java Indonesia

(Qian et al., GRL, in press)
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reanalysis forced RegCM3 simulations

Indonesia (25km grid)
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RegCMS3 precip & sfc wind anomalies:
El Nino minus climatology (6 yrs)
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(E1 Nino — Climatology) Composite of NNRP—driving RegCM3 Seasonal Precipitation
(mm/day; shaded), Winds (m/s, vector) and Vorticity (contour) at ¢=0.995.
(Res: 25km; El Nino years: 72/73, 82/83, 86/87, 91/92, 94/95, 97/98)

(La Nina years: 73/74, 75/76, 84/85, 88/89, 98/99, 99/00)



weather types

e k-means, 5-cluster solution in PC subspace of 850hPa standardized NCEP

reanalysis daily winds

mean seasonal cycle

interannual variability
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wet-season weather types

“El Nino” “La Nina”

Cluster #2 of NCEP 850 hPa winds (SONDJF 1971-2006) Cluster #5 of NCEP 850 hPa winds (SONDJF 1971-2006)
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hypothesis

e the “dipolar” rainfall anomalies seen during the wet season (DJF) El Nifo
years are due to weak large-scale monsoon flow

e this favors a pronounced diurnal cycle with wet anomalies over the mountains



diurnal cycle

Sea breezes
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Effect of mountain-valley breezes on the diurnal cycle

of rainfall over Java

(Control run — flat island run)
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summary

e climate risk management framework: synthesis of historical, monitored and
forecast information, optimized for identified sectoral decision points

e statistical tailoring methods for climate forecasts to local quantities (weather,
sectoral) of relevance

e seek quantities that are both relevant and predictable, e.g. number of dry
days, or monsoon onset

e important roles for RCMs in furthering understanding of local-scale variations
in historical risks and forecasts, and in capacity building in developing
countries



