	The Abdus Salam International Centre for Theoretical Physics
--	---

1936-18

Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications

7 - 25 April 2008

SESAME Project

Françoise Mulhauser *IAEA*, Vienna

SESAME Project

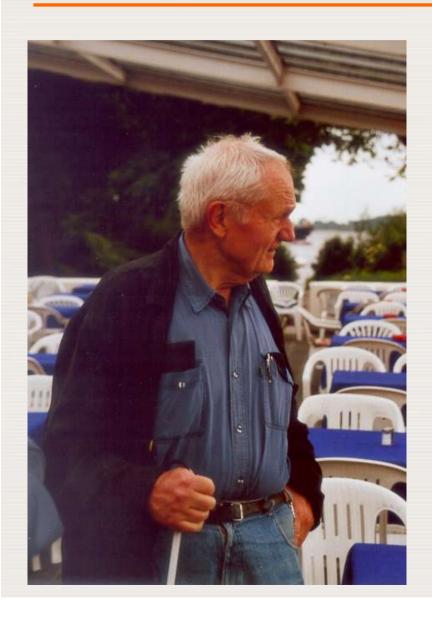
Françoise Mulhauser

(F.Muelhauser@iaea.org)

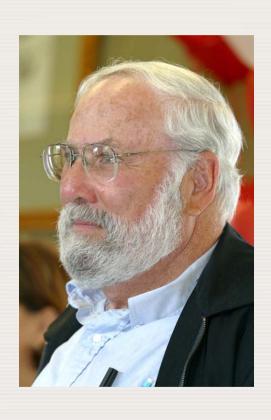
- Work presented here is mostly taken from SESAME directors:
 - K. Toukan, Director
 - H. Hoorani, Scientific Director
 - A. Nadji, Technical Director
 - as well as other members of the SESAME beamline coordination meeting
- IAEA is only involved in providing training and expert missions

Synchrotron light for
Experimental
Science and
Applications in the
Middle
East

International Center for Research and Advanced Technology


History

- 1997: H. Winick of SLAC (USA) and G.-A. Voss of DESY (Germany)
- Germany had decommissioned BESSY 1 and agreed to donate the components to SESAME
- 1999: UNESCO called a meeting in Paris: delegates from the Middle East and other regions
- Jordan has been selected to host the center, is providing the land as well as funds for the construction of the building
- 2003: Groundbreaking ceremony and first Council meeting
- The component parts of BESSY 1 have been shipped to Jordan
- President (H. Schopper from Germany) was elected.


Synchrotron-Light for Experimental Science and Applications in the Middle East

Gus Voss (DESY) watching the boat leave Hamburg harbor on its way to Aqaba in Jordan with BESSY I on board; June 7, 2002

Winick - Schopper - Llewellyn Smith - Toukan

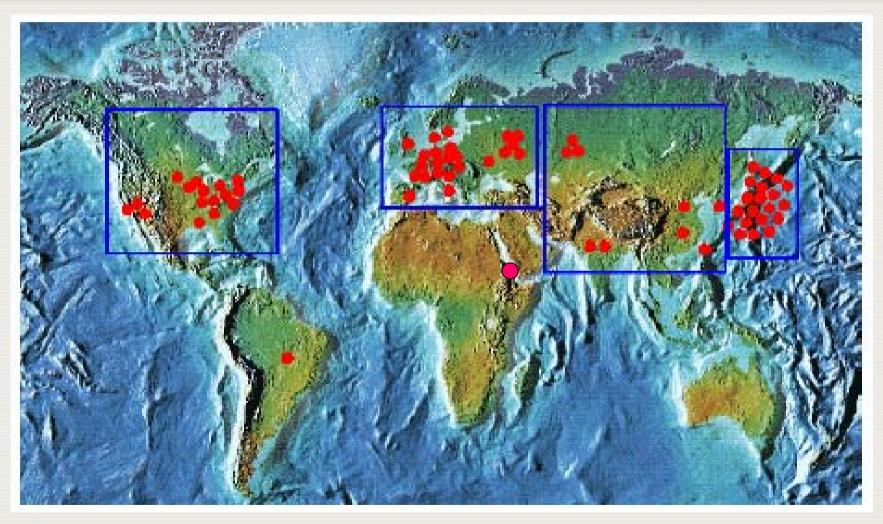
SESAME

www.sesame.org.jo

- ✓ World class synchrotron radiation laboratory of 3rd. generation for the region
- **✓** Interdisciplinary research
- ✓ Providing environment for collaborations as well as individual development
- **✓** Applications
- **√** Technology
- √ An advanced facility for training
- **✓** Bringing nations together

Location of SESAME

Within easy reach of Jordan, Israel, Palestinian Authority, Egypt. Samples/equipment/people can in principle be transported by car.

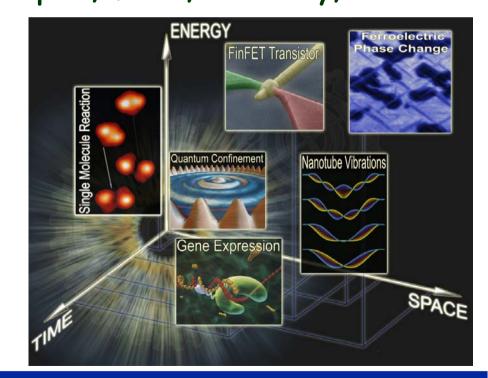


Middle East showing SESAME Members

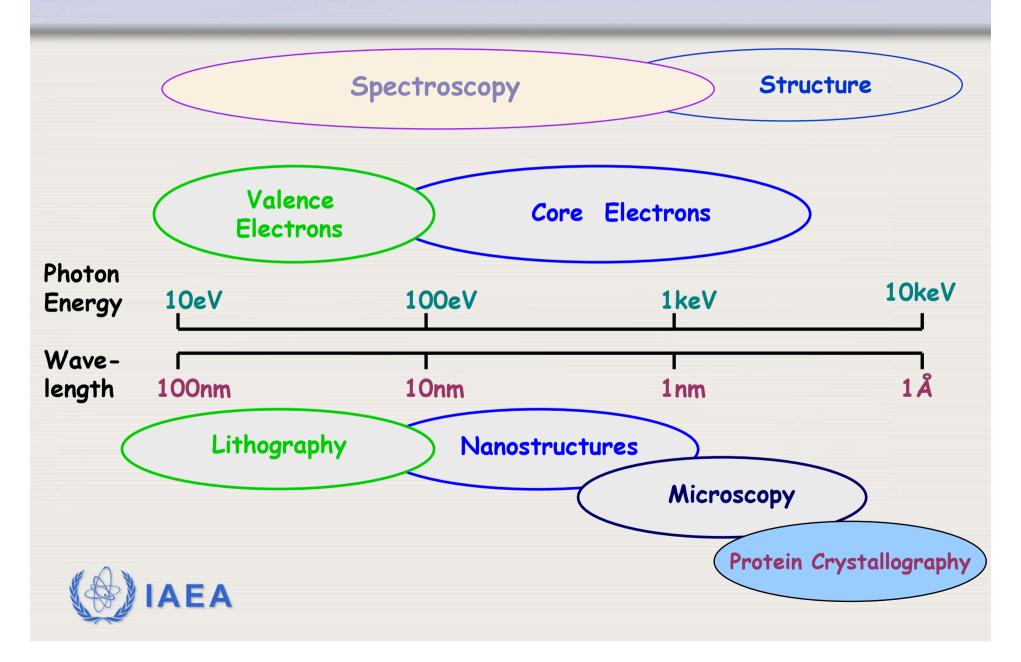
Synchrotron Radiation Around the world

Five Grand Challenges for Science & Imagination

- 1. How do we control materials and processes at the level of electrons?
- 2. How do we design and perfect atom-and energy-efficient synthesis of new forms of matter with tailored properties?
- 3. How do remarkable properties of matter emerge from complex correlations of atomic and electronic constituents and how can we control these properties?
- 4. Can we master energy and information on the nano-scale to create new technologies with capabilities rivaling those of living systems?
- 5. How do we characterize and control matter very far away—from equilibrium?



The things we want to do (i.e. designing materials to have the properties we want & directing synthesis to achieve them) require the ability to see functionality at the relevant <u>time, length & energy</u> scales.


We will need <u>to develop & disseminate new tools</u> capable of viewing the inner workings of matter - transport, fields, reactivity,

excitations & motion

This new generation of instruments will naturally lead to devices capable of directing matter at the level of electrons, atoms, or molecules.

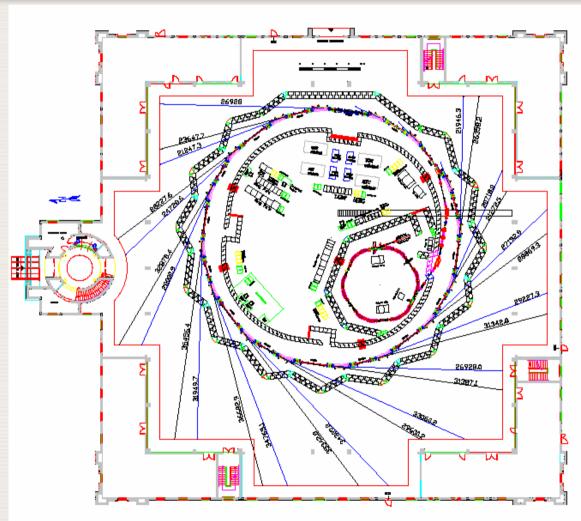
Science with Light Sources

Techniques of Light Sources

SPECTROSCOPY	SCATTERING	IMAGING	DYNAMICS
Energy = E	Momentum p=v/m	Position	Time
SPECTROSCOPY	SCATTERING	IN	MAGING
1.Low-Energy 2.Soft X-ray 3.Hard X-ray 4.Optics 5.Calibration 6.Metrology	1.Hard X-ray Dif 2.Macromolecul Crystallography 3.Hard X-ray 4.Soft X-ray	ar 2.	Hard X-ray Soft X-ray Infrared Lithography

Techniques of Spectroscopy

Acronym	Technique
VUV	Vacuum Ultra-Violet
PES	Photo-Electron Spectroscopy
ARPES	Angle-Resolved Photo-Electron Spectroscopy
IR	Infra-Red Spectroscopy
XRF	X-Ray Fluorescence
UPS	Ultraviolet Photoemission Spectroscopy
COLTRIMS	Cold-Target Recoil-Ion Momentum Spectroscopy
XAS	X-ray Absorption Spectroscopy
EXAFS	Extended X-ray Absorption Fine Structure
SXES	Soft X-ray Emission Spectroscopy
RIXS	Resonant Inelastic X-ray Scattering
XMCD	X-ray Magnetic Circular Dichroism
XPS	X-ray Photoemission Spectroscopy


Techniques of Scattering

Acronym	Technique
XRD	X-Ray Diffraction
XSW	X-ray Standing Wave
PX	Protein Crystallography
SAXS	Small-Angle X-ray Scattering
WAXS	Wide-Angle X-ray Scattering
IXS	Inelastic X-ray Scattering
RIXS	Resonant Inelastic X-ray Scattering
NRS	Nuclear Resonant Scattering
XPCS	X-ray Photon Correlation Scattering

Techniques of Imaging

Acronym	Technique
PEEM	Photo-Electron Emission Microscopy
STXM	Scanning Transmission X-ray Microscopy
CAT	Computer-Aided Tomography
XDI	X-ray Diffraction Imaging
IRI	Infra-Red Imaging
	Microspectroscopy
	Infrared Microprobe
	Soft X-ray Imaging
DEI	Diffraction Enhanced Imaging
	X-ray Tomography
	Full-Field Microscopy
EUV	Extreme Ultraviolet Lithography
LIGA	Lithography, Electroplating and Molding

SESAME Design Parameters

Energy 2.5 GeV

Circumference 133.12 m

Bending Dipole Field 1.45 T

Bending Radius
 5.73 m

RF Frequency 499.56 MHz

Current (200 bunches)
 400 mA

Long Straight Section 4.44 m

Short Section
 2.38 m

SESAME Beamlines

- SESAME has the capacity for ~28 beamlines: Straight Sections = 16 (8 long 4.44 m, 8 short 2.38 m): Beamline Length 21 - 36.7 m Photon energies from IR to soft x-rays to hard x-rays
- Mission for beamline development is to ensure appropriate capabilities to:
 - meet needs of very diverse user community (novice to experienced in many different areas of science),
 - · develop state-of-the-art user-friendly capabilities,
 - · provide user support for carrying out outstanding science,
 - has clear and transparent policy that provide equal opportunities for access of beam times

Phase I Beamlines

No.	Beamline	Energy Range	Source Type	Research Area
1.	Mad Protein Crystallography	4 - 14 keV	In-vacuum Undulator	Biology
2.	Soft X-ray - VUV	0.05 - 2 keV	Elliptically Polarizing	Atomic Molecular
3.	SAXS/WAXS	8 - 12 keV	Undulator	Material Science
4.	XAFS/XRF	3 - 30 keV	2.0 Tesla MPW	Material, Arch.
5.	Powder Diffraction	3 - 25 keV	2.1 Tesla MPW	Material, Arch., Env.
6.	IR Spectro- microscopy	0.01 - 1 eV	Bending Magnet	Material, Arch., Env.
7.	VuV Spectroscopy	5 - 250 eV	Bending Magnet	Atomic Molecular

Phase I Beamlines at SESAME & Other

CLUMIL! I MUSE I	SESA	ME:	Phase	I
------------------	------	-----	-------	---

- 1) PX (und)
- 2) Soft x-ray (EPU)
- 3) SAXS/WAXS
- 4) EXAFS/XRF (Wiggler) 4) Hard Coherent 4) EXAFS
- 5) Powder Diff (Wiggler) 5) EXAFS
- 6) IR (BM)
- 7) AMO (und)

NSLS-II

- 1) Inelastic
- 2) Nanoprobe
- 3) Soft Coherent

 - 6) Powder

A(ustralian)SP

- 1) IR
- 2) PX (BM)
- 3) Soft (undulator)
- (wiggler)
- 5) Powder (BM) 5) EXAFS

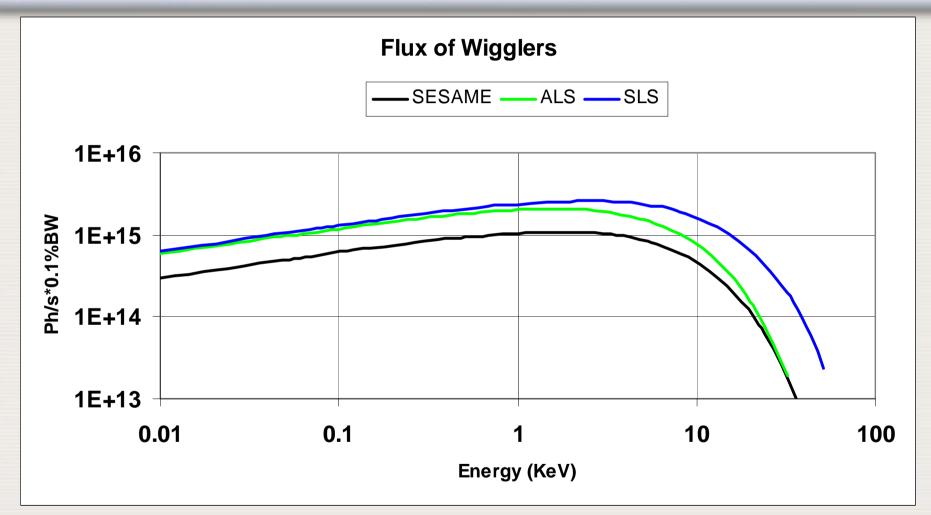
C(anadian)LS

- 1) far-IR
- 2) UV (PEEM+XAS)
- 3) Soft (STXM)
- 4) Soft (PEEM+XAS)

Phases I & II Beamlines at SESAME & Other Facilities

SESAME: Phase I	NSLS-II	A(ustralian)SP	C(anadian)LS
1) PX (und)	1) Inelastic	1) IR	1) far-IR
2) Soft x-ray (EPU)	2) Nanoprobe	2) PX (BM)	2) UV
3) SAXS/WAXS	3) Soft Coherent		(PEEM+XAS) 3) Soft (STXM)
4) EXAFS/XRF (Wiggler)	4) Hard Coherent	4) FXAFS	4) Soft
5) Powder Diff (Wiggler)	5) EXAFS	(wiggler)	(PEEM+XAS)
6) IR (BM)	6) Powder	5) Powder (BM)	5) EXAFS

Possible Phase II Beamlines

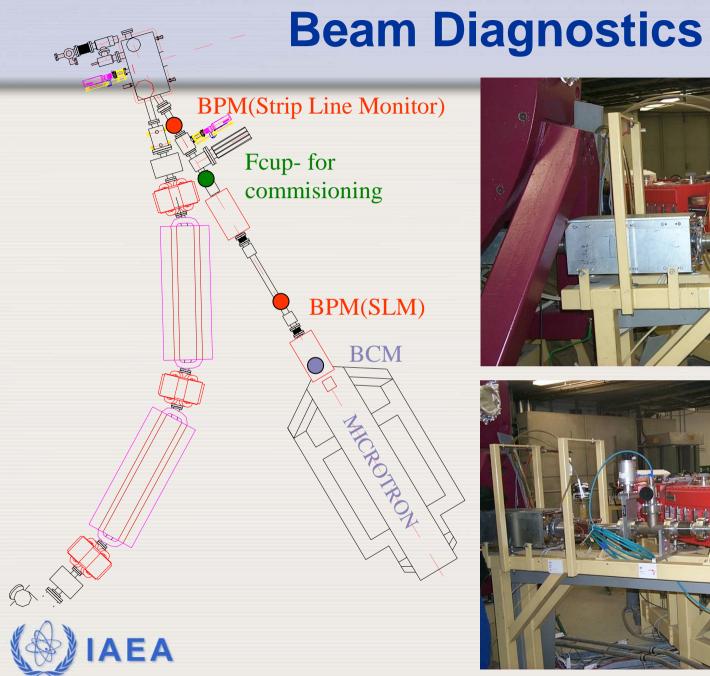

- 8) Photon in/photon out spectroscopy (energy/water problem)
- 9) Soft and/or hard Microscopy (nanoscience)
- 10) Coherent Scattering/Imaging (biology, correlated system)
- 11) MCD/PEEM (magnetism)
- 12) PX (BM)
- 13) MicroProbe/diffraction (materials, archeology)

7) AMO (und)

EA 14) High Pressure (materials)

Comparison of SR from wigglers of SESAME, ALS and SLS

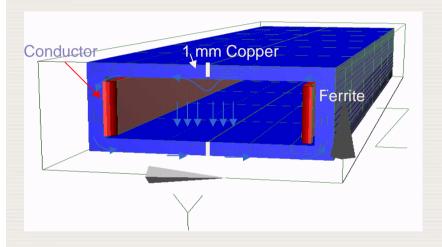
Thus at 10keV there is little difference between ALS and SESAME



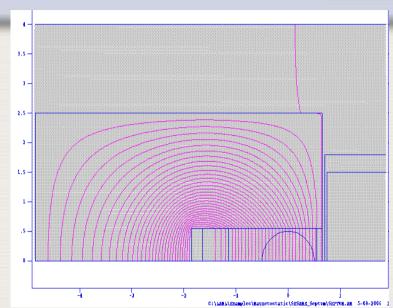
Microtron during shipment

Collaboration or "Parentage"

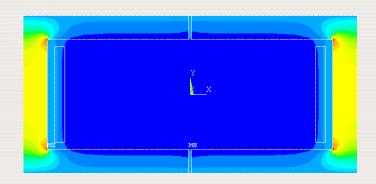
- SESAME will be assisted by international laboratories who have built 3rd generation synchrotron radiation sources
- Signing of agreement with SOLEIL: Since 2007
 Pulsed Magnets, Power Supplies, Building Infrastructure, Alignment, ...
- Approval by ESRF Directorate for Calculation of the Shielding, Radiation Monitors Distribution, PSS
- Collaboration with ALBA is being arranged Bending Magnet Measurement, IOTs and LLE-RF, Personnel Exchange
- Collaboration with SLS is in progress Vacuum and Control Systems



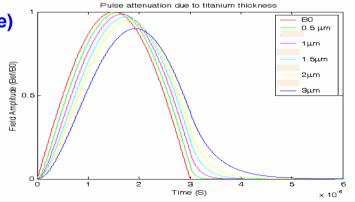
Storage Ring Devices


- Injection Septum Magnets and Kickers:
- detailed specification (SESAME), drawings (SOLEIL)
- Bending Magnet:
- Conceptual design is completed (2D & 3D magnetic calculations): SESAME results confirmed by SOLEIL
- Technical discussion and collaboration with Industries and ALBA for magnets and magnetic measurements

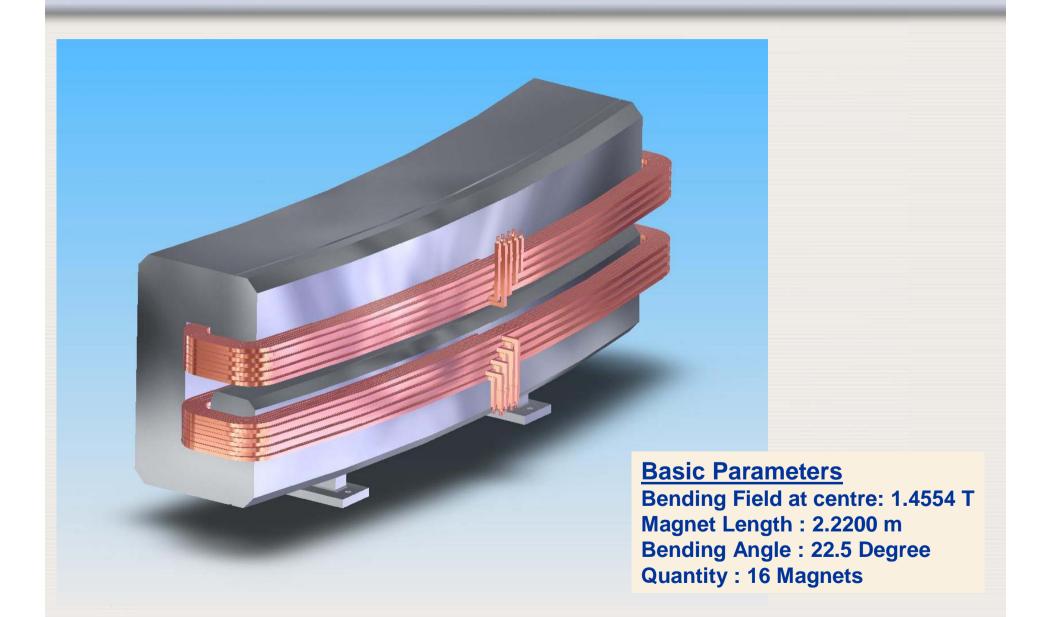
Kicker magnet design



Septum downstream general cross section

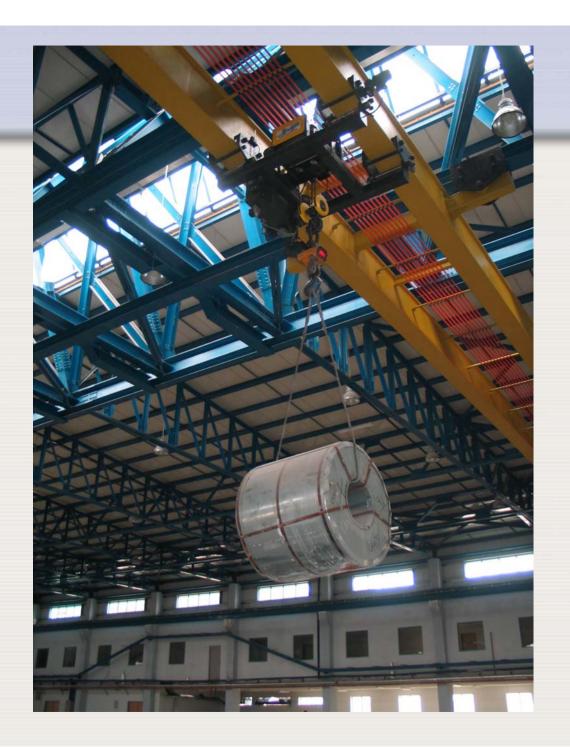


Field attenuation due to the coating (Ti, 2µm, ceramic chamber)


Kicker vertical field distribution

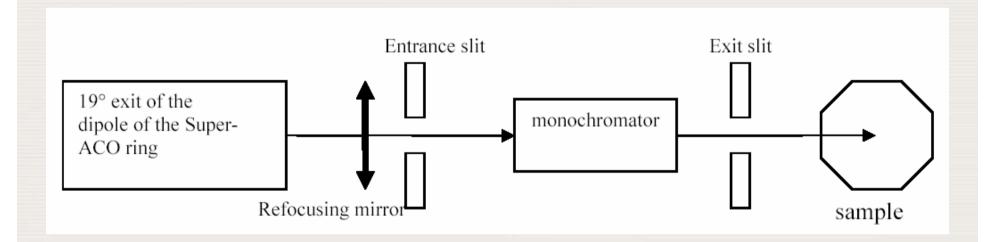
(3µs half-sine wave)

Bending Magnet Assembly

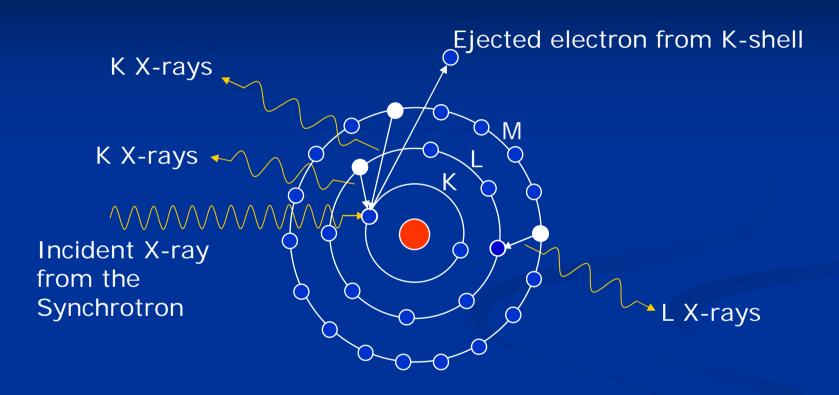


SESAME Construction Schedule

ACTIVITY	START DATE	END DATE
Machine Detailed Design	Jan 2005	Dec 2007
Component Procurement		
Call for tender for all the Subsystem	Feb 2008	Jul 2009
Contracts for all the Subsystem	May 2008	Nov 2010
Prototypes Construction and Acceptance	May 2008	Jul 2009
Subsystem construction	May 2008	Apr 2011
Installation		
Installation of Microtron and Booster in the new building	Mar 2008	April 2009
Commissioning of Microtron and Booster	May 2008	Jan 2010
Floor preparation, Utilities and Main Ring installation	Jun 2008	May 2011
Commissioning of Main Ring	Sep 2011	Mar 2012
Beamlines commissioning	Dec 2011	



Technical Team

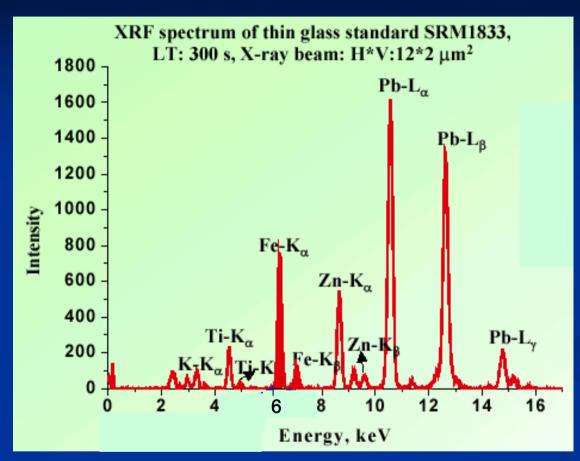


Beamline 7, VUV Spectroscopy

Beamline 4, XAFS/XRF: Principle of X-Ray Fluorescence (XRF)

Atom in the sample material

Synchrotron radiation x-ray fluorescence analysis

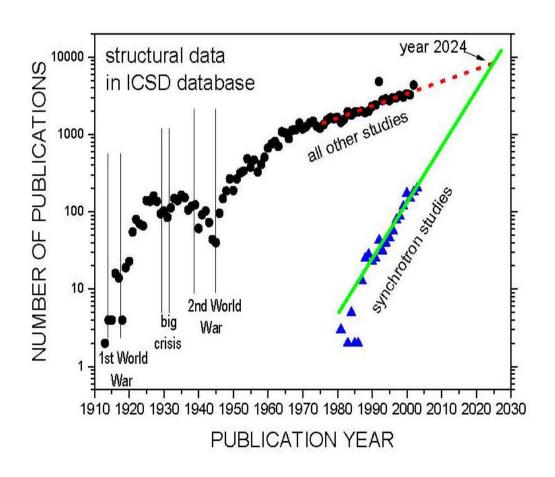

Advantages of synchrotron XRF over laboratory XRF

The synchrotron x-ray source provides:

- Many orders of magnitude more X-ray photons
- Polarized light
- 'white' X-ray continuum
- Well defined monochromatic excitation.

An interesting application in this respect is mineral exploration of heavy elements like Uranium.

Example of SRXRF


Somogyi, et al., X-ray Fluorescence Analysis, JASS'02, Al-Balqa' Applied University, Jordan, Oct. 19-28, 2002.

Elemental or chemical mapping of materials

Beamline 5, Powder Diffraction

Potential Users of

20 groups from 6 institutions in Iran

Jordan National Committee includes 17 groups
Research groups of Seven Israelen universities

More than 100 Turkish research groups from
30 universities

More than 50 days beam time required

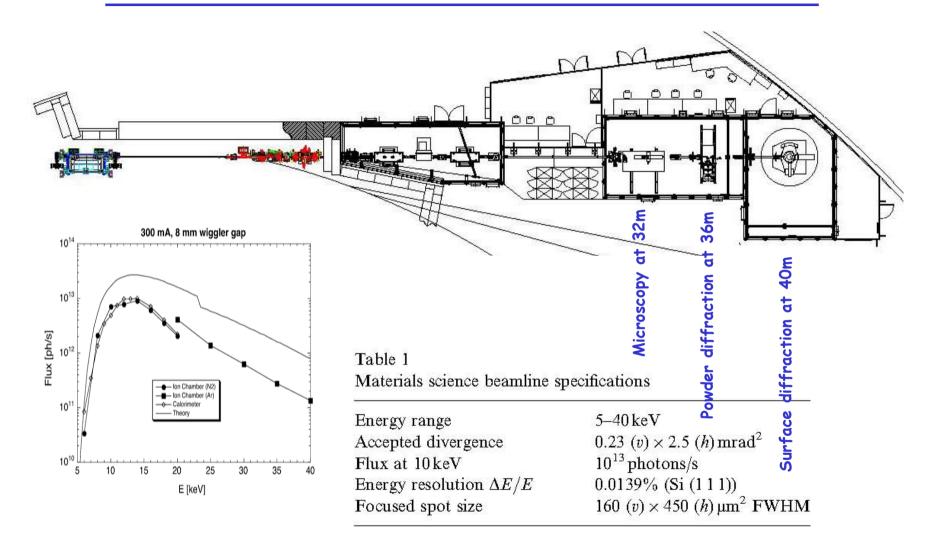
Experiments needed at

using the high-angular resolution of the powder diffractometer

- 1. Determination of the Crystal Structures
- 2. Phase Transitions
- 3. Microstructural Studies

using the high flux of the powder diffraction station

- 1. In situ diffraction studies of catalysts
- 2. Kinetic studies of chemical reactions and dynamic studies of phase transitions in organics
 - 3. Residual Stress Measurements


using the microfocusing capability

- 1. Microcrystal diffraction studies at ambient and non-ambient conditions
- 2. Powder diffraction studies at high pressures

MS Beamline at SLS

Beamtime Proposal Review and Scheduling Guidelines

- The key to the delivery of outstanding science is <u>rigorous</u> <u>peer review</u> that is fair, clear, and sensitive to the needs of users.
- · Beamtime request is evaluated and rated by the <u>beamline</u> <u>proposal review panel</u>
- · Evaluation criteria include:
 - -Scientific Impact
 - -Past performance (if appropriate)
 - Need of requested beamline (ID vs BM or appropriate use of technique)
 - -Technique or Instrumentation Development
 - -Industrial impact, need of region
- · Facility does all beamtime scheduling.

General User Access

- · All the SESAME beamlines will have at least 50% General User (GU) time.
- Each beamline scientist will get 5% of beamtime for his/her professional growth. This is necessary for attracting outstanding beamline scientists and making them committed in maintaining high quality of the beamline. Beamline scientist will be allowed to compete for GU beamtime at other beamlines.
- GU proposals will be valid for two years (continuation request required for each 6-month cycle)

Beamline Performance Review & Quality Control

- When SESAME will be operational (2011), a <u>Science Advisory</u> <u>Committee (SAC)</u> will be formed to advise on facility and beamline operations
- All SESAME beamlines will be reviewed annually by facility (organized by facility Science Director) to rate each in the areas of technical quality, staffing factors, and productivity
- Any suggestions for improving performance or critical needs will also be provided. The metrics for these evaluations will be public and transparent. Results will be reviewed by the SAC for their input and recommendations.
- · Full reviews of each beamline will be conducted by the SAC on a triennial basis

IAEA activities

- 4 x 6 months Beamline scientist fellowships per year. IAEA Technical Officer participates to evaluation panel. Restricted to IAEA & SESAME Member States fellows.
- 4 x 1 months technical trainings per year.
 Restricted to SESAME staff.
- Expert missions
- Lecturers at users' meetings

Directorate

- Prof. Sir Chris Llewellyn Smith, President of the Council
- Prof. Khaled Toukan, Director
- Prof. Hafeez Hoorani, Scientific Director
- Dr. Amor Nadji, Technical Director

