

1936-48

Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications

7 - 25 April 2008

Lensless Imaging

J. Kirz State University of New York at Stony Brook United States of America

Lensless Imaging

Why go lensless?

- A technique for 3D imaging of 0.5 20 μ m isolated objects
- Too thick for EM (0.5 μ m is practical upper limit)
- Too thick for tomographic X-ray microscopy (depth of focus < 1 μm at 10 nm resolution for soft X-rays even if lenses become available)

Goals

- 10 nm resolution (3D) in 1 10µm size biological specimens (small frozen hydrated cell, organelle; see macromolecular aggregates) Limitation: radiation damage!
- <4 nm resolution in less sensitive nanostructures
 (Inclusions, porosity, clusters, composite nanostructures, aerosols...)
 eg: molecular sieves, catalysts, crack propagation

- For many specimens, radiation damage sets the ultimate limit on achievable resolution
- Lenses phase the signal, but lose the signal.
 Example: 20 nm zone plate with 10% efficiency, 50% window transmission, 20% MTF for 15 nm half-period:

 \rightarrow net transfer of 1% for high spatial frequencies

 Can we avoid this ~100x signal loss, and also go beyond numerical aperture limit of available optics?

Many biological samples of the interest are...

- Non-crystalline : conventional crystallography not applicable
- Micron size scale : Electron microscopy can give sub nm resolution, but limited to 0.5 micron thick specimens.
 Often needs heavy metal staining
- Desire to see the living state, or as close as..... : light microscopy: image live cells at about 200 nm resolution

Looking for a method that works with minimal sample preparation at a resolution better than light microscopy

Image reconstruction from the diffraction pattern

Lenses do it, mirrors do it

but they use the full complex amplitude!

Recording the diffraction *intensity* leads to the

"phase problem"!

•Holographers do it - but they mix in a reference wave, need very high resolution detector or similar precision apparatus

•Crystallographers do it - but they use MAD, isomorphous replacement, or other tricks (plus the amplification of many repeats)

History

- Sayre 1952: Shannon sampling theorem in crystallography
- Gerchberg & Saxton, 1971: iterative phase retrieval algorithm in EM
- Sayre 1980: pattern stronger with soft X-rays; use SR to work without xtals!
- Fienup 1982: Hybrid Input-Output, support
- Bates 1982: 2x Bragg sampling gives unique answer for ≥ 2 dimensions
- Yun, Kirz & Sayre 1984-87: first experimental attempts

Diffraction pattern of a single diatom, 1987

Yun, Kirz & Sayre, Acta A.

Miao, Charalambous, Kirz, Sayre, Nature 400, 342 (1999).

 λ =1.8 nm soft x-ray diffractio n pattern

Low angle data From optical micrograph

Scanning electron micrograph of object

Image reconstructed from diffraction pattern (θ_{max} corresponds to 80 nm). Assumed positivity

Basic principles

- Single object, plane wave incident, scattered amplitude is Fourier transform of (complex) electron density f(r)
 F(k) = ∫ f(r) e^{-2πi k · r} dr
- Assume: Born Approximation
- Assume coherent illumination

"Oversampling":

Non-crystals: pattern continuous, can do finer sampling of intensity

Finer sampling; larger array; smaller transform: "finite support"

(area around specimen must be clear!)

4/25/2008

Experimental setup

Advanced Light Source beamline 9.0.1

Yeast samples : 3 - 7 micron Lateral coherence length : 15 micron Oversampling ratio : 3 to 5

Inside vacuum chamber

Removing scatter from pinholes

- Pinholes have scatter; can overwhelm weak diffraction.
- Use a "soft," refractive corner to limit to one quadrant (idea due to H. Chapman, then at Stony Brook)

Bottom half image

Top half image

Gatan 630 cryo holder

Diffraction data and its reconstruction of freeze-dried yeast cell

Yeast cell: 2.5 micron thick, unstained freezedried, at 750 eV Total dose ~ 10^8 Gray (room temperature) Oversampling is about 5 in each dimension

We do *not* claim that achieved resolution is given by maximum angle of data recording

David Shapiro, Stony Brook, now at UC Davis

The reconstruction process

Enju Lima thesis

Summary of reconstruction details

• Final reconstruction was obtained by averaging iterates

Summary of reconstruction details

- Final reconstruction was obtained by averaging iterates
- Support was calculated from the autocorrelation

Summary of reconstruction details

- Final reconstruction was obtained by averaging iterates
- Support was calculated from the autocorrelation
- Missing data was recovered by the algorithm

Reconstruction of complex image of FD yeast cell

- algorithm: Difference map, beta=1
- 10,000 iterations
- Brightness amplitude, hue phase
- averaged over 100 iterates

Is the solution unique and faithful?

With averaging, reproducible reconstructions!

Stony Brook group: average of 100 Iterates, 40 iterations apart

Cornell group: average of 980 iterates, 50 iterations apart

- Individual reconstruction programs with different starting random phases yield reproducible reconstruction!
- Hue difference from low mode?

Comparison with a microscope

Diffraction reconstruction (data taken at 750 eV; absorption as brightness, phase as hue). Stony Brook/NSLS STXM image with 45 nm Rayleigh resolution zone plate at 520 eV (absorption as brightness)

Two separate iterations with different random starts gives same reconstruction

How to handle missing data in the center:

Patching from STXM image : not successful

- stxm gives absorption contrast
- xdm gives absorption and phase contrast

Better to find it via algorithm, but need to be careful:

- if missing data unconstrained during the iteration, one starts to see unwanted effects, for example: Gaussian blurring effect
- solution: apply upper limit in the magnitude

Reconstructions from data 1 degree apart show similar 30 nm structure

Stability of frozen hydrated specimens

• D. Shapiro, PhD thesis

Reconstruction of frozen-hydrated yeast spores

Frozen-hydrated state:

- gives less structural artifact
- radiation hardy 3D reconstruction
- vitrified ice state required tricky business
- cooling rate > 10,000 K/s
- Temperature < -140 ° C

XDM apart from Cryo-Em

- larger sample, 3 7 micron
- ice thickness at 1 micron
- vitrification possible without high pressure freezing?

Commercial plunger By FEI company

Diffraction magnitude of frozen-hydrated spores

-5 degree data set

- specimen size \approx 8 μ * 5 μ
- scattering grid bar not negligible
- # of missing speckles impose challenge on phasing

Initial reconstruction Shows a clump of 5 yeast spores, $8\mu * 5\mu$

Is it reproducible?

Reconstruction from two different random starts

Challenges

- Biological samples are weak scatterers
- Reducing background
- Finding the support
- Missing data
- Born Approximation violated
- Radiation damage, contamination, ...

Howells et al., JESRP (submitted)

Laser alignment of molecules will allow the imaging of smaller molecules

Equipartition of rotational potential energy with thermal energy gives

$$\left< \Delta \theta^2 \right> = \frac{T}{3 \times 10^{-8} I \Delta \alpha}$$

T - temperature in K *I* - laser power in W/cm² $\Delta \alpha$ - polarizability anisotropy in nm³

Resolution is limited by the degree of alignment:

 $d = (L/2) \Delta \theta$

J.C.H. Spence and R.B. Doak, Phys. Rev. Lett. **92**, 198102 (2004)

IR CW Laser

J.C.H. Spence et al., Acta Cryst. A **61**, 237 (2005)

Conclusion

Diffraction microscopy gives

- the complex valued image of a unstained freeze-dried yeast cell
- Frozen-hydrated yeast spores reconstruction in process

Work is sponsored by NIH and DOE And many thanks to ALS staff, Bruce Futcher, Alison Coluccio, Agustin Avila-Sakar and Keith Lima