



1936-41

#### Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications

7 - 25 April 2008

**Coherent Diffractive Imaging with FELs** 

Henry Chapman Centre for Free-Electron Laser Science - DESY



### Crystallography overcomes the radiation damage and optics limitations, but requires crystals



- ★ Radiation damage is spread out over 10<sup>10</sup> identical unit cells
- ★ Diffraction from unit cells adds up coherently to form strong Bragg peaks
- ★ > 40,000 structures solved (in protein data bank), but ~10,000 distinct structures

• The bottleneck is in growing crystals

http://en.wikipedia.org/wiki/Image:X\_ray\_diffraction.png

### X-ray free-electron lasers may enable atomicresolution imaging of biological macromolecules



### X-ray free-electron lasers provide pulses that are intense, short duration, short wavelength, and coherent





### We have carried out experiments at FLASH



FLASH parameters for the experiments: 32 nm, 13 nm, 7 nm wavelengths 10-30 fs pulses up to 10<sup>13</sup> photons/pulse Single pulses (5 Hz) & pulse trains (140 pulses spaced by 10 μs; 700 Hz)

### We have overcome many challenges

Using the FLASH free-electron laser we have:

- Demonstrated single-pulse coherent diffractive Xray imaging;
- Demonstrated single-pulse diffractive imaging of particles injected into vacuum from solution, traveling across the beam at ~100 m/s.
- Examined the dynamics of objects irradiated by FEL and laser pulses. These studies support models that suggest that pulse durations of up to 50 fs could be used to attain 0.3 nm resolution;
- Developed time-resolved imaging of laser ablation



### X-ray free-electron lasers may enable atomicresolution imaging of biological macromolecules



## Our diffraction camera can measure forward scattering close to the direct soft-X-ray FEL beam















### The reconstruction is carried out to the diffraction limit of the 0.26 NA detector



### X-ray free-electron lasers may enable atomicresolution imaging of biological macromolecules



### We inject particles into the FEL beam by aerodynamically focusing an aerosol

#### **Challenges:**

- High enough particle density in the beam
- Having a pure sample
- Keeping molecules in "native" conformation
- Diagnostics and control of particle trajectories





### We inject particles into the FEL beam by aerodynamically focusing an aerosol

#### **Challenges:**

- High enough particle density in the beam
- Having a pure sample
- Keeping molecules in "native" conformation
- Diagnostics and control of particle trajectories





### Single-particle FEL diffraction of "on-the-fly" particles has been demonstrated for the first time



M.J. Bogan et al., Nano Letters 8, 310 (2008)





The mass spectra show which pulse in the pulse train had hit and how.

### Single-particle FEL diffraction of "on-the-fly" particles has been demonstrated for the first time

Single ~200 nm particle

500 -

400 -

- 300 – 200 – 200 –

100 -



404.00

434.00

199.00 84.00 684.00

698.00 809.00

819.00 914.00

1000

Mass spectrum recorded with LLNL-design miniaturized time-of-flight mass spectrometer, from single pulse

2000

2500

1500

Time [Digitizaion Points]



### We have performed the first X-ray imaging of freefalling unstained live biological cells





Single shot ~10 fs diffraction pattern recorded at FLASH (DESY) at a wavelength of 13.5 nm of a picoplankton organism.

This cell was injected into vacuum from solution, and shot through the beam at 100 m/s

J. Hajdu, I. Andersson, M. Svenda, M. Seibert (Uppsala)

S. Boutet (SLAC)

M. Bogan, H. Benner, U. Rohner, H. Chapman (LLNL)





Ostreococcus TEM section (Wenche Eikrem and Jahn Throndsen, University of Oslo)

### Live picoplankton have been imaged 'on the fly' when injected into the FEL beam

March 2007, FLASH, Hamburg FLASH pulse length: 10 fs Wavelength: 13.5 nm



This cell was injected into vacuum from solution, and shot through the beam at 200 m/s



### Magnetosomes at 7 nm (on a substrate)







15 nm resolution length



### The absence of a substrate gives clean patterns free of aliased scattering sources and plasma radiation



## We collected serial diffraction of unoriented iron oxide particles



### Marine viruses at FLASH

3 different families, different genome sizes, various morphologies



## We have recorded many single-pulse patterns of viruses



## Higher intensity can be achieved using exploding zone plates



### Higher intensity can be achieved using exploding zone plates



#### We must develop higher-brightness particle beams





### **Coulomb explosion of Lysozyme**



Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. Hajdu, J. (2000) Nature 406, 752-757

## First EUV-FEL experiments show that structural information can be obtained before destruction



### Particle explosion experiments were performed at FLASH on latex particles on membranes



### High-angle diffraction shows no change in structure of particles greater than 12 nm



### **XFEL diffraction of molecules and clusters is modified** (damaged) by photoionization and motion of atoms





### We invented a new method called femtosecond timedelay holography



### First demonstration of time-delay holography with 3 fs time resolution indicates the particle explosion



## The explosion is in good agreement with our hydrodynamic model



- The structure factor narrows, showing the particle exploding
- The lower resolution shape of the explosion is different than expected
- This is the first high-resolution observation of particle explosions

H. Chapman et al., Nature **448** 676 (2007)

# We interferometrically measure the change in optical density of the particle at short delays





## We performed ultrafast coherent X-ray diffraction to study ablation of materials



### Scattering from Light-Induced Periodic Surface Structures is observed



### Laser-induced dynamics can be imaged



## Patterns can be cross correlated to reveal the danamics of the structure



0





### Acknowledgments

| LLNL:      | Saša Bajt, Anton Barty, Henry Benner, Michael Bogan, Matthias Frank,<br>Stefan Hau-Riege, Richard Lee, Richard London, Urs Rohner,<br>Eberhard Spiller, Abraham Szöke, Bruce Woods |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uppsala:   | Janos Hajdu, Magnus Bergh, Nicusor Timeneau, Bianca Iwan,<br>David van der Spoel, Marvin Seibert, Erik Marklund, Filipe Maia                                                       |
| SLAC:      | Sebastien Boutet                                                                                                                                                                   |
| LBNL:      | Stefano Marchesini, David Shapiro                                                                                                                                                  |
| DESY:      | Saša Bajt, Joachim Schulz, Thomas Tschentscher, Elke Plönjes, Marion Kulhman, Rolf Treusch, Stefan Dusterer, Jochen Schneider                                                      |
| TU Berlin: | Thomas Möller, Christof Bostedt                                                                                                                                                    |
| Essen:     | Klaus Sokolowski-Tinten                                                                                                                                                            |
| Oxford:    | Andrea Cavalleri                                                                                                                                                                   |
| ASU:       | John Spence, Uwe Weierstall, Bruce Doak                                                                                                                                            |

### **Center for Free-Electron Laser Science (CFEL)**

