

1936-42

Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications

7 - 25 April 2008

Infrared Spectroscopy and Microscopy using Synchrotron Radiation (Basics) Infrared Spectroscopy and Microscopy using Synchrotron

Paul Dumas SOLEIL Synchrotron (France)

Infrared Spectroscopy and Microscopy using Synchrotron Radiation (Basics)

Paul Dumas SOLEIL Synchrotron (France)

paul.dumas@synchrotron-soleil.fr

ICTP : Advanced school on Synchrotron and Free Eletron Laser sources-2008 P. Dumas

All matters, atoms, molecules and all kind of substances vibrate . Only at absolute zero temperature (-273.15 $^{\circ}$ o r - 459.67 $^{\circ}$), that all stop vibrating.

✓ Energy range: 1 to ~500 µm (10000 to 20 cm-1 or 1.23 to 0.0025 eV)

> ✓ ~1 to ~2.5 µm (10000-4000 cm⁻¹) <u>Near IR</u> ✓ ~2.5 à 20 µm (4000-500 cm⁻¹) <u>Mid- IR</u> ✓ ~20 à ~2500 µm (500-50 cm⁻¹) <u>Far IR</u>

✓ They are long wavelengths, distributed in a wide range!

✓ They can be easily analysed simultaneously!

Compound identification using SUELEIL SYNCHROTRON Vibrational motions

 m_1

$$m_2$$

$$\upsilon_{osc} = \frac{1}{2\pi} \sqrt{k \frac{m_1 + m_2}{m_1 m_2}}$$

Frequency shift with: - nature of atoms - environment change

But also IR reflectivity and conductivity (brodband change)

Infrared spectroscopy today...

- ✓ Widely used in academic as well as in industry , primilarly for compound identification
- Classical » infrared spectrometer is composed of three main components:
- 1- An IR source (blackbody heated to about 1500K) - such as SiC
- 2- Interferometer to modulate all the emitted wavelengths
- **3- Detectors, with high responsivity in the IR frequency range**

Each functional group has an ensemble of motions (vibrational) specific of the molecular group (fingerprint)

✓ These motions (or vibrational frequencies) are detected under « resonant » excitation in the energy domain 0.495 eV-0.062 eV or 2.5 to 20 microns or 4000-500 cm-1

✓ There are databanks of spectra, which allow a rapid search and identification.

✓ The technology is rather simple, and the data are obtained quite quickly (few seconds).

Synchrotron Infrared Emission: Properties and Characteristics

ICTP : Advanced school on Synchrotron and Free Eletron Laser sources-2008 P. Dumas

History of synchrotron IR ?

It takes much longer before being recognized as a potential source for spectroscopy

Bending magnet radiation

SYNCHROTRON

Edge radiation

*: calculated using the SRW code for E=2.75 GeV, 1.56 T, 7 meters straight section

Calculated using SRW Code developed by O. Chubar and P. Elleaume E= 2 GeV I= 300 mA , 1.2 T , HxV= 20x20 mrad +5 0 -5 mrad +5 0 -5 mrad

For a fixed wavelength, vertical angle larger for constant field emission

For bending magnet radiation, the 'natural opening angle' (the total angle required to leave 90% of the light emitted outside the chamber) is given by a simple formula :

$$\theta_{natural}(radians) = \left(\frac{3\lambda}{4\pi\rho}\right)^{1/3}$$

For edge radiation one can estimate the angular size of the first interference ring of the intensity distribution, at a distance *z*: .

$$r_{\perp 1} \big/ z \approx 2 \big[2 \lambda (z+L) \big/ (zL) \big]^{1/2}$$

How do they compare in intensity?

(Non-coherent) Synchrotron Radiation from Constant Field of Bending Magnet

$$\begin{split} \left(\frac{dW}{d(1/\lambda)}\right)_{SR} \left[\frac{W}{cm^{-1}}\right] &\approx 4.88 \cdot 10^{-7} E[GeV] I[A] \theta_x[mrad] G(\lambda_c/\lambda) \\ &\stackrel{+\infty}{\longrightarrow} \\ G(x) &\equiv x \int_x K_{5/3}(x') dx' \\ \gamma &= E/m_0 c^2 \quad = \text{electron relativistic mass enhancement factor} \\ \theta_y &= \text{aperture} \\ \lambda_c &= 4\pi \rho/(3\gamma^3) = \text{critical synchrotron radiation wavelength for the bending magnet} \end{split}$$

$$K_{5/3}$$
 = modified Bessel function

 $\gamma =$

 θ

For a storage ring with parameters E = 2.75 GeV, I = 0.5 A, $\lambda_c = 1.43$ Å, horizontal angular aperture $\theta = 40$ mrad at the wavelength $\lambda = 10$ µm

$$\frac{10112011a1 angular aperture 0_x - 40 mad, at the wavelength \lambda - 10 \mu m}{dN}$$

$$\frac{dW}{d(1/\lambda)} \left[\frac{W}{cm^{-1}} \right] \approx 2 \cdot 10^{-20} \frac{dN}{dt (d\lambda/\lambda)} \left[\frac{Photons}{s (0.1\% bw)} \right] \left(\frac{dW}{d(1/\lambda)} \right)_{SR} \approx 1.40 \cdot 10^{-6} \frac{W}{cm^{-1}}$$

Multichannel Detection with a Synchrotron Light Source G.L. Carr, O. Chubar and P. Dumas

How do they compare in intensity?

(Non-coherent) Edge Radiation from Extremities of Bending Magnet

$$\left(\frac{dW}{d(1/\lambda)}\right)_{ER}\left[\frac{W}{cm^{-1}}\right] \approx 5.76 \cdot 10^{-7} I[A] H\left[\frac{\pi \cdot \theta_r^2[mrad]}{\lambda[\mu m]}\frac{zL}{z+L}[m]\right]$$

- where $H(x) \equiv \ln(x) \operatorname{ci}(x) + C$, $\operatorname{ci}(x) \equiv -\int \cos(t)t^{-1}dt$ is the cosine integral function $C \approx 0.577216$ is the Euler constant
- L is the distance between bending magnet edges
- z is distance from downstream bending magnet edge to observation plane

Taking the following realistic parameters: I = 0.5 A, L = 10 m, z = 5 m, $\theta_r = 10$ mrad $\lambda = 10 \,\mu\text{m}$

$$\left(\frac{dW}{d(1/\lambda)}\right)_{ER} \approx 1.5 \cdot 10^{-6} \frac{W}{cm^{-1}}$$

Multichannel Detection with a Synchrotron Light Source G.L. Carr, O. Chubar and P. Dumas

ICTP : Advanced school on Synchrotron and Free Eletron Laser sources-2008 P. Dumas

20

Infrared Synchrotron Radiation from Edge of bending magnet

"Pure ER" is polarized "Radially"

SYNCHROTRON

E = 3.0 GeVL = 5 m $B_{max} = 1.30 \text{ T}$ r = 1.23 mI = 200 mA $\lambda = 10 \text{ µm}$

Intensity Distributions at Various Polarizations

The spectral flux emitted by isotropic black-body source into a solid angle $\Omega = 2\pi \sin \theta_r$ (where is the angular radius of the first optical element of the spectrometer), is:

$$\left(\frac{dW}{d(1/\lambda)}\right)_{BB} \approx \frac{2\pi hc^2 S_{src} \sin \theta_r}{\lambda^3} \left[\exp\left(\frac{hc}{\lambda k_B T}\right) - 1\right]^{-1}$$

h=Planck constant λ =Radiation wavelength S_{src} =Source areac=Speed of light k_B =Boltzmann constant

Blackbody radiation

Convertir photons/sec/0.1%bw in Watts/cm-1

$$\left(\frac{dW}{d(1/\lambda)}\right)_{BB}\left[\frac{W}{cm^{-1}}\right] \approx 3.74 \cdot 10^{-2} \frac{S_{src}[mm^2]\sin\theta_r}{\lambda^3[\mu m]} \left[\exp\left(\frac{1.44 \cdot 10^4}{\lambda[\mu m]T[K]}\right) - 1\right]^{-1}$$

Consider all emitted photons from the blackbody , over al solid angle

High brightness source

ICTP : Advanced school on Synchrotron and Free Eletron Laser sources-2008 P. Dumas

Brightness in the infrared region(1)

Synchrotron Center	Energy (GeV)	Maximum operating current (mA)	Horizontal electron source size (µm)	Vertical electron source size (µm)
ESRF(France)*	6.0	200	~44	~9
Spring-8(Japan)*	8.0	100	~83	~19.5
Elettra(Italie)	2.0	300	~239	~13.5
MaxII(Sweden)	1.5	200	~350	~14.5
SOLEIL (France)	2.75	500	~180	~8
NSLS- Brookhaven(USA)	0.80	1000	~550	~70
Australian Synchrotron	3.0	200	~389	~19.7

It's not dependant on the electron source size! Source size is diffraction-limited (apparent source size)

Brightness in the infrared region(2) To obtain a rough estimation of the diffractionlimited SR source size :

 $\sim (\lambda^2 \rho)^{1/3}$

Numerical methods of Fourier optics can be used :back-propagation of the wavefront (at a specific wavenumber) to the source position, or by simulating of the radiation focusing at optical magnification equal to 1

Apparent source size @ Australian synchrotron $\lambda = 10 \ \mu m$

Are we confident with the simulations?

Calculated intensity profile at 6.2 meters from source λ =0.52 microns

Measured at the ESRF beamline

SYNCHROTRON

Recorded with a CCD camera at 6.2 meters from source λ = 0.52 microns

Measurements done with a CCD camera, 10m from source,

H-polarized

V-polarized

filter=700nm

ICTP : Advanced school on Synchrotron and Free Eletron Laser sources- 2008 P. Dumas

Allows to collect 20 mrad vertical and 78 mrad horizontal

