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Scattering, Diffraction, and Refraction

(b) Non-isotropic scattering from a partially
ordered system

A
(c) Diffraction by an ordered array of atoms, (d) Diffraction from a well-defined geometric
as in a crystal structure, such as a pinhole
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(e) Refraction at an interface (f) Total external reflection
A
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Scattering, Refraction, and Reflection

Single scatterer, Many atoms, each

electron or atom, with many electrons,

In vacuum. constituting a “material”.

(Chapter 2) (Chapter 3) /
) o5 O O

A

* How are scattering, refraction, and reflection related?
* How do these differ for amorphous and ordered (crystalline) materials?
» What 1s the role of forward scattering?
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Maxwell’s Equations

:

Wave Equation
(%

p
2
Radiation by a single electron (“dipole Refractive index with many atoms
radiation™) present
Scattering cross-sections Role of forward scattering
Scattering by a free electron (“Thomson Contributions to refractive index by
Scattering”) bound electrons
Scattering by a single bound electron Refractive index for soft x-rays and EUV
(“Rayleigh scattering”) n=1-0+if (3,P<<1)
Scattering by a multi-electron atom Yo
fy 1o’

Atomic “scattering factors”, fjyand f;;”
1111 ’ 44
Determining fj and f§’; measurements

and Kramers-Kronig
Total external reflection
Reflectivity vs. angle

Brewster’s angle
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==\ Radiation by an Accelerated Charge:
(«sivy Scattering by Free and Bound Electrons

AQa e2
. 2 Fe =
0 sin“® 41 egmc?
_ 8w,
O, = Tre
87 w?
g =

,
| 3¢ (@ — 02 + (yoy?
dP  ¢%|al?sin’®

= 2.34
dQ2 1677 2¢€pc3 (2.34) . Z_ 2e—iAKAT

AK, w) =

A ) ; w?—wl+tiyw

Z wz
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(2.44)

(2.45)

(2.51)

(2.66)

(2.72)
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Chapter 3

WAVE PROPAGATION AND REFRACTIVE INDEX
AT EUV AND SOFT X-RAY WAVELENGTHS

N, r.A\2 )
nw)=1- “2"’ (—ify) (9
. v 4
n=1-38+1ip
— nw)y=1-8+ip (3.12)
“ Lo = — (3.22)
abs — 4]1}3 .
Tabs. = 2reAf7 () (3.28)
2mé
0, = V268 (3.41)
52 2
R, ~ P (3.50)
4
by -2 (3.60)
=4 2 '
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Maxwell’s Equations and the Wave Equation

Maxwell’s equations:

VxH= % +J  (Ampere’s law) 2.1) , J=-env (2.10)
VXE= —%—? (Faraday’s law) (2.2)
V-B=0 (2.3)
V-D=p (Coulomb’s law) (2.4)
D = ¢E (2.5)
B = uoH (2.6)

The transverse wave equation:

2
(a_ - 02V2) Er(r, ) = _ L0t 1) (3.1

ot? € Ot
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The Wave Equation

From Maxwell’s Equations, take the curl of equation 2.2

oB
VX | VXE=—— 2.2
ot (2:2)
and use the vector identity from Appendix D.1, pg. 440,
Vx(VxA)=V(V-A)—V?’A (D.7)

to form the Wave Equation

2
(8_ — C2V2) E(r,t) = _l [BJ(r, ) +- cZVp(r, t)] (2.7)

ot €0 at
1
where c= (2.8)
A/ €00
where J(r,?) 1s the current density in vacuum and p 1s the charge density:

J(r,7) = gn(r,H)v(r,t) (2.10)

For transverse waves the Wave Equation reduces to

?* 1 0Jr(r, 1)
— —*V? | Eq(r,t) = —————~ 3.1
(3t2 c )T() o 3.1

Professor David Attwood
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Relationships Among E, Hand S
for a Plane Wave in Vacuum

B(r,) .
Among E and H, take V x E(r, t) = — , with B = pyH 1 vacuum
to obtain
VXE = oH
= —Hlo Y

Write E and H, in terms of Fourier representations

—i(wt —k - r) dodk

i(of —k - r) dodk
()

and H(r, 7) = J Jka e
ko

em)* 2m)*

The V and 0/0t operates on the fields become algebraic multipliers on the
Fourier-Laplace coefficients Ey, and Hy,

€0

Hka) — _kO X Ege
Mo
[€

using the inverse transforms | H(r, t) = ——9-k0 x E(r, 1) (2.29)

Ko

and Sr, 1) = | 2 ||k, (2.31)
Mo

Ch02_RelatnshpsPIWv_Apr2008.ai




Electric Field Radiated by an Accelerated Charge

Invertlng eq. (3.1) in k, w - space

E(r, 1) = f f iw\ Jg, e %D do dk
T hJo U @) (@ —k2c2) Q2

Where now for an accelerated electron
Jr, = —evr(w)

Then wvr(w)e @k do dk
E(r t) = 2 k202 (2}[)4

0 for large r

° kr
Pole at
k =-w/c
o0
. d
E(r, 1) = / (—iw)vr(w)e @0 —T/OZ
dregc?r J_o 27
e dvry (t —r/c)
E(r, 1) =
(r, 1) 4rregc?r dt
ear (t —r/c
or E(r 1) = T ( /c)
4 egc?r

Professor David Attwood
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Power Radiated by an Accelerated Point Charge

ear (t —r/c)

€
Combining E(r, t) = (225) and  S(r, 1) = /u—°|E|2ko (2.31)
0

4 egc?r
one obtains the instantaneous power per unit area radiated by an accelerated electron

e*|ar|? ( ko, propagation direction
ko (2.32) ‘
lar| = |a| sin®

For an angle © between the direction of acceleration, a, and the
observation direction, Kk, the instantaneous power per unit area is  tg

S(r, 1) = 16m2€oc3r?

¢2|a|? sin? ©

S(r, 1) = 16T2€pc3r?

ko (2.33)

dP _ ¢*|al’sin’ ©®
dQ 16723

the well known “donut-shaped” radiation pattern characteristic of a radiator whose size
1s much smaller than the wavelength (“dipole radiation”).
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Total Power Radiated by an Accelerated Point Charge

The total power radiated, P, is determined by integrating S over the area of a distant sphere:

= ffS-dA: [[S-(rdeko) (2.35)

area solid
angle

where for 0 <© <mand 0 < ¢ <21 we have dQ = sin © dO d¢, thus

2lal?
al? sin’ ®
ff 2| ~ko | -r’sin®@dO®dp ko
167%€oc3r
Thus the instantaneous power radiated to all angles by an oscillating electron of acceleration a 1s

2 2
p—5" ( e’la| ) (2.36)

3 \ 16m2¢yc3

For sinusoidal motion, averaging over a full cycle, sinmt or cos?mt, introduces a factor of 1/2

le 8 e?|al?
2 3 \1672¢yc3
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Scattering Cross-Sections

Measures the ability of an object to remove particles or photons
from a directed beam and send them into new directions

\ f Diminished
/ by both
scattering and

absorption
_ P scattered (power)
6 == area =
S| (power/area)

* Isotropic or anisotropic?

* Energy or wavelength dependent?

Professor David Attwood
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Scattering by a Free Electron

Define the cross-section as the average power radiated to all angles,
divided by the average incident power per unit area

P
o = 2 (2.38)
1S; |
For an incident electromagnetic wave of electric field E;(r,?)
- 1 [e€
S=- |2 EPk (2.39)
2V wo

For a free electron the incident field causes an oscillatory motion
described by Newton’s second equation of motion, F = ma, where
F 1s the Lorentz force on the electron

small
ma = —¢[E; + v X' B;] (2.40)
Thus the instantaneous acceleration is
e
ar,t) = ——E;(r, 1) (2.42)
m

Professor David Attwood
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Scattering by a Free Electron (continued)

The average power scattered by an oscillating electron is

2
o s C(Gmp)
Pscatt. - = 2 3
2 3 167%€gcC

431'( e*|E: | )
Pt 3 \ 167%egm?c?
S

2

The scattering cross-section is

€0 R.12
0 ||

Introducing the “classical electron radius™

e2

Fo = s 2.44
 dmegmc? (2.44)

One obtains the scttering cross-section for a single free electron

8
Ge ) ““"“"7’2

e (2.45)

which we observe is independent of wavelength. This is referred to as the Thomson
cross-section (for a free electron), after J.J. Thomson. Numerically ro = 2.82 X 10-13 cm
and 6. = 6.65 X 1025 cmZ2. The differential Thomson scattering cross-section is

Professor David Attwood
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Scattering by a Bound Electron

For an electromagnetic wave incident upon a bound electron of resonant
frequency g, the force equation can be written semi-classically as
d 2 dx
+my — + mo; x_—e(E +vxB)) (2.48)
d dr? dt " —’

~0
with an acceleration term (ma), a damping term, a restoring force term,
and the Lorentz force exerted by the fields. For an incident electric field

E =E;e '
the harmonic motion will be driven at the same frequency, ®, so that
y — 1 eE; (2.49)
w —wl+iyw m '
—w? eE;
a= (2.50)

2 2 4
W —w; +1yw m

Following the same procedures used earlier, one obtains the scattering
cross-section for a bound electron of resonant frequency, s

8w 5 w*
o = r, 3 (2.51)
3 7 (@? - 0d)" + (yo)

Professor David Attwood
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Semi-Classical Scattering Cross-Section
for a Bound Electron

3 w*
o= r2 . (2.51)
2 2 2
(@ = @})” + (yo) 100 - 6 = or(w)?
|_
L 90
B (Ywg) = 107
© 80
c
2 70t
(&) :
3
@ 60 -
o 50 L I Lorentzian line shape
; L ; of half width /2
£ B :
S S
B N
N

| | |
05 10 15 20 25 30
Note that below the resonance, for ®2 << ®2 Frequency /o

87 , [ w Y 8n 2 A\’
= —Vr — = — —

This 1s the Rayleigh scattering cross-section (1899) for a bound electron,
with @/ms << 1, which displays a very strong A4 wavelength dependence.

Professor David Attwood
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X\ The sky appears blue because of the strong wave
» length dependence of scattering by bound electrons.

Sun AV
l T ¥ More blue than

\
*” green or red
Setting Atmosphere

un (Oy, Ny, . . )
~ — As =150 nm

\ )= Earthly observer

~—/

~—_ —7 Oo~-=0 (7\18)4

» UV resonances in Oy and N>, at 8.6 and 8.2 eV

* Red (1.8 eV, 700 nm), green (2.3 eV, 530 nm), and blue light (3.3 ¢V, 380 nm)
 Density fluctuations essential

» Long path at sunset, color of clouds

« Photon energy and wavelength effects. Volcanic eruptions

Professor David Attwood
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Scattering by a Multi-Electron Atom

Semi-classical model of an atom with Z electrons and nucleus of charge +Ze at r = 0.

VA

n(r,t) =Y 8[r— Ar,(1)] (2.53)
s=1 Electron

at Arg

rs =r— Arg

> B

Observer
atr >> [Ar, |
d?x, dx; X
For each electron m———+my— +mwix; = —e(E; +v; xB)  (2.58)
dt dt ‘Hf{-)-’

The acceleration has an additional phase term due to the position, Arg, within the atom:

A= — 2 g iefan) (o

W —w+iyo m

The scattered electric field at a distance r summed for all Z electrons, is
2 V4

2 .
E,t) = ¢ o’Eisn® 1 o—ilot-{:/)—ki-Ar]
4z eomc? s=1 w? — w? + iya)@

where rg = r — Arg and 15 = |ry|. For r >> Arg, s =1—Kg - Arg (2.62)

Professor David Attwood
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(2.65)

Ak = k — k;

where the quantity f(Ak, ®) is the complex atomic scattering factor,

which tells us the scattered electric field due to a multi-electron atom, |AK| = 2k; sin ©
relative to that of a single free electron (eq. 2.43). Note the dependence

on frequency m (photon energy Am), the various resonant frequencies s

(resonant energies ), and the phase terms due to the various positions

of electrons within the atom, Ak * Ar.

Professor David Attwood
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A General Scattering Diagram

J(r,t) = —e n(r,t)v(1,t) (2.10)
- - Jscatte—f(wsr—ks-r) _ _efo(wi)nde—i(wdt-kd-r) __eEi o i@t ki)
k —lwim
S
Kk, Scaftered > matching exponents
incident \_Kd wave Olzs - l(i)i +l(<Dd
wave |kq| = 21/d represents a spatial non-uniformity ST
in the medium, such as atoms of periodicity d,
a grating, or a density distribution due to a
wave motion.
If the density distribution is stationary
N\ k; + kg =Kq
. €)) . 21 ) ki
ki = P .. the scattering 10 = kq/2
3 : : kg SinO=—-
diagram is \i i
e o _2n isosceles s <ing = A
c A - 2d
A=2dsin0 (2.62)

(Reference: See chapter 4, egs. 4.1 to 4.6)

Professor David Attwood
Univ. California, Berkeley
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The Atomic Scattering Factor

Z 2 _—i
f(Ak,a)):Z 2(06'

2 .
— W — W] +iyw

(2.66)

In general the Ak - Arg phase terms do not simplify, but in two cases they
do. Noting that |Ak| = 2k; sin® = 47t/ sin6, and that the radius of the atom
is of order the Bohr radius, ag, the phase factor is then bounded by

4
TN ind (2.70)

|Ak ) Ars| =<
The atomic scattering factor f(Ak,w) simplifies significantly when

|AK - Arg| - 0 forap/A <1 (long wavelength limit) (2.71a)

|AK - Arg| > 0 forf < 1 (forward scattering) (2.71Db)

In each of these two cases the atomic scattering factor f(Ak,) reduces to
Z 2

foy=Y" - (2.72)

2 )2 ;
= @ w; +lyw

where we denote these special cases by the superscript zero.

Professor David Attwood
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Complex Atomic Scattering Factors

; , 272
IAOEDY w? > = i@ —if () 22-;93

— 2 ;
= O +iyw

which some write as

f(w) =Z - fi(0) - if,(w)

Professor David Attwood
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Atomic Scattering Cross-Sections

Comparing the scattered electric field for a multi-electron atom (2.65)
with that for the free electron (2.43), the atomic scattering cross-sections
are readily determined by the earlier proceedures to be

do(w) 5 0, 2.2
79 =r.;|f (w)|” sin” ® (2.75)
o) = 521 @) (2.76)
gsw”
where o) = Z e (2.77)

and where the super-script zero refers to the special circumstances of long
wavelength (A >> ag) or forward scattering (6 << 1). With the Bohr radius
ag = 0.529 A, the long wavelength condition is easily satisfied for soft
x-rays and EUV. Note too that we have introduced the concept of oscillator
strengths, g, associated with each resonance, normalized by the condition

Y g=2 (2.73)

Professor David Attwood
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Example:
Complex Atomic Scattering Factor for Carbon

ow) = flw) —if)(w) (2.79)

Carbon (C)
7.=6
Atomic weight = 12.011
8 /,\‘ \\
6 100 / N N\
4 | A !/ N \\\
0 0 \
N f2" 10 \ AN
O AN
\\
4 1072
10 100 1000 10000 10 100 1000 10000
E (V) E (V)
(Henke and Gullikson; www-cxro.LBL.gov)

Note that for 20 >> Ay, f10—> Z. This works here for carbon floe 6, but note that in
general this conflicts with the condition A >> ag. For the case of carbon at 4 A wavelength
(A >> ag), and thus i = 3 keV (>> hwg ~ 274 V), the atomic scattering cross-section
(2.76) becomes

8
o (@) ~ -;-rjzl = 7%, (2.78¢)

that is, all Z electrons are scattering cooperatively (in-phase) - the so-called N2 effect.

Professor David Attwood
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Atomic Scattering Factors for f‘\l \
Carbon (Z = 6) /\\'“

o,(barns/atom) = p(cm?/g) x 19.95 Carbon (C)
E(keV)u(cm?/g) = £ x 3503.31 Z=6
Atomic weight =12.011
Energy (eV) S0 R u (cm?/g) £
30 3.692 2.664E+00 3.111E+05
70 4249 | 1.039E+00 | 5.201E+04 8
100 4.253 6.960E-01 2.438E+04 /
300 2.703 3.923E+00 4.581E+04 4 '
700 6.316 | 1.174E+00 | 5.878E+03 P
1000 6.332 6.328E-01 2.217E+03 0
3000 6.097 7.745E-02 9.044E+01
7000 6.025 1.306E—-02 6.536E+00
10000 6.013 5.892E-03 2.064E+00 —4
30000 6.000 4.425E-04 5.168E—02 10 100 1000 10000
\
(\,150 N \\\
=
2 \
3. EE——— h
\\
, —— 1072
10721 S mmnni e T
10 100 1000 10000 10 100 1000 10000
E (eV) E (eV)
Edge Energies: K 284.2¢V

(Henke and Gullikson; www-cxro.LBL.gov)

Professor David Attwood
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n L ] -~
Atomic Scattering Factors f\ A
mgm frrreenqr 1]
for Silicon (Z = 14) ’\\
6,(barns/atom) = p(cm?/g) X 46.64 Silicon (Si)
E(keV)u(ecm?¥/g) = £,° x 1498.22 Z=14
3 Atomic weight = 28.086
Energy (eV) 12 A u(cm?/g)
30 3.799 | 3.734E-01 1.865E+04 15
70 2448 | 5.701E-01 1.220E+04 v aiiiliin
100 5.657 | 4.580E+00 | 6.862E+04 10 7
300 12.00 6.439E+00 | 3.216E+04 [
700 13.31 1.951E+00 | 4.1756+03 | f° ° u 7
1000 13.00 1.070E+00 | 1.602E+03 0 /
3000 14.23 1.961E+00 | 9.792E+02
7000 14.33 4.240E-01 9.075E+01 -5
10000 14.28 2.135E-01 3.199E+01 10
30000 14.02 2.285E-02 1.141E+00 10 100 1000 10000
7
107 | 10! L
—— i~
A N
\ N
= 100 N
(\l\ f ‘\\‘_' N
: : ~
= 10°! .
N\
N
1072
10 100 1000 10000
E (eV)
Edge Energies: K 1838.9¢eV L; 149.7eV
L, 99.8eV
Ly 99.2eV

(Henke and Gullikson; www-cxro.LBL.gov)

Professor David Attwood
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Atomic Scattering Factors for

Molybdenum (Z = 42)

~
frreeerr

A
n

BERKELEY LAB

Ga(barns/atom) = p(cm?/g) X 159.31 Molybdenum (Mo)
E(keV)p(cm?/g) = £ x 438.59 7Z=42
Atomic weight = 95.940
Energy (eV) s 5 n(cm?/g) 8
0
30 1.071 5.292E+00 7.736E+04 7
70 19.38 4.732E+00 | 2.965E+04 60
100 14.02 1.124E+00 4.931E+03 50
300 4.609 1.568E+01 2.292E+04 40 /
700 31.41 1.819E+01 | 1.140E+04 | f° /
1000 35.15 1.188E+01 | 5.210E+03 30
3000 35.88 1.366E+01 1.997E+03 20
7000 42.11 3.493E+00 2.189E+02 10 =t J
10000 41.67 1.881E+00 8.248E+01 0
30000 42.04 1.894E+00 2.769E+01 10 100 1000 10000
(Ju
fa N
— 10! / b
QD l’ \ " \\\ N\
N 0 7\ \
g f2 l/ N \ N\
= J
10° \
10 100 1000 10000
E (eV)
Edge Energies: K 19999.5 eV L; 2865.5eV M; 506.3¢eV N; 63.2eV
L, 26251eV M, 411.6eV N, 37.6¢eV
L; 25202eV M; 3940eV N3 355eV
My 231.1eV
Ms 227.9eV

(Henke and Gullikson; www-cxro.LBL.gov)
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Complex Atomic Scattering Factors

; , 272
IAOEDY w? > = i@ —if () 22-;93

— 2 ;
= O +iyw

which some write as

f(w) =Z - fi(0) - if,(w)

Professor David Attwood
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; Wave Propagation and Refractive Index

at X-Ray Wavelengths

n=1-0+1iB

nw)=1-—

n=

rzar:,_,)x2

nw)=1-58+1ip
A

laps = ——
abs 47!'ﬁ

Oabs. = 2re)‘-f20(a))

(f—ify)

(3.9)
(3.12)

(3.22)

(3.28)

(3.29)

(3.41)

(3.50)

(3.60)

Professor David Attwood
Univ. California, Berkeley
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The Wave Equation and Refractive Index

The transverse wave equation is

2, 1Ak, 1)
(ﬁ—c \Y )ET(I', t) = —g—“_—at (3.1)

For the special case of forward scattering the positions of the electrons
within the atom (AK - Ary) are irrelevant, as are the positions of the
atoms themselves, n(r, t). The contributing current density is then

JO(ra t) = —é€n, ngVs(I', t) (3-2)

where n, is the average density of atoms, and

Y=z
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The Wave Equation and Refractive Index (Continued)

The oscillating electron velocities are driven by the incident field E
e 1 JE(r, 1)

v(r,t) = — 3.2
(x 1) m(w? —w?) +iyw 0t (3-2)
such that the contributing current density is
e’n, gs JE(r, 1)
Jo(r, 1) = — > (3.4)

m ~ (0?—w?)+iyeo 0t

Substituting this into the transverse wave equation (3.1), one has

9% 5 2) e’n, g5 ?Ex(r, t)
— —c“* V| Eq(r, t) =
( at? (. £) €om Z (0? —w?) +iyw 0t

§

Combining terms with similar operators

| &M 3 L " _ev|E r.)=0 (3.5
~ —c 1) = .
€om (0? —w?) +iyw | 312 !

§
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Refractive Index in the Soft X-Ray
and EUV Spectral Region

Written in the standard form of the wave equation as

32 c? )
— VAl Er(r,t) =0 3.6
[8t2 (@) ] (T, 1) (3.6)
The frequency dependent refractive index n() is identified as
1/2
ezna 8s
nw)y=|1- 3.7
() l: eom;(wz—w§)+iyw G-

For EUV/SXR radiation ? is very large compared to the
quantity e?n,/egm, so that to a high degree of accuracy the
index of refraction can be written as

2
nw) =1 — L &M 3 Es (3.8)

2 egm — (0 — w?) t+iyw

which displays both positive and negative dispersion, depending
on whether m is less or greater than ®s. Note that this will allow
the refractive index to be more or less than unity, and thus the
phase velocity to be less or greater than c.
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Refractive Index in the Soft X-Ray
and EUV Spectral Region (continued)

2
nw)=1— Len, 3 ( Es (3.8)

2 eom w? —w?) +iyw

Noting that 2

r, =
45 egmc?

and that for forward scattering

fo(a)) _ Z 8sw2

—~ 0’ — 0 +iyw
where this has complex components
o) = fl@) —if))

The refractive index can then be written as

n(w)=1- =~ [ —iff@)]]| (.9

which we write in the simplified form

nw)=1-6§+1iB (3.12)
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Refractive Index from the
IR to X-Ray Spectral Region

nw)=1-36+iB | (3.12) é =

) | (3.13a)

B=— w) | 3.13b)

>
\®)

Refractive index, n

o

Infrared Visible =~ Ultraviolet X-ray
>

Wyy

, Ultraviolet
« A2 behavior

0 &P<<l1
e O-Crossover
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Phase Velocity and Refractive Index

The wave equation can be written as
0 c 0 C
— — —V — + V)Er(r,t) =0 3.10
(5~ 50") (5 + 7y ¥ Bres =
The two bracketed operators represent left and right-running waves

3 c9 3 cd
— — 2B = — +=-—)E,=0
(at naz) x=0 (at+naz) X

NN N A
N s A

Left-running wave Right-running wave

where the phase velocity, the speed with which crests of
fixed phase move, i1s not equal to c as in vacuum, but rather is

I 3.11
V¢—-—n(a)) ( )
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Phase Variation and Absorption
of Propagating Waves

For a plane wave E(r, t) = Ege '@ KkD (3.14)
in a material of refractive index n, the complex dispersion relation 1s
w ¢ c 315
k n 1-6+iB (3-15)
Solving for k w |
k=—(1-854iB) (3.16)
c
Substituting this into (3.14), in the propagation direction defined
by k- r=kr
E(I', t) — Eoe—i[wt—(w/c)(1—6+iﬁ)r]
or E(l‘, t) — Eoe—iw(t—r/c) e—i(ZmS/)L)r e—(ZJrﬁ/A)r (3.17)

vacuum p?opagation ¢';;lift de:ay
where the first exponential factor represents the phase advance had the
wave been propagating in vacuum, the second factor (containing 27wor/A)
represents the modified phase shift due to the medium, and the factor
containing 2ntPr/A represents decay of the wave amplitude.
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Intensity and Absorption in a Material
of Complex Refractive Index

For complex refractive index n

€
H(r,t) = n | —2ko x E(, 1) (3.18)
Mo
The average intensity, in units of power per unit area, is
I =S| = J|Re(E x HY)| (3.19)
- 1 €0
I = —Re(n) | —|E|? (3.20)
or 2 o
Recalling that E(r, t) = Ege '@77/0) o 71@mo/0r o=@nh/Mr (3.17)
vacuum p:opagation ¢-shift decay
I = LRe(n) | < [By e 20m8/0r
2 Ko
or I = [ye P/Mr (3.21)
the wave decays with an exponential decay length
Ly = — (3.22)
abs — 47”3 .
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Absorption Lengths

Professor David Attwood

A
la S = — 3.22
bs = 7 5 (3.22)
Recalling that B = nareA2f5()/27
1
Lips = 3.23
® T dngraafd(w) (329

In Chapter 1 we considered experimentally observed absorption
in thin foils, writing

— =e (3.24)
where p is the mass density, u is the absorption coefficient, r is the

foil thickness, and thus /,,,s = 1/pu. Comparing absorption lengths,
the macroscopic and atomic descriptions are related by

2re

f2 (w) (3.26)

where p = myn, = Amyn, , myis the atomic mass unit, and A is
the number of atomic mass units
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Photoabsorption by Thin Foils and Isolated Atoms

(a)
Ig =
ho
(c)
Ig =
ho

Professor David Attwood
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Phase Shift Relative to Vacuum Propagation

For a wave propagating in a medium of refractive indexn=1 -0 +if

E(l‘, t)= Eoe—iw(t—r/c) e—i(2n’8/k)r e—(ZJrﬁ/A)r (323)

N - N -

v v

vacuum propagation ¢-shift decay

the phase shift A¢ relative to vacuum, due to propagation through

a thickness Ar 1s
2
Ap = (T) Ar (3.29)

Reference wave

e Flat mirrors at short wavelengths BS M
* Transmissive, flat beamsplitters _
» Bonse and Hart interferometer A ongrCr])D
* Diffractive optics for SXR/EUV | ' _>||‘|I<6bject N
Ll N
M Object wave BS
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Reflection and Refraction at an Interface

AZ Refracted
wave

n=1-90+ip
>
Vacuum X
n=1
kll
k Reflected
Incident wave

wave
incident wave: E = Ege '@~k (3.30a)
refracted wave: E = Epe @K™ (3.30b)
reflected wave: E’ = Eje @'~k (3.30¢)

(1) All waves have the same frequency, ®, and |k| = [K”| = %

(2) The refracted wave has phase velocity

4

’ ’ Q) .
Vo=17 =+ thusk'=[k|= " (1-5+iB)

Professor David Attwood
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Boundary Conditions at an Interface

* E and H components parallel to the interface
must be continuous

Zo X (Ko + Eg) =17y X E6 (3323)

7o x (Hy + Hy) = 7y x Hj, (3.32b)

* D and B components perpendicular to the interface
must be continuous

7 (D() + Dg) =17 - DIO (3320)
Z- (Bo + Bg) =1Z)- BE) (332(1)
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Spatial Continuity Along the Interface

Continuity of parallel field components requires

AZ
k-xo=K -xo=kj-x9) atz=0 (3.33)
S
kx:k_::zk; (3.34a) n=1-5+ip| >
Vacuum | X
. /e ! e Hn n= | k q) !
ksing =k singg’ = k" sin¢ (3.34b) |
ksing
Conclusions:
Since k = k” (both in vacuum) ksing = k' sin¢’ (3.36)
sin¢ = sin¢” (3.35a) k= % and k' = Cc?n = %
sin = n sin¢’
¢ =¢" (3.35b) sing’ = Sin (3.38)
n

The angle of incidence equals

Snell’s Law, which describes
the angle of reflection

refractive turning, for complex n.

Professor David Attwood
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Total External Reflection
of Soft X-Rays and EUV Radiation

Snell’s law for a refractive index of n = 1 — 9, assuming that § — 0

. ,, sin¢
sIn¢g’ = 13 (3.39) o >

-4
Consider the limit when ¢ — % M
1 = sin q)C %
1-9

0+ =90

sing. =1—8  (3.40)
sin(90° —6,) =1—24

cosf. =1-3§ o
Glancing incidence (0 < ;) and
62 .
X 4+...=1-5 total external reflection
2

Exponential

decay of the
6, = V26 (3.41) / g%s into the
medium

.. \0<9 Totally
The critical angle for total Oc a\J reflected
; e wave
external reflection. o
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Total External Reflection (continued)

0. = /28 (3.41)

5 _ Mared2 i)
2

0
0, = /28 = \/ nared? fi (1) (3.42a)
A

The atomic density n,, varies slowly among the natural
elements, thus to first order

0. x \WZ (3.42b)

where f{is approximated by Z. Note that /s a complicated
function of wavelength (photon energy) for each element.
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Total External Reflection with Finite Absorption

Glancing incidence reflection

as a function of /0

. .. for real materials

1 __ A
\\\————B“ A: B/8=0
~ . _ —2
\\C B: B/6=10
> \ . - 101
AN I
g 0.5+ ) o=
S \ E:pB/o=3
o2 N
\\ E
0 | | N=e
0 0.5 1 1.5 2 2.5
0/0¢

» finite 3/0 rounds the sharp angular

dependence

» cutoff angle and absorption edges
can enhance the sharpness

* note the effects of oxide layers
and surface contamination
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Eo perpendicular to the plane of incidence (s-polarization)

tangential electric fields continuous
Eov+E, =E, (3.43)

tangential magnetic fields continuous

Hycos¢ — Hy cos¢ = Hycos ¢’ (3.44)

H(rt)—n/ ko x E(r. 1) H=n|2F
Mo

/ Eocosqb / E”cosq‘)-n/ Ecosrp
Ho

(Ey — Eg)cos¢ = nE[cos¢’ (3.45)
Sin g Three equations in three unknowns
Snell’s Law: sing’ = 2 (Eo, Eo, ¢") (for given E( and ¢)
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Reflection at an Interface (continued)

Eg perpendicular to the plane of incidence (s-polarization)

E, 2 cos ¢
_ (3.47)
Eo  cos¢ + /n? —sin ¢
Ej _ cosp — /n? —sin® ¢ (3.46)
Eo  cos¢ + /n?2 —sin’ ¢
The reflectivity R is then
I" S IRe(E! x H/*
r= L _ 1871 _ aRel x Hy) (3.48)

To IS IRe(E, x HY)
With n = 1 for both incident and reflected waves,
|EgP
 |Eol?

Which with Eq. (3.46) becomes, for the case of perpendicular (s) polarization

2
’cosq) —/n? - sin2¢|

(3.49)

2
‘cosqb + /n? — sinqu‘
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Normal Incidence Reflection at an Interface

Normal incidence (¢ = 0)

cos¢ — /n? — sin® ¢ ’
R, = ‘ ‘ (3.49)
‘cosqﬁ +/n? — sinzq*)‘2

1 =n* A —n)(1—n*
T 1+n2 (1 +n)(1+n%

RS.J_

Forn=1-0+1if

(8 —iB)(S +iB) 8% + B2
Rs,_l_

T 2—084iB)2—6—if) (2—0872+p2

Which for 6 << 1 and 3 << 1 gives the reflectivity for x-ray and EUV

radiation at normal incidence (¢ = 0) as

32 2
Rs,J_ =~ T ﬁ (350)
4
Example: Nickel @ 300 eV (4.13 nm)
From table C.1, p. 433 R, =4.58 x 10-5
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=178 =170
§=0.0124  B=0.00538
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Glancing Incidence Reflection (s-polarization)

2
’cosq& —/n?— sin2¢|

R, = > (3.49)
‘cosqﬁ + /n? — sinqu‘
For 6 =90°—¢ <6, || S— A B850
B B: Eﬁsz 10-2
where 6. = V28 K 1 ~C s = 40
e I\ Y [emr
cos¢ = sinf ~ 6 = \ s
:&J_J 0.5 \ \ E:B/6=3
sinfg=1—cos’¢p=1—sin®f~1-0> 2 N
N -
Forn=1-3+1if D\
I I k=
n? = (1 — ) +2iB(1 — 8) — B2 %005 1 15 2 25 3
0/6¢
2
_ 2 _p2 ;
R |9 \/ (9 0 ) + 2P ‘ O < 1) E. Néhring, “Die Totalreflexion der
50 9 5 " > 2 Rontgenstrahlen”, Physik. Zeitstr.
1 + \/ (602 —02) + ‘ﬁ‘ XXXI, 799 (Sept. 1930).
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Reflection at an Interface (p-polarization)

E( parallel to the plane of incidence (p-polarization)

E; n%cos¢ — v/n2 — sin® ¢ (3.54)
Eo  n2cos¢ + +/n? —sin? ¢ .
E, _ 2ncos¢ (3.55)
Eo  n2cos¢ + +/n? — sin® ¢ .

The reflectivity for parallel (p) polarization is

2
2 ‘nz cos¢ — /n? — sin2¢I

(3.56)

2
‘nz cos ¢ + /n? — sinzq’)‘

which is similar in form but slightly different
from that for s-polarization. For ¢ = 0 (normal
incidence) the results are identical.
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Brewster’s Angle for X-Rays and EUV

For p-polarization

B}
Eo

2
2 ‘nzcosd)—\/nzmsinqul

(3.56) sin2e
radiation

pattern

RPZ‘

2
‘nz cos ¢ + /n? — sinzq’)‘

There is a minimum in the reflectivity
where the numerator satisfies

n* cos pp = \/n2 — sin’ ¢p (3.58)

Squaring both sides, collecting like terms
involving ¢p, and factoring, one has

n*(n®> — 1) = * — 1)sin’ ¢p

Q
4

n
o1 singpp = —— 1
n?+1 -
the condition for a minimum in the reflectivity, > 10-2}- S _#
for parallel polarized radiation, occurs at an angle .2 i gd
given by tangpp = n (3.59) :i_’ 107 i BN ,/’ i
()

For complex n, Brewster’s minimum occurs at X 10-6 N XV48 nm

t =1- Y :

andp =1-0 0 45 90

p T4 (3.60) Incidence angle, ¢
or B =X — — — .

4 2 (Courtesy of J. Underwood)
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1) Focusing with Curved, Glancing Incidence Optics

The Kirkpatrick-Baez mirror system

(Courtesy of J. Underwood)

Two crossed cylinders (or spheres)

Astigmatism cancels

Fusion diagnostics

« Common use in synchrotron radiation beamlines
See hard x-ray microprobe, chapter 4, figure 4.14
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Buried, Trace Amounts of Iron f‘\l A
. . I recoeoooc]| i
in a Defective Silicon Solar Cell
—
Synchrotron
Source (white
T mP _ radiation)
focal spot e l
. ~| Multilayer coated Aperture
elliptically bent
Sample Focal mirrors
spot
YT Fe contaminated
_ solar cell 320 fg/m?
SC?””'”Q T Solid state
stage Fluorescent Si (Li) detector k .
X-rays < n;'ﬁ’*
(Courtesy of A. Thompson and J. Underwood, LBNL;
and R. Holm, Miles Lab)
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~

Microprobe Analysis /\I

A
r ]

of Contaminated Soil

(Courtesy of T. Tokunaga; and A. Thompson, LBNL)
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High Resolution X-Ray Diffraction
Under High Pressure Using /\l A
Multilayer Coated Focusing Optics

~

Synchrotron e- Sample under pressure
radiation (0-300 GPa)

Diamond anvil cell
Gasket

Aperture Focused Pressure
X-rays \ medium
10-16 keV >
X-rays Scattered
Multilayer \ X-rays
coated mirrors

H.K. Mao et al., Science 277, 1220 (29 Aug. 1997)
Nature 396, 741 (24 Dec. 1998)
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Bragg Scattering, or Diffraction,
Seen as a Reflection from Crystal Planes

Constructive interference occurs when the additional path length is equal
to an integral number of wavelengths:

mA = 2d sin@

(Bragg’s Law)
(m=1,2,...)
R.B. Leighton, Principles of Modern Physics (McGraw-Hill, New York, 1959), section 12.4.
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The Derivation of Bragg’s Law

mA = 2d sin®

The path difference of
radiation “reflecting”
off sequential planes
must be equal to an
interger number of
wavelengths.

The angle 0 1s measured from the crystal plane, and the
distance between planes is referred to as the “d-spacing”.

From A.H. Compton and S.K. Allison, X-Rays in Theory and Experiment (D.Van Nostrand, New York, 1926), p.29.
Also see M. Siegbahn, The Spectroscopy of X-Rays (Oxford University Press, London, 1925), p.16.
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X-Rays are Refracted Entering a Crystal

Refraction of x-rays at a crystal surface requires
a small correction to the Bragg condition:

SA2
mxzzdsmea—%‘lﬂ)

R.B. Leighton, Principles of Modern Physics (McGraw-Hill, New York, 1959), p. 456.
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