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Main properties of Synchrotron Radiation

 Very broad and continuous spectral range, from infrared
up to soft and hard x-rays

e High intensity

« Highly collimated and emanates from a very small
source: the e ectron beam

» Pulse time structure

» High degree of polarization



Spectral range E(ev) = 1240

A(nm)
Wavelength
100 nm 10 nm 1 nm 0.1 nm = 1A

: ] : 1 1 1 | :I

: : ' CuKy|

E VUV : 2a,

UV. Extreme Ultraviolet | Hard X-rays
i \ 'Si, Ce Oi S Cuk
L it | T i\
10 e 100 eV 1 keV 10 kaV
Phioton energy
Red:650nm -
Green:530nm 30-250eV 250eV -several keV
Blue:470nm 40-5nm
4-30eV 2-severa tens of keV

1meV-1.2eV 300-40nm
Imm-1um

D.Attwood, “ Soft x-rays and extreme ultraviolet radiation”, Cambridge University Press, 1999



Spectral brightness

photon flux 1

Soectral Brightness =

| o,0,0,0,BW

| = electron current in the storage ring, usually 100mA
0,0, =transverse areafrom which SR is emitted
0,0, = solid angleinto which SR i |s emltted

BW = spectral bandwidth, usually: E_o 1%

Source size /Zﬁ' Solid angle
— 1  o,0,
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Why is brightness important? (1)

photon flux 1
I 0,0,0,0,BW

Soectral Brightness=

More flux = more signal at the experiment
But why combining the flux with geometrical factors?
Liouville’stheorem: for an optical system the occupied phase

space volume cannot be decreased along the optical path
(without loosing photons) = (66" )4 = (66 )initia



Example : afocusing beam
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Liouville's theorem: (66" )i = (66" )i itia — O



Why is brightness important? (2)

To focus the beam in asmall spot (which is needed for achieving energy
and/or spatial resolution) one must accept an increase in the beam divergence.

Not bright source: . Liouville s theorem:

(60" )iniia l@rge (66" )fina 2 (OF )initia

-> high beam divergence

High beam divergence along the beamline:
—> high optical aberrations
—> large optical devices
—> high costs and low optical qualities

With a not bright source the spot size can be made small only reducing the
photon flux.

The high spectral brightness of the radiation source allows the development of
monochromators with high energy resolution and high throughput and gives
also the possibility to image a beam down to a very small spot on the sample
with high intensity.



The beamline (1)

The researcher needs at his experiment a certain number of
photons/second into a phase volume of some particular
characteristics. Moreover, these photons have to be
monochromatized.

The beamline;

« isthe means of bringing radiation from the source to the
experiment transforming the phase volume in a controlled way: it
de-magnifies, monochromatizes and refocuses the source onto a
sample

» must preserve the excellent qualities of the radiation source: it
must transfer the high brightness from source up to the experiment



Conserving brightness

Brightness decreases because of:
 micro-roughness and slope errors on optical surfaces

o thermal deformations of optical e ements due to heat load
produced by the high power radiation

« aberrations of optical elements



The beamline (2)

Basic elements:
* MIITOrs, to deflect, focus and filter the radiation

* monochromators (gratings and crystals), to select photon energy

Glass
* detectors A L

Red

~a Orange
s f Yellow
Green
Blue

Violet




Beamline structure

Prefocusing section: fits the source to the monochromator requirements
absorbs the unwanted power radiation

Monochromator: selects the photon energy
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Refocusing section: fits the beam to the experiment requirements



VUV, EUV and soft x-rays

Wavelength
0.1 nm= 1A
I
CuK,!
2a,
Hard X-rays
CUK
|
1keV 10 keV
Phioton energy
Red:650nm _
Green:530nm 30-250eV 250eV - severa keV
Blue47onm 4 gngyy 0O v
2-several tens of keV
300-40nm

These regions are very interesting because are characterized by the
presence of the absorption edges of most low and intermediate Z elements
—> photons with these energies are a very sensitive tool for elemental and
chemical identification

But... these regions are difficult to access.



Ultra-high vacuum

VUV, EUV and soft x-rays have a high degree of absorption in all materials:

Wavelength
1Hm 100 nm 10 nm 1 nm 0.1 nm= 1A
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Transmission limit of common fused silicawindow: ~8eV ~ Absorption limit of 8um Befoil: ~1.5keV

- Nowindows
- Theentire optical system must be kept under UH Vacuum

Ultrahigh vacuum conditions (P=1-2x10° mbar) are required: .

* Not to disturb the storage ring and the experiment o Elvlanmeinem

 Toavoid photon absorption in air

o  To protect optical surfaces from contamination
(especially from carbon)

In the hard x-ray region, it is not necessary to use UHV: /'

o
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No refractive optics

VUV, EUV and soft x-rays have a high degree of absorption in all materials:

Wavelength
1um 100 nm 10 nm 1 nm 0.1 nm= 1A
T T T 1 T T T
I, i
. ' f CuKy|
()  w e
‘ uv Extreme Ultraviolet i Hard X-rays
1Si Ck OK iSlK Cuk
1 & | ! I & | | T .| |
1eV 10 eV 100 eV 1 keV 10 keV

Photon energy

Transmission limit of common fused silicawindow: ~8eV  Absorption limit of 8um Be foil: ~1.5keV

- Theonly optical e ements which can work inthe VUV, EUV
and soft x-rays regions are mirrors and diffraction gratings,
used in total external reflection



Snell’slaw, visible light

1
n
n,Ccosb= n,cosy
—> c0sB = n cosy with n=n,/n;
n>1-> v>0
17 T |
. Flintglass
= Visible light, when entering a medium of
2167 | greater refractive index, is bent towards
; e OUEi”tZ the surface normal.
5 | Crown glass Thisisthe case for visible light
e . impingi '
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Snell’slaw, X-rays

n,cosH= n,cosy
9CO$:nCOWWith n:nzln]_ n<197<9

X-rays have thereal part, n, of the refractive index dightly less than unity:

n=1-0 wherethe0<§ <<1 Typica values are:

0 ~102 for 250eV (5nm)
0 ~104 for 2.5keV (0.5nm)

— X-ray radiation isrefracted in a direction slightly further from the surface normal

—> therefraction angle y can equal 0, indicating that the refracted wave doesn’t
penetrate into the material but rather propagates along the interface.
The limiting condition occurs at the critical angle of incidence 0. COSO, = n

NG 1

n<1l1l



Critical angle

n<1l

Substituting 6, it can be shown that the major functional dependencies of 0, are:

0. AN Z

Oc increases working at lower photon energy
and using a material of higher atomic number Z.

Gold:
600eV = 0c =74°
1200eV - 0c = 3.7°

S5kevV > 6c=0.9°



Total external reflection

If radiation impinges at a grazing angle
0 < 0c, itistotally external reflected. 0<0,

n<1

It isthe counterpart of total internal reflection of
visible light. Visible light istotally reflected at the ——»
glass/air boundary if 6 <0,
n*cos 6c=1 - 06c = arccos (1/n) = 48.2°
n=1.5 refraction index of glass



Total internal reflection (visible light)

= Yoo
; b |

- 49°, 49°
<

If you are in aswimming pool and look up directly above you within a cone of 49°, will seea
compressed view of the outside world. If you look along the water surface beyond the 49°
angle, you will not be able to see the world outside but only the reflected sides of the

swimming pool.

n*cos 6c=1 - 0c = arccos (1/n) = 41.4° =1
n=1.333 refraction index of water T >
(90°- 41.4° = 48,6 °) 0c

n>1




Nearly total external reflection

This model of total reflection isincomplete
because it doesn't include the effect of the
imaginary part of the refraction index.

The radiation penetrates into the second
medium during the reflection process, so that
the absorption in this medium decreases the
intensity of the reflected beam.

—> The sharpness of the cut-off is reduced

Reflectivity (R)

0.
1
n
n<1
1 ~—Po=0
N /5=10""
\\ \‘T/B
\, _—B/o="1
. \‘\/,:
‘\\ tl&;
1 Nasmeo 0 |
e Oc 0

D.Attwood, “ Soft x-rays and extreme ultraviolet radiation”,
Cambridge University Press, 1999



Mirror reflectivity (1) \
0 /

Reflectivity drops down fast with the increasing of the grazing incidence angle
—> only reflective optics at grazing incidence angles
(typically 1°-2° for soft x-rays, few mrad for hard x-rays, 1 mrad= 0.057°)
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Mirror reflectivity (2)
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Focusing properties of mirrors

X-rays mirrors can have different geometrical shapes, their optical surface can
be a plane, a sphere, a paraboloid, an €lipsoid and atoroid.

Sagittal
direction

-
-

Meridian
direction

The meridional or tangential plane contains the central incident ray and the
normal to the surface. The sagittal plane is the plane perpendicular to the
tangential plane and containing the normal to the surface.



Paraboloid

Rays traveling parallel to the symmetry axis OX are all focused to a point A.

Conversely, the parabola collimates rays emanating from the focus A.

Line equation:

Y? = 4aX

Paraboloid equation: Y2 + Z2 = 4aX

where: a= f cos? ¥

Position of the pole P
X, =atan’ ¢
Y, = 2atan ¢
Paraboloid equation:

- S

SP parallel to X0

TA > X

X*sin® ¢ +y*cos” & +z° —2xysineg cos® —4axsecd=0

J.B. West and H.A. Padmore, Optical Engineering, 1987



Ellipse

The ellipse has the property that rays from one point focus F, will
always be perfectly focused to the second point focus F,

source image



Ellipsoid

2 2
Line equation: X_+Y_=1
a® b’
Ellipsoid equation:
2 2 2
X Y Z 1 -

2

where: a i; b=ayl-¢€°

—\/r +1'°=2rr'cos(2¢%)

Rays from one focus F, will always be perfectly focused to the second focus F,.
Jfsin®y 1) ,fcos’®| Zz* [4fcosd 2singVe’ —sin?y |
e ) e S e )Y 0’ =0

J.B. West and H.A. Padmore, Optical Engineering, 1987




Toroid (1)

ZJP X

Bicycle tyre toroid

X2+ y? + 7% = 2Rx— 2R(R— p) + 2(R— p)y/(R= X)? + y?

The bicycle tyretoroid is generated rotating a circle of radiusp in
an arc of radius R.



Toroid (2)

Tangential focus

Sagittal focus

In general, atoroid produces two non-coincident focii: one in the tangential focal
plane and one in the sagittal focal plane

Tangential focus T: Sagittal focus S. Stigmatic image;

1,14cos?_1 i, 1 P _ cos? 9
r r.) 2 R r r',)2cosd p R




Spherical mirror

Sagittal focus

For p=R - spherical mirror :

A stigmatic image can only be obtained at normal incidence.

For avertical deflecting spherical mirror at grazing incidence the horizontal
sagittal focusis aways further away from the mirror than the vertical
tangential focus. The mirror only weakly focalizes in the sagittal direction.



Kirkpatrick-Baez focusing system

KB - Geometry

-
Focus

Source

This configuration, originally suggested by Kirkpatrick and Baez in 1948, is based on
two mutually perpendicular concave spherical mirrors.
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Gratings

The diffraction grating is an artificial periodic structure with awell defined period d.
The diffraction conditions are given by the well-known grating equation:

sina+sin = NkA

a and B are of opposite sign if on opposite sides of the surface normal d
N=1/d isthe groove density, k isthe order of diffraction (£1,£2,...)

Incident k=-2 Selg:fveé
wavelength A k=-1 | orders
k=2 k=1
Grating /
normal Inside,
positive

orders



Gratings profiles (1)

g AN - 2

Blaze profile

Laminar profile

Blaze condition:

Blaze angle=(o+f3)/2

The angle 6 is chosen such that for agiven A
wavelength the diffraction direction coincides with kA =d(sina+sinB)
the direction of specular reflection from the A

individual facets

Blaze gratings. higher efficiency Laminar gratings: higher spectral purity



Gratings profiles (2)

g N

Blaze profile

hi Y

Laminar profile

Grating efficiency (%)

50

—— —— Laminar grating
— —— Blaze grating

200 400 600 800

Grating 1. N=200 g/mm (d=5um)
Grating 2: N=400 g/mm (d=2.5um)

Relative efficiency (15t ord/2™ ord)

10

=—— —— Laminar grating
—— —— Blaze grating




Holographically recorded grating

Development

M fon-beam etching

Photoresist

el o

e Coating




Grating resolving power (1)

Differentiating the grating equation: Sina +sin = NkA

the angular dispersion of the grating is obtained: cos 8
(higher groove density - higher angular dispersion) A= NK A,B
Theresolving power is defined as: 20010°
=1
; .
E A
g

R: —
AE A4

0 200 400 600 800 1000
Photon energy (eV)

R=10000 @100eV -> AE=100€V/10000=10meV



Grating resolving power (2)

cos 3
Nk

Ap

Angular dispersion: AA=

The main contribution is from the width s' of the exit dit:

E 1  ANkr’

Resolving power: R= E = 4

AE AA
/bls’

/j—,/f

AE AL (cos B)S /ﬂd;

The entrance dlit contribution is similar:

E A  ANkr
AE A4 (cos B)s




Grating resolving power (3)

Source
1o~ FWHM = 1.6 meV
~ o8-
H E_ 2 _ 58000
> 06 AE AA
v é 0.4-
A B
Entrance dlit 0.2~
0 | | !

44,998 44.999 45.000 45.001 45.002
Photon Energy (eV)



M onochromators

Micro . Soft Hard
wave I.R. |Visiblg U.V.

Prism
Micro - Soft Hard
wave I.R. [Visblg U.V. X-ray | X-ray

Internal Orders (+)
Zero order

External Orders (-)

I Grating

Micro .. Soft Hard
wave I.R. |Visblg U.V. X-ray | X-ray
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2d sin @
Constructive interference
when
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Bragg’s Law



Radiation of wavelength A is reflected
by the lattice planes. The outgoing
waves interfere. The interference is
constructive when the optical path
difference is a multiple of A:

2dsinyd=nAl

d is the distance between crystal
planes.

sny<l = A<A . =2d

2d sind The maximum reflected
wavelength corresponds to the
case of normal incidence: 6=90°

EXAMPLES: Si(111): d=3.134 > Emin =2 ReV Si(311): d=1.644 > Emin=3.8 ReV
InS6 (111): d=3.744 > Emin=1.7 keV Be (1010) :d=7.984 > Emin =0.8 ke?V



Energy resolution

Aﬂ:AEzAﬁc_oszﬂ
A E sin

The energy resolution of a crystal monochromator
is determined by the angular spread A of the
diffracted beam and by the Bragg angle U

2d sind

AD has two contributions :

AD

Q)

angular divergence of the incident beam
intrinsic width of the Bragg reflection

beam -

crystal *



Angular beam divergence

Aﬂbeam :ﬁmax - ﬁmin

max

A dlit at the exit of the Bnax | Enin

monochromator selects a
monochromator I

narrower energy range.




Collimating mirror ;

A collimating mirror in front of the crystal reduces the
angular divergence A9, ., of the incident beam, improving (
the energy resolution.

Collimating premirror I



Darwin Curve

The intrinsic reflection width of the crystal, m, can be obtained measuring the crystal
reflectivity for a perfectly collimated monochromatic beam, as afunction of the
difference between the actual value of the incidence 6 angle and the ideal Bragg value:
AB= 0- 0.

This reflectivity is derived by the dynamic diffraction theory, which includes multiple
scattering > Darwin curve;

1. thereisafiniteinterval of incident angles for which the beam is reflected
2. thecenter of thisinterval does not coincide with the Bragg angle

3. R<1landhasatypical asymmetric shape

R(6 )

1.0 1
{'_""--..,__‘\‘/
N\

absorption effects

- f H H d n/i
0.8 | \ finite interval of reflectivity
6.5 4 : (DS/
041 |
\ ! \

/ \ angular shift due to the refractive effect




Intrinsic width of the Bragg reflection

Dynamic diffraction theory

>
vy}

0O <o =

?

hrl

Bragg angle

wavelength of radiation

radius of the electron e?/mc?

volume of the unit cell

polarization factor

amplitude of the crystal structure
factor F, related to the (hkl) diffraction
temperature factor

absorption effects




Du Mond diagram

A3 = angular acceptance of the dit

A

slits
wavelength .. 2d -sindd=1
bandpass N
R Rhnhnn 57 <€ & RRbbd
|
|
|
BN WY
|
| 1)
(30

The Du Mond diagram describes the reflection of radiation by the crystal inthe 9 — A
Space.



Crystal Monochromators

Parallel geometry:
all rays accepted by the first
crystal are accepted also at the
second.



Crystal Monochromators

Antiparallel configuration: raysincident at a
lower angle than the central ray on the first
crystal areincident at a higher angle on the
second crystal.

resolving power T
intensity of thereflection |

sty



Double Crystal Monochromator

Fixed exit beam
direction




Double Crystal Monochromator

B 8
|
'3 |
MRl
L ¥

i 2

Fixed exit beam
direction




Channel-cut




Channel-cut




Channel-cut

Channel-Cut Si(111) Monochromator

E=17.7keV
A= 0.70A
0= 6.4°

Much easy to align
Exit beam displacement



Example: the ELETTRA X-ray Diffraction beamline

Experiment

Source distance = 41.5m

Energy range: 4-21KeV
\ spot size: 0.4x0.2mm?

Cylindrical mirror for vertical collimation

Silicon with 50nm Platinum coating

Photon flux: 10%2ph/s (at A=1A) Mimon |ength=_1 Sl % 092
Energy resolution: 3-4000 |:3mrad; Vertical angular acceptance =180urad 8 Incidence angle = 3mrad
Radius=14Km 2 0.88 —
Source distance d=22m %
Collimated beam vertical divergence <10urad 2 0.84
<}
o 080—

T T T T T T T T 1
8 10 12 14 16 18 20 22 24
Photon energy (KeV)

Toroidal focusing mirror

rolithic graphitefiltersto
Sagittal cylindrical bendable mirror ~y 2l

absorb E<4.2KeV

Tangentia radius= 9Km
(variable: 5Km - o0) Double CryStal
Sagittal radius = 5.5cm monochromator
Source distance = 28m Si(111) flat crystals, in non-
H demagnification = 2 dispersing configuration
V demagnification = 1.6 oS 7.4" = 35urad @8KeV
Source distance=24m Slits, H angular
250W absorbed by the 1° acceptance: 1.5mrad
crystal 2
S v
B BHO) Multi-pole wiggler E
S 20- 57 poles, 1.5T magnetic field, s N
2 15- 14cm period length, z
&, 5.8KeV critical energy @2.4GeV & ] |
5 kW total power @140mA 2 o '

T T T
! ! ' I ! ! '2Angle?mrad)2
8 10 12 14 16 18 20
Photon energy (KeV)



Example: the ELETTRA Nanospectroscopy
beamline

Toroida mirror: demagnifiesthe source by afactor of 8inHand 5inV
Sagittal V focus at the entrance dlit, tang H focus 1 m before; i = 1.75°

Variable Included Angle Monochromator, equipped with
2 variable line spacing plane gratings, 20 < E < 1000eV;
3000 < E/AE<7000; Dv~1.7;r=r=2m

p I
Side view r _ S =S -
1 - |- | [ 1 (@) I
! : | 2 o = T
: I : O, = | I DS
! : o g =| E = = o 8
' o ok e B <, L, LL; O =
G.) q) 1 C 1 g : |e| -: o : >: I: ‘-l—: :E
S I} o |8 i 5 e /I
S £ g | B 48 Y G-
. ! = ! =
7 = | s B 5 (Z g i3
i I L . : :I
: I ! X . | o
Top view, ! %
|
| ‘
two APPLE-II helical undulators, Two banabI_ezeIIipticaI cyIindgr mirrors, i n KB_geoTetry:
Photon energy: 20 - 1000eV demagnification factorsare 10 in H gnd 5inV,i=2
Size @400eV: 560umx50um; About 1x10*? photons/s are focused in a 7um x 2um spot.

110pradx85urad (FWHM)



Conserving brightness

Brilliance decreases because of
e roughness and slope errors on optical surfaces

o thermal deformations of optical elements due to heat load
produced by the high power radiation

o aberrations of optical elements

In the following we will consider OEs with theoretical surface shapes.



Perfect imaging and aberrations

An ideal optical element is able to perform perfect imaging
If al the rays originating from a single object point cross at
a single image point.

Real object Real image

space space
Optical N
0 system o I

Deviations from perfect imaging are called aberrations.




Aberrations theory

Aberration theory snows what the different aberration terms are

and how they play arole in the image formation - it teaches how
aberrations can be reduced

We will study the case of a concave grating.
The general theory of aberrations of diffraction gratings derives

mathematical expressions for the aberration terms applying
Fermat’ s principle.



Fermat’ s principle A

A light-ray going from A to B chooses the path
with the minimum optical pathlength: B
j n(F)dl
A
N(r): index of refraction of the medium; dl: line sesgment along the path

B

Tn(ryd = [Cd d
n(r = |—d = t
Ineyd = [d =c]

A more accurate statement:
alight-ray going from A to B chooses the path for which the optical
pathlength between the two pointsis an extremum :

5?n(F)dI -0

where the delta variation of the integral meansthat is avariation of the
path of the integral such that the endpoints A and B are fixed.



Theory of conventional diffraction gratings

For aclassical grating with rectilinear grooves parallel to z with constant
spacing d, the optical path length is:
Z, | F=AP+PB+kNAy

where A is the wavelength of the diffracted light, k is the order of
diffraction (£1,£2,...), N=1/d is the groove density



Perfect focus condition (1)

L et us consider some number of light rays starting from A and impinging
on the grating at different points P. Fermat’s principle states that if the
point A isto be imaged at the point B, then all the optical path lengths
from A viathe grating surface to B will be the same.

Z,

B isthe point of a perfect focus
If:

for any pair of (y,z)




Perfect focus condition (2)

Equations:

oF . oF
F=AP+PB+kNAy - ®=0 —, =0 foranypair of (.2

can be used to decide on the required characteristics of the diffraction
grating:

othe shape of the surface

the grooves density

the object and image distances



Aberrated image

oF

In general, — and oF are functions of y and z and can not be made zero for

any y.z ay 0z

— when the point P wanders over the grating surface, diffracted raysfall on
dightly different points on the focal plane and an aberrated image is formed

4

* B,: gaussian image,

produced by the central ray

* B: ray diffracted by the

generic point P on the

grating surface

» Aberrations. displacements
x Of B with respect to B,



Grating surface

The grating surface can in general be described by a series expansion:

Z,

x=Ziaﬂy‘zj

i1=0 j=0

Bpo= Ayo= 8y;= 0 because of the choice
X of origin

j = even if the xy planeis a symmetry

plane

Giving suitable values to the coefficients g, swe obtain the expressions for
the various geometrical surfaces.



g; coefficients (1)

3sin? 9

1. 1. 1 .
Agp :5’ Ay _ﬁ’ Ay = 4R2,0’
1
Aoy = 8,03; a, =0, a4 =0
Sphere, cylinder and plane are special cases of toroid:
R=p 2>
R=c 2
R:p:oo 9
1 a, - Cos?}
2= Itosy ' P ar
tan?} _singicos?
TR I TE
a _ 5sin®¢¥cosdy | 8, = sin® o
0 64f® ' ™ 64f3cos’ Y

L2 = 32f%cosyy



g; Coefficients (2)

8, = 1 a, _cost?, a, = b sin219+ 1
> Afcosy P 4f T ™ 64flcosy| B2 &t
tan \/ sin 19
—— e —dgn* \/e —sin®yY
%2 = 812 cosp %0 =
0 - b 5sin® co§19_53in 2, 1|
0 64f°cos ¥ b? a’ a’ [

sin® ¥ b’(. cos
RATIE cosf’z?{ Szﬁ_a_(l_ 2 ﬂ

where f—F 1}

’

rr

http://xdb.Ibl.gov/Section4/Sec_4-3Extended.pdf



Optical path function (1)

F=AP+PB+kNAy

AP=,(x, ~ X +(y, ~y)’ +(z,~ 2

PB=1/(%, ~x) +(y, ~y)* +(z,~ 2

X, =I COS( y,=rsingo
’ ’
X, =r"cosf Y, =rsinf




Optical path function (2)

_ i
F = Z Fijky Z power series in the aperture coordinates y and z
ijk

1 1
= Fooo + YFi00 + ZFo + y “Foo + = 5 Z°Fopo + = y *Fao

1 1 l 1
+ 5 yZZFlzo + 3 y* Fio + 2 y?z° Foso + 3 z' Foao

1 1 1
+ yZF111 + E yF102 + Z y2 onz + E y22F211 T..

Fise = ZaCy (0, 1) + 2,Cy (B, 1) + NKAR,,

a ijk

* 10 otherwise

_{1 when ijk =100



Perfect focus condition (3)
oF oF

_:O —:O for any pair of (y,z)

oy 0z

!

F-jkzO for all ijk (000)

Eachterm F ik Y'Z! in the series (except Fooo and F )
represents a particular type of aberration



Fijk coefficients (1)

’
Fogo =T +T1

forrpr >>z,z,

Fioo = NKA —(Siha +sin )

2 2
Faoo = (COS ¢, COS, p j —2a,,(cosar + cos )

r r
1 1
Foo = - + == 2a,,(cosa + cos )
Fao = T(r.2) sna + T(rj'B)}sin,B—Zago(cosa+cos,B)
or o
Fio = S(r.@) sno+ S(r jﬂ)}sinﬂ—Zaﬂ(cosa+cosﬂ)
or T
cos’ o 1
where T(r,o)= , —2a,cose  and S(r,a)zF—Zaozcosa

and analogous expressionsfor T(r’,8) and S(r’, B)



Fijk coefficients (2)

F400:{4T(r,a)}sin2a_{TZ(r,a)}J{4T(r’,,8)}sin2IB_{TZ(r’,ﬂ)}

r? r r’? r’

SN Ccosa Sin 3cos
-8 0{ + pcosp

- }—Sam(cosa+ cos )+ 4a§o[l+i,}
r r

rr

Fm:{ZS(rz,a)}gnza{zsa,;,ﬁ)}gnz ﬁ_{T(r,a)S(r,a)}_{T(r’,ﬂ),s(r’,ﬂ)}
r r I r

r r’

sinozcosoz+ sinﬁcosﬂ}
"

+4a,,a,, [% + 1,} —4a,,(cosar +cos ) — 4a12[

F., = 4a’, E + i,} —8a,,(cosor + cos ) {

r r r’

sZ(r,aq{sZ(r',ﬂ)}



F i coefficients (3)

Za
&n=——— %

rr
z,SNna  zsSnpf

r2 r’2

Eu:_

z’sina z,°sinf

ﬁm:




Gaussian image point (1)

If we apply Fermat’s principle to the central ray: [%] =0 (Ej =0
ay y=0,2=0 oz y=0z=0
Foo=0 == snag+snf, =Nkl grating equation
Z,  Z, law of magnification
Fou=0 =~ in the sagittal direction

The tangential focal distancer’, is obtained by setting:

cos’ .  cos” f3,

F,y, =0 _,( i j—Zazo(cosa+cosﬂo)=0 tangential focusing
0

The three above equations determine the Gaussian image point B4(r" 5,B0,Z0)



Gaussian image point (2)

ZA




Sagittal focusing

While the second order aberration term F,,, governs the tangential focusing,
the second order term F,, governs the sagittal focusing:

Foo=0 == l+£,—2a02(cosaz+cos,6):O sagittal focusing
ror

Example: toroidal mirror
1 1 .

=_—; Qyy=—— 1IN Fao =0, Fop =0
2p

andimposing aa=-B=6

- (&gj@:g (19} 1 1

Substituting  a,,

rr') 2 R rr.' 2c0s8  p

t



Aberrations terms

Most important imaging errors:

Foo0 defocus

Fozo astigmatism

Fa00 primary coma (aperture defect)
F12 astigmatic coma

F 100 F220 Foao spherical aberration

There isan ambiguity in the naming of the aberrations in the grazing incidence case!



Ray aberrations (1)

The generic ray starting from A will arrive at the focal plane at apoint B displaced
from the Gaussian image point B, by the ray aberrations Ay, and Az,.;




Ray aberrations (2)

Substituting the expansion of F, the ray aberrations for each aberration type
can be calculated separately:

COS ,B each coefficient F, represents a particular form
0 of aberration and is related to the strength of
that aberration

Provided the aberrations are not too large, they are additive: they may either
reinforce or cancel.

Ay, = Y Ay, Az, =Y Az,™

Ik ijk




Aberrated image size

The most important contributions are from the rays which are more distant
from the pole of the grating

Example of footprint on the grating:

2W=44mm

A
A

Y

Substituting y=+w and z=zI in the ray aberrations Ay, '’k and Az, ik :
- size (Ay,* Az) of theresulting aberrated image



Defocus contribution

The defocus contribution is in the dispersive direction and is proportional to the length
(x w) of the grating footprint. The error is symmetric about the Gaussian image point:

’

§
AYPEW =+—92 F 2w
Yoo (W) cos 5, 200




Coma contribution

The coma contribution is proportional to w2, giving a dispersive error which only
occurs on one side of the Gaussian image point for rays from both the top and the
bottom of the grating (y=xw):

’

Ay, (W) = —° F, 3w
Yo o (EW) cos /3, 300 7




Comparison ray trace - aberration calculations

Example:
Z 4 Z A
o B B

I:040
F
020

B > By » >

y . y

300

Ray trace simple tells us that the Aberration-based calculations
ray arrivesin a certain point specify the different contributions

Knowing the expression of the different contributions, we can try to
minimize the resulting aberration



Aberrations contribution to resolution

oAl
AL =| = Ap
(aﬁ ja—const
cos S
= A
Nk p
Substituting:  AfS = A—Xb > Ad = cosp Axb
r Nk r
_ B r, oF Al = ia_F
Substituting:  AY, = cos 3, dy K Nk oy
= m ik 1Y aberration-limited wavelength resolution
ijk




Aberration theory: conclusions

oF doF

* Perfect focus condition: >=-=0  =—=0 for each pair (y,2)

~ al the coefficients Must be zero

» Non-zero valuesfor the coefficients F;, lead to displacements of the rays
arriving in the image plane from the ideal Gaussian image point.

* We have found the expressions for these rays displacements and the
corresponding contributions to wavelength resolution. In this way the impact
on the imaging and energy resolution properties of a given grating can be
evaluated.

By aproper choice of the grating shape, groove density, object and image
distances, the sum of the aberrations may be reduced to a minimum.
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Programs

» Shadow http://www.nanotech.wisc.edu/CNT L ABS/shadow.html
(ray tracing)
* XOP http://www.esr f.eu/computing/scientific/xop2.1/intr o.html

(general optical calculations)

« SPECTRA http://radiant.harima.riken.go.jp/spectra/index_e.html
(optical propertiesof synchrotron radiation emitted from bending magnets, wigglersand undulators)

Useful link: http://www-cxr 0.Ibl.gov/index.php?content=/tools.html




