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Main properties of Synchrotron Radiation

• Very broad and continuous spectral range, from infrared 
up to soft and hard x-rays

• High intensity

• Highly collimated and emanates from a very small 
source: the electron beam

• Pulse time structure

• High degree of polarization



Spectral range

D.Attwood, “Soft x-rays and extreme ultraviolet radiation”, Cambridge University Press, 1999
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Spectral brightness

BWI

fluxphoton
BrightnessSpectral

zxzx σσσσ ′′
= 1

I = electron current in the storage ring, usually 100mA
= transverse area from which SR is emitted
= solid angle into which SR is emitted

BW = spectral bandwidth, usually:               

zxσσ
zxσσ ′′

%1.0=∆
E

E

Solid angle
x

z

Source size

σσσσxσσσσz σσσσ’xσσσσ’z



SR spectral brightness at ELETTRA



Why is brightness important? (1)

More flux � more signal at the experiment

But why combining the flux with geometrical factors? 

Liouville’s theorem: for an optical system the occupied phase 
space volume cannot be decreased along the optical path 
(without loosing photons) � (σσσσσσσσ’)final ≥≥≥≥ (σσσσσσσσ’)initial

BWI

fluxphoton
BrightnessSpectral

zxzx σσσσ ′′
= 1



Example : a focusing beam
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Liouville’s theorem: (σσσσσσσσ’)final ≥≥≥≥ (σσσσσσσσ’)initial



Why is brightness important? (2)
To focus the beam in a small spot (which is needed for achieving energy 
and/or spatial resolution) one must accept an increase in the beam divergence. 

High beam divergence along the beamline:
� high optical aberrations
� large optical devices
� high costs and low optical qualities

With a not bright source the spot size can be made small only reducing the 
photon flux.
The high spectral brightness of the radiation source allows the development of 
monochromators with high energy resolution and high throughput and gives 
also the possibility to image a beam down to a very small spot on the sample 

with high intensity.

Not bright source:
(σσ’)initial large +

Liouville’s theorem: 
(σσσσσσσσ’)final ≥≥≥≥ (σσσσσσσσ’)initial

���� high beam divergence



The beamline (1)

The researcher needs at his experiment a certain number of 
photons/second into a phase volume of some particular 
characteristics. Moreover, these photons have to be 
monochromatized.

The beamline:
• is the means of bringing radiation from the source to the 
experiment transforming the phase volume in a controlled way: it
de-magnifies, monochromatizes and refocuses the source onto a 
sample
• must preserve the excellent qualities of the radiation source: it 
must transfer the high brightness from source up to the experiment



Conserving brightness

Brightness decreases because of: 

• micro-roughness and slope errors on optical surfaces

• thermal deformations of optical elements due to heat load 
produced by the high power radiation

• aberrations of optical elements



Figura prisma

The beamline (2)

Basic elements:

• mirrors, to deflect, focus and filter the radiation

• monochromators (gratings and crystals), to select photon energy

• detectors



Side view

Top view
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VUV, EUV and soft x-rays

These regions are very interesting because are characterized by the 
presence of the absorption edges of most low and intermediate Z elements  

� photons with these energies are a very sensitive tool for elemental and 
chemical identification
But… these regions are difficult to access.

4-30eV
300-40nm

30-250eV
40-5nm

250eV - several keV
Red:650nm

Green:530nm
Blue:470nm

1meV-1.2eV
1mm-1µm

2-several tens of keV



Ultra-high vacuum
VUV, EUV and soft x-rays have a  high degree of absorption in all materials: 

� No windows   
� The entire optical system must be kept under UH Vacuum

Ultrahigh vacuum conditions (P=1-2x10-9 mbar) are required:
• Not to disturb the storage ring and the experiment
• To avoid photon absorption in air
• To protect optical surfaces from contamination 

(especially from carbon)

In the hard x-ray region, it is not necessary to use UHV:

Transmission limit of common fused silica window: ~8eV Absorption limit of 8µm Be foil: ~1.5keV



No refractive optics

VUV, EUV and soft x-rays have a  high degree of absorption in all materials: 

Transmission limit of common fused silica window: ~8eV Absorption limit of 8µm Be foil: ~1.5keV

� The only optical elements which can work in the VUV, EUV 
and soft x-rays regions are mirrors and diffraction gratings, 
used in total external reflection



θ

γ

n > 1  ���� γ > θ

Snell’s law, visible light

Visible light, when entering a medium of 
greater refractive index, is bent towards 

the surface normal. 
This is the case for visible light 
impinging from air on a glass

n1cosθ= n2cosγ
� cosθ = n cosγ with  n= n2/n1

1
n



θ
γ

n < 1  ���� γ < θ

Snell’s law, X-rays

X-rays have the real part, n, of the refractive index slightly less than unity:  

n=1-δ where the 0 < δ < <1        Typical values are:
δ ≈10-2  for 250eV (5nm)
δ ≈10-4  for 2.5keV (0.5nm)

� X-ray radiation is refracted in a direction slightly further from the surface normal

� the refraction angle γ can equal 0, indicating that the refracted wave doesn’t 

penetrate into the material but rather propagates along the interface.

The limiting condition occurs at the critical angle of incidence θc:  cos θc = n   

δθ 2=c
�

n1cosθ= n2cosγ
� cosθ = n cosγ with  n= n2/n1

1
n

γ =0
θc

n < 1

1
n



Critical angle

δθ 2=c

Substituting δ, it can be shown that the major functional dependencies of θc are:

Zc λαθ

Gold:
600 eV � θc ≈ 7.4°
1200 eV � θc ≈ 3.7°

5 keV � θc ≈ 0.9°

γ =0
θc

n < 1

1
n

θc increases working at lower photon energy 
and using a material of higher atomic number Z.



Total external reflection

It is the counterpart of total internal reflection of 
visible light. Visible light is totally reflected at the 
glass/air boundary if θ < θc.

n*cos θc=1 � θc = arccos (1/n) = 48.2°
n =1.5 refraction index of glass

θ < θc

n < 1

θc

1
n

If radiation impinges at a grazing angle 
θ < θc, it is totally external reflected.



Total internal reflection (visible light)

If you are in a swimming pool and look up directly above you within a cone of 49°, will see a 
compressed view of the outside world.  If you look along the water surface beyond the 49°
angle, you will not be able to see the world outside but only the reflected sides of the 
swimming pool.

n*cos θc=1 � θc = arccos (1/n) = 41.4°
n =1.333 refraction index of water
(90°- 41.4° = 48.6 °) θc

n >1

n=1



Nearly total external reflection

This model of total reflection is incomplete 
because it doesn't include the effect of the 
imaginary part of the refraction index. 
The radiation penetrates into the second 
medium during the reflection process, so that 
the absorption in this medium decreases the 
intensity of the reflected beam.

� The sharpness of the cut-off is reduced

θ < θc

n < 1

θc

1
n

D.Attwood, “Soft x-rays and extreme ultraviolet radiation”, 
Cambridge University Press, 1999



Mirror reflectivity (1)

Reflectivity drops down fast with the increasing of the grazing incidence angle
� only reflective optics at grazing incidence angles 
(typically 1°-2° for soft x-rays, few mrad for hard x-rays, 1 mrad= 0.057°)
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Mirror reflectivity (2)
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Focusing properties of mirrors
X-rays mirrors can have different geometrical shapes, their optical surface can 
be a plane, a sphere, a paraboloid, an ellipsoid and a toroid.

The meridional or tangential plane contains the central incident ray and the 
normal to the surface. The sagittal plane is the plane perpendicular to the 
tangential plane and containing the normal to the surface.



Paraboloid
Rays traveling parallel to the symmetry axis OX are all focused to a point A.
Conversely, the parabola collimates rays emanating from the focus A.

aXY 42 =Line equation:

aXZY 422 =+Paraboloid equation:

ϑ2cosfa =where:

ϑ
ϑ

tan2

tan 2

aY

aX

o

o

=
=

Position of the pole P:

0sec 4  cos  sin 2  cos  sin 22222 =−−++ ϑϑϑϑϑ axxyzyx

Paraboloid equation:

J.B. West and H.A. Padmore, Optical Engineering, 1987



Ellipse

source image

The ellipse has the property that rays from one point focus F1 will 
always be perfectly focused to the second point focus F2



Ellipsoid

Rays from one focus F1 will always be perfectly focused to the second focus F2.
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Toroid (1)

The bicycle tyre toroid is generated rotating a circle of radius ρ in 
an arc of radius R.

22222 )()(2)(22 yxRRRRRxzyx +−−+−−=++ ρρ



Toroid (2)
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Sagittal focus S:

ϑρ 2cos=
R

Stigmatic image:

In general, a toroid produces two non-coincident focii: one in the tangential focal 
plane and one in the sagittal focal plane



Spherical mirror

For ρ=R   � spherical mirror :
A stigmatic image can only be obtained at normal incidence. 
For a vertical deflecting spherical mirror at grazing incidence the horizontal 
sagittal focus is always further away from the mirror than the vertical 
tangential focus. The mirror only weakly focalizes in the sagittal direction.
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Kirkpatrick-Baez focusing system

This configuration, originally suggested by Kirkpatrick and Baez in 1948, is based on 
two mutually perpendicular concave spherical mirrors. 
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Gratings

The diffraction grating is an artificial periodic structure with a well defined period d.
The diffraction conditions are given by the well-known grating equation:

k=0

k=-1

Grating 
normal

k=-2

k=1k=2

Outside,
negative
orders

Inside,
positive
orders

Incident 
wavelength λ α β

α and β are of opposite sign if on opposite sides of the surface normal
N=1/d is the groove density, k is the order of diffraction (±1,±2,...)

d

d sinα d si
nβ

λβα Nk=+ sinsin
1

2



Gratings profiles (1)

Laminar profile

wh

Blaze profile

θ
γ

Laminar gratings: higher spectral purity

( )βαλ sinsin += dkkλ
1λ

2 λ2 

Blaze gratings: higher efficiency

d

d sinα d si
nβBlaze condition:Blaze condition:

Blaze angle=(Blaze angle=(α+βα+β)/2)/2

The angle θ is chosen such that for a given
wavelength the diffraction direction coincides with
the direction of specular reflection from the 
individual facets



Gratings profiles (2)

Laminar profile
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Exposure

Development

Ion-beam etching

Photoresist
removal

Coating
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Grating resolving power (1)

λβα Nk=+ sinsinDifferentiating the grating equation:
the angular dispersion of the grating is obtained:

(higher groove density � higher angular dispersion) ββλ ∆=∆
Nk

cos

The resolving power is defined as:

λ
λ

∆
=

∆
=

E

E
R

R=10000  @100eV  � ∆E=100eV/10000=10meV



Grating resolving power (2)

Angular dispersion : ββλ ∆=∆
Nk

cos
Resolving power:

λ
λ

∆
=

∆
=

E

E
R

( )s

rkN

E

E
′

′
=

∆
=

∆ β
λ

λ
λ

cos

The main contribution is from the width s’ of the exit slit:

∆β
s’

r’
α

The entrance slit contribution is similar:

( )s

rkN

E

E

β
λ

λ
λ

cos
=

∆
=
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Grating resolving power (3)
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Bragg’s law

d

2d sinϑ

ϑ

ϑ ϑ

Radiation of wavelength λ is reflected 
by the lattice planes. The outgoing 
waves interfere. The interference is 
constructive when the optical path 
difference is a multiple of  λ:

d is the distance between crystal 
planes.

2dsinϑ =nλ

EXAMPLES: Si (111) : d=3.13Å �Emin ≈2 keV Si (311) : d=1.64Å �Emin ≈3.8 keV

InSb (111) : d=3.74Å � Emin ≈1.7 keV Be (1010) :d=7.98Å �Emin ≈0.8 keV

d2    1sin max=≤⇒≤ λλϑ
The maximum reflected
wavelength corresponds to the 
case of normal incidence: θ=90°



d

2d sinϑ

ϑ

ϑ ϑ

Energy resolution

ϑ

ϑ
ϑϑ

λ
λ

sin

cos∆=∆=∆
E

E

∆ϑ has two contributions :
∆ϑ beam :       angular divergence of the incident beam
ωcrystal : intrinsic width of the Bragg reflection

The energy resolution of a crystal monochromator

is determined by the angular spread ∆ϑ of the 

diffracted beam and by the Bragg angle ϑ



ϑmin / Emax
ϑmin / Emax

ϑmax / Emin
ϑmax / Emin

E
m

in

E
max

Angular beam divergence

monochromatormonochromator

∆ϑ∆ϑ∆ϑ∆ϑbeam =ϑϑϑϑmax - ϑϑϑϑmin

A slit at the exit of the 
monochromator selects a 

narrower energy range.



Collimating premirrorCollimating premirror

Collimating mirror
A collimating mirror in front of the crystal reduces the 
angular divergence ∆ϑ∆ϑ∆ϑ∆ϑbeam of the incident beam, improving 
the energy resolution.



Darwin Curve

absorption effects

ωs

angular shift due to the refractive effect

1. there is a finite interval of incident angles for which the beam is reflected
2. the center of this interval does not coincide with the Bragg angle

3. R < 1 and has a typical asymmetric shape

The intrinsic reflection width of the crystal, ωs, can be obtained measuring the crystal 
reflectivity for a perfectly collimated monochromatic beam, as a function of the 
difference between the actual value of the incidence θ angle and the ideal Bragg value: 
∆θ= θ- θB.
This reflectivity is derived by the dynamic diffraction theory, which includes multiple 
scattering  ���� Darwin curve:

finite interval of reflectivity



Intrinsic width of the Bragg reflection

θB Bragg angle
λ wavelength of  radiation
re radius of the electron e2/mc2

V volume of the unit cell
C polarization factor
|Fhr | amplitude of the crystal structure  

factor Fr related to the (hkl) diffraction
e-M temperature factor 

Me
hr

FC
V

2
er

sin(2
2

s
B

−=
π

λ
ϑ

ω
)

absorption effects

ωs

angular shift due to the refractive effect

finite interval of reflectivity

Dynamic diffraction theory



Du Mond diagram

ω

λϑ =⋅sin2dwavelength
bandpass

= angular acceptance of the slit∆ϑ

The Du Mond diagram describes the reflection of radiation by the crystal in the ϑ − λ
space.



Crystal Monochromators

Second crystal in

non dispersive configuration

Second crystal in

non dispersive configuration

Parallel geometry:
all rays accepted by the first 
crystal are accepted also at the 
second.



Crystal Monochromators

Second crystal in

dispersive configuration

Second crystal in

dispersive configuration

Antiparallel configuration: rays incident at a 
lower angle than the central ray on the first 
crystal are incident at a  higher angle on the 
second crystal.

resolving power ↑↑↑↑
intensity of the reflection ↓↓↓↓



Double Crystal Monochromator

Fixed exit beam
direction



Double Crystal Monochromator

Fixed exit beam
direction



Channel-cut



Channel-cut



Channel-cut

Higher energy

Much easy to align
Exit beam displacement



  Source: 
  Super conducting 
  multipole wiggler

  Cylindrical bendable pre-mirror: 
  silicon element rhodium coated

Cylindrical bendable focussing mirror: 
silicon element rhodium coated

Diffraction2  conceptual  layout

Double crystal monochromator: 
si(111) flat crystals, LN2 cooled

Example: the ELETTRA X-ray Diffraction beamline

Multi-pole wiggler
57 poles, 1.5T magnetic field,
14cm period length, 
5.8KeV critical energy @2.4GeV
5 kW total power @140mA

Cylindrical mirror for vertical collimation
Silicon with 50nm Platinum coating
Mirror length=1.4m
i=3mrad;  Vertical angular acceptance =180µrad
Radius=14Km
Source distance d=22m
Collimated beam vertical divergence <10µrad

Toroidal focusing mirror
Sagittal cylindrical bendable mirror
Tangential radius = 9Km
(variable: 5Km - ∞)
Sagittal radius = 5.5cm
Source distance = 28m
H demagnification = 2 
V demagnification = 1.6 

Experiment
Source distance = 41.5m
Energy range: 4-21KeV
spot size: 0.4x0.2mm2 

Photon flux: 1012ph/s (at λ=1Å)
Energy resolution: 3-4000

Pyrolithic graphite filters to
absorb E<4.2KeV

Slits, H angular 
acceptance: 1.5mrad

Double crystal 
monochromator
Si(111) flat crystals, in non-
dispersing configuration
ωs= 7.4” = 35µrad @8KeV
Source distance=24m
250W absorbed by the 1°
crystal



Example: the ELETTRA Nanospectroscopy
beamline

Side view

Top view
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Toroidal mirror: demagnifies the source by a factor of 8 in H and 5 in V
Sagittal V focus at the entrance slit, tang H focus 1 m before; i = 1.75º

Two bendable elliptical cylinder mirrors, in KB geometry: 
demagnification factors are 10 in H and 5 in V, i = 2º
About 1x1012 photons/s are focused in a 7µm x 2µm spot.

Variable Included Angle Monochromator, equipped with 
2 variable line spacing plane gratings, 20 < E < 1000eV;   
3000 < E/∆E < 7000;   Dv ~ 1.7 ; r=r’=2m

two APPLE-II helical undulators, 
Photon energy: 20 - 1000eV
Size @400eV:   560µm×50µm;  
110µrad×85µrad  (FWHM)
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Conserving brightness

Brilliance decreases because of: 

• roughness and slope errors on optical surfaces

• thermal deformations of optical elements due to heat load 
produced by the high power radiation

• aberrations of optical elements

In the following we will consider OEs with theoretical surface shapes.



Perfect imaging and aberrations

Deviations from perfect imaging are called aberrations.

An ideal optical element is able to perform perfect imaging 
if all the rays originating from a single object point cross at 
a single image point.



Aberrations theory

Aberration theory shows what the different aberration terms are 
and how they play a role in the image formation � it teaches how 
aberrations can be reduced

We will study the case of a concave grating.

The general theory of  aberrations of diffraction gratings derives 
mathematical expressions for the aberration terms applying 
Fermat’s principle. 



Fermat’s principle A

B

A light-ray going from A to B chooses the path 

with the minimum optical pathlength:
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A more accurate statement:

a light-ray going from A to B chooses the path for which the optical 
pathlength between the two points is an extremum :

where the delta variation of the integral means that is a variation of the 
path of the integral such that the endpoints A and B are fixed.
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Theory of conventional diffraction gratings

where λ is the wavelength of the diffracted light, k is the order of 
diffraction (±1,±2,...), N=1/d is the groove density 

For a classical grating with rectilinear grooves parallel to z with constant 

spacing d, the optical path length is:
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Perfect focus condition (1)

Let us consider some number of light rays starting from A and impinging 
on the grating at different points P.  Fermat’s principle states that if the 
point A is to be imaged at the point B, then all the optical path lengths 
from A via the grating surface to B will be the same.  

B is the point of a perfect focus 
if:

for any pair of (y,z )
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Perfect focus condition (2)

can be used to decide on the required characteristics of the diffraction 
grating:
•the shape of the surface
•the grooves density
•the object and image distances
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Equations:



Aberrated image

In general,         and         are functions of y and z and can not be made zero for 
any  y,z

� when the point P wanders over the grating surface, diffracted rays fall on 
slightly different points on the focal plane and an aberrated image is formed 
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• B0: gaussian image, 
produced by the central ray
• B: ray diffracted by the 
generic point P on the 
grating surface 
• Aberrations: displacements 
of B with respect to B0
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Grating surface
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The grating surface can in general be described by a series expansion:

a00= a10= a01= 0 because of the choice 
of origin 
j = even if the xy plane is a symmetry 

plane

Giving suitable values to the coefficients aij’s we obtain the expressions for 
the various geometrical surfaces. 
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aij coefficients (1)
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aij coefficients (2)
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Optical path function (1)
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Optical path function (2)

  ...
2

1

4

1

2

1
       

8

1

4

1

8

1

2

1
       

2

1

2

1

2

1
        

211
2

202
2

102111

040
4

220
22

400
4

120
2

300
3

020
2

200
2

011100000

+++++

++++

+++++=

zFyFyyFyzF

FzFzyFyFyz

FyFzFyzFyFF

ijkijk
k
bijk

k
aijk fNkrCzrCzF λβα ++= )',(),(

otherwise      0

100ijkn         whe1

⎩
⎨
⎧ =

=ijkf

ji

ijk
ijk zyFF ∑= power series in the aperture coordinates y and z



Perfect focus condition (3)
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Each term                     in the series (except F000 and F100) 
represents a particular type of aberration 
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Fijk coefficients (1)

ααα cos2
cos

),( 20

2

a
r

rT −=where and αα cos2
1

),( 02a
r

rS −=

andand analogous expressions for ),( βrT ′ ),( βrS ′

( )

( )

( )

( )βαββαα

βαββαα

βα

βαβα

βαλ

coscos2sin
),(

sin
),(

coscos2sin
),(

sin
),(

coscos2
11

coscos2
coscos

)sin(sin

12120

30300

02020

20

22

200

100

+−⎥⎦

⎤
⎢⎣

⎡
′
′

+⎥⎦

⎤
⎢⎣

⎡=

+−⎥⎦

⎤
⎢⎣

⎡
′
′

+⎥⎦

⎤
⎢⎣

⎡=

+−
′

+=

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

′
+=

+−=

a
r

rS

r

rS
F

a
r

rT

r

rT
F

a
rr

F

a
rr

F

NkF

rrF ′+=000

for r,r’ >> za,zb



Fijk coefficients (2)
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Fijk coefficients (3)
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Gaussian image point (1)

λβα Nk=+ 0sinsin0100 =F grating equation
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in the sagittal direction

If we apply Fermat’s principle to the central ray: 0    0
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The three above equations determine the Gaussian image point B0(r’0,β0,zb0)

The tangential focal distance r’0 is obtained by setting:



Gaussian image point (2)
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Sagittal focusing

0020 =F sagittal focusing( ) 0coscos2
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While the second order aberration term F200 governs the tangential focusing, 
the second order term F020 governs the sagittal focusing:

Example: toroidal mirror

Substituting in

and imposing   α = -β = θ
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Aberrations terms

Most important imaging errors: 

F200 defocus
F020 astigmatism
F300 primary coma (aperture defect)
F120 astigmatic coma
F400 F220 F040 spherical aberration

There is an ambiguity in the naming of the aberrations in the grazing incidence case!



Ray aberrations (1)

The generic ray starting from A will arrive at the focal plane at a point B displaced 
from the Gaussian image point B0 by the ray aberrations ∆yb and ∆zb:

y

Fr
yb ∂

∂′
=∆

0

0

cos β

z

F
rzb ∂

∂′=∆ 0

z

A

O
B0

P

x

y

B

α

r

ro’

∆∆∆∆zb

∆∆∆∆yb

β0

za

zb0



Ray aberrations (2)
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Substituting the expansion of F , the ray aberrations for each aberration type 
can be calculated separately:

Provided the aberrations are not too large, they are additive: they may either 
reinforce or cancel.
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each coefficient Fijk represents a particular form 
of aberration and is related to the strength of 
that aberration



Aberrated image size

Substituting y=±w and z=±l in the ray aberrations ∆yb
ijk and ∆zb

ijk :
� size (∆yb * ∆zb) of the resulting aberrated image

Example of footprint on the grating:

2l=2mm

2w=44mm

y

z

The most important contributions are from the rays which are more distant 
from the pole of the grating



Defocus contribution
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The defocus contribution is in the dispersive direction and is proportional to the length 

(± w) of the grating footprint. The error is symmetric about the Gaussian image point:
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Coma contribution
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The coma contribution is proportional to w2, giving a dispersive error which only 
occurs on one side of the Gaussian image point for rays from both the top and the 
bottom of the grating (y=±w):
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Comparison ray trace - aberration calculations

Example:

Ray trace simple tells us that the 

ray arrives in a certain point

Aberration-based calculations 
specify the different contributions

F200 F300

F040

F020
B0

B

z

yy

z

B0

B

Knowing the expression of the different contributions, we can try to 
minimize the resulting aberration



Aberrations contribution to resolution
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Aberration theory: conclusions 

• Perfect focus condition:                                for each pair (y,z) 
� all the coefficients Fijk must be zero

• Non-zero values for the coefficients Fijk lead to displacements of the rays 
arriving in the image plane from the ideal Gaussian image point.

• We have found the expressions for these rays displacements and the 
corresponding contributions to wavelength resolution. In this way the impact 
on the imaging and energy resolution properties of a given grating can be 
evaluated. 

• By a proper choice of the grating shape, groove density, object and image 
distances, the sum of the aberrations may be reduced to a minimum. 
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ProgramsPrograms

• Shadow http://www.nanotech.wisc.edu/CNT_LABS/shadow.html
(ray tracing)

• XOP http://www.esrf.eu/computing/scientific/xop2.1/intro.html
(general optical calculations)

• SPECTRA http://radiant.harima.riken.go.jp/spectra/index_e.html
(optical properties of synchrotron radiation emitted from bending magnets, wigglers and undulators)

Useful link:                      http://www-cxro.lbl.gov/index.php?content=/tools.html


