	The Abdus Salam International Centre for Theoretical Physics
--	---

1936-4

Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications

7 - 25 April 2008

Introduction to RIETVELD REFINEMENT &

Powder X-ray Diffraction Experimental setups

Jasper Plaisier Elettra, Trieste

Introduction to RIETVELD REFINEMENT

Jasper Plaisier
MCX beamline –Elettra Trieste

Outline

- Introduction
 - The method
 - The math
- Before you start refining
 - Indexing / unit cell, space group determination
 - Constructing a model
- Refinement
 - Important steps
 - Criteria of fit

- Hugo M. Rietveld (Den Haag, 1932)
- Structure determination from neutron powder diffraction
- Original software was written in 1969
- First reports on the application in XRD: 1977

Rietveld refinement

• Goal: get accurate structural parameters given a powder diffraction pattern.

• Peak intensities depend on structural parameters

Crystal Structure

- Unit cell: regular repeating pattern of atoms that forms the crystal (defined by lattice parameters a, b, c, α , β , γ)
- Space group: Describes the symmetry of the atomic structure (eg. P2₁/m)
- Atomic positions within unit cell (x,y,z)

Crystal Structure

- O Sr(1)
- Sr(2)
- Sr(3)
- Sr(4)

Peak intensities

- Integrated area of peak gives intensity
- Peak height is not a good estimate, shape must be taken into account
- Factors affecting peak shape: temperature absorption, particle size, instrument parameters

Rietveld method

• In the Rietveld method the parameters are refined using the least squares method until the best fit between the calculated pattern and the observed pattern is obtained

Rietveld method

Rietveld math

• Minimization of residual S_{v}

$$S_{y} = \sum_{i} w_{i} (y_{i} - y_{ci})^{2}$$

$$-W_{i} = 1/y_{i}$$

- $Y_{i} = Observed intensity at the$ *i*th step
- Y_{ci} = Calculated intensity at the *i*th step

Rietveld math

Calculation of intensity y_{ic}

$$y_i = s \sum_{K} L_K |F_K|^2 \varphi (2\Theta_i - 2\Theta_K) P_{KA} + y_{bi}$$

- $s_i = \text{Scale factor}$
- K represents Miller indices, hkl, for a Bragg reflection
- L_{K} contains Lorentz, polarization and multiplicity factors
- φ is the reflection profile function
- P_{K} is the preferred orientation function
- A is the absorption factor
- F_{K} is the structure factor
- Y_{bi} is the background intensity at the *i*th step

Rietveld math

Calculation of the structure factor

$$F_{hkl} = \sum_{j} N_{j} f_{j} \exp(2\pi i (hx_{j} + ky_{j} + lz_{j})) \exp(-B_{j} \sin^{2}(\theta/\lambda^{2}))$$

- *hkl* Miller indices
- x_i, y_j, z_j are the atomic position parameters of the jh atom in the unit cell
- B_j = Temperature factor (thermal vibrations) of the *j*th atom
- N_i site occupancy for the *j*th atom site
- f_j scattering factor of the jth atom

Before we start refining

- Rietveld **refinement** requires a starting model that is close to the real model
- Starting values for instrument parameters can be determined using standard materials
- Necessary finding a reasonable estimate of
 - Unit cell parameters
 - Atomic positions
- Determine the correct space group

Finding unit cell parameters

• Unit cell parameters are related to the peak positions by Bragg's law:

$$n \lambda = 2d \sin \theta$$

• In case of a cubic cell : a=b=c, $\alpha=\beta=\gamma=90^{\circ}$

$$d_{hkl}^2 = \frac{a^2}{h^2 + k^2 + l^2}$$

Simple cubic example

• a=4.0Å, space group Pm3m

<u>20</u>	<u>d</u>	$1000/d^{2}$	$h k l h^2 + k$	² +1 ²
22.21	4.00	62.5	100	1
31.61	2.83	125.0	1 1 0	2
38.97	2.31	187.5	1 1 1	3
45.31	2.00	250.0	200	4
51.01	1.79	312.5	2 1 0	5
56.29	1.63	375.0	2 1 1	6
66.00	1.41	437.5	2 2 0	8
70.58	1.33	500.0	3 0 0	9
			2 2 1	9

Finding unit cell parameters

- More complex unit cells make manual indexing difficult
- Indexing is usually done with a computer program (Dicvol, Treor, Ito)
- Input:
 - 20-30 accurately determined peak positions
 - Wavelength
 - Maximum cell volume
 - Error in peak positions

Finding space group

- Space group cannot be refined, must be right
- Some symmetry elements can be determined from systematic absences
- Often various refinements using different space groups are performed and their results compared

Starting model: atomic parameters

- Find in the database a known structure that is similar
- Determine a structure ab-initio using direct methods or modeling
 - Needs accurately estimated peak intensities
 - Small peak widths of synchrotron powder diffraction helps out a lot

- Refining parameters to fit overall shape of diffraction pattern:
 - Scale factor
 - Background (function with 3-6 parameters)
 - Zero-point correction

• Get accurate peak positions by refinement of the unit cell parameters

Peak shape parameters

Atomic parameters

- Sequence of the parameters to be included in the refinement depends on the quality of the staring model
- Looking at the difference between the calculated and observed profile helps to decide the order in which to include the parameters

Criteria of fit

- Measure of the quality of the fit
- R-Bragg

$$R_{B} = \frac{\sum |I_{K}(obs) - I_{K}(calc)|}{\sum I_{k}(obs)}$$

• R-pattern

$$R_{p} = \frac{\sum |y_{i}(obs) - y_{i}(calc)|}{\sum y_{i}(obs)}$$

R-weighted pattern

$$R_{wp} = \frac{\sum w_{i}(y_{i}(obs) - y_{i}(calc))^{2}}{\sum w_{i}(y_{i}(obs))^{2}}$$

Criteria of fit

- I_K is never directly observed.
- R-bragg is biased towards the model
- R is directly related to the function that is minimized
- Don't forget to look at the patterns!!!

Powder X-ray Diffraction Experimental setups

Jasper Plaisier
MCX beamline –Elettra Trieste

Outline

- Introduction
- Experimental techniques at MCX
- MCX Experimental setup
 - Beam line optics
 - Experimental hutch
- Experimental stations
 - Flat plate reflection
 - Capillary transmission

• MCX is under construction

• <u>Materials Characterization by X-rays</u>

Experimental techniques at MCX Grazing angle: reflectivity

- Based on total reflection of X-ray beam
- Study of:
 - Surface morphology
 - Roughness
 - Waviness
 - Composition
 - Structure of multilayer systems
- Layer thickness .5-400 nm,
- Needs difference of electron density in layers

Experimental techniques at MCX Grazing angle: reflectivity

• The measurement:

Experimental techniques at MCX Grazing angle: diffraction

- Based on Bragg diffraction in thin layer
- X-rays enter sample with small incident angle to limit penetration depth
- Study of:
 - Identification and study of monolayers
 - Differences in crystallinity surface/bulk
 - Surface residual stress and texture
 - Depth profiling

Experimental techniques at MCX Grazing angle: diffraction

• Symmetric configuration

side view

top view

Experimental techniques at MCX Grazing angle: diffraction

Asymmetric configuration

Experimental techniques at MCX Stress and texture analysis

- Stress can be determined from precision lattice constant determination (diffraction peak shifts)
- Texture is the orientation distribution of the crystallites
- Texture is measured by rotating the sample while monitoring the intensity of a Bragg-reflection

Experimental techniques at MCX Elastic constants and mechanical properties

- Based on X-ray diffraction measurement while mechanical pressure is applied
- Elastic tensors can be determined by measuring different crystallographic directions

Experimental techniques at MCX Elastic constants and mechanical properties

Experimental techniques at MCX Phase identification and profile analysis

- Phase identification by XRD fingerprint
- Quantitative phase analysis
- Structure solution and refinement
- Size and shape distribution
- Study of lattice defects

MCX Experimental setup

- Front end Hutch
- Beamline Optics Hutch
- Tube
- Experimental Hutch

MCX Experimental setup Front End Hutch

- Shopper
- Mask
- Be window
- First Entrance Slits
- Several valves

MCX Experimental setup Optics – Mirror 1

MCX Experimental setup Optics – Monochromator

Choice of wavelength of X-rays

MCX Experimental setup Optics – Mirror 2

MCX Experimental setup Optics – Mirror 2

MCX Experimental setup Beamline Optics Hutch

- Mirrors
- Monochromator
- Second entrance/First exit slits
- Shutter
- Several valves

MCX Experimental setup Experimental Hutch

- Second exit slits
- Be-window
- filters
- slits
- Several valves
- Ionisation chambers

MCX Experimental setup Experimental Hutch

Diffraction geometry

- Reflection geometry
 - Constant diffracting volume
 - Flat sample thick sample
 - Problem of preferred orientation
- Transmission geometry
 - Small sample volume
 - Lower signal background ratio

Bragg Brentano geometry

Debije-Scherrer geometry

Detection system

Detection system

Using an 2D PSD

Multipurpose Diffraction System

- Must be suitable for various techniques
- MDS needs to be flexible
 - Support for different geometries
 - Space for in situ experimental chambers
- High precision control of movements required

Experimental setup at MCX

• 4-circle goniometer

Experimental setup at MCX

Sample holder

Experimental setup at MCX

Detector

