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“When scientists have learned how 
to control the arrangement of 
matter at very small scale, they will 
see materials take an enormously 
richer variety of properties.”  R. 
Feymman (1959) 

 

1.Basic introduction.  

The description of the characteristics of the small-angle X-ray scattering by materials will be 
introduced trough the simple example of an optical diffraction experiment in which a visible light beam 
passes through a small hole of a few microns on an opaque or semi-opaque mask. This experiment can 
be performed using a simple laser source, as those commonly utilized as a pointer in class-rooms 
(wavelength λ≈0.65 µm). What we may expect to see in a flat screen located at a distance D much 
larger than λ (say D=5m) from the mask? (Fig.1a). Classical physical optics tells us that a isotropic 
diffuse spot should be observed, centered in the intersection of the transmitted beam with the screen. 
Since the spot has a circular symmetry, the scattering intensity is a function only of the scattering angle 
ε or of the distance on the screen defined by x (x≈ε.D). The scattering intensity function, I1(ε), exhibits 
a maximum  at ε=0 and  its half maximum intensity width,  ∆ε, increases for decreasing hole sizes. 
These effects are qualitatively illustrated in Fig. 1b, 1c and 1d, which display a series of three 
schematic profiles of the light scattering intensity produced by holes of different sizes. 

  

               

 
Fig. 1: (a) Setup of an experiment of small angle light scattering. (b), (c) and (d) are schematic 

intensity curves corresponding to circular  holes of different sizes. 
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In practice, the scattering intensity produced by a single hole is very weak and therefore the masks 
that are used in actual experiments contain many holes. How the fact of having a number of holes, 
instead of only one, may affect the profile of the scattered intensity? In order to answer this question, 
the relevant features of the scattering intensity produced by different types of masks, containing a 
number of identical circular holes, arranged in different ways, will be described. 

 (i) Randomly located holes (2D ideal gas structure, Fig. 2a).  
The randomness condition can only be approximately fulfilled if the holes are very far apart from 

each other.  A (very) dilute set of N randomly located holes produces a scattering intensity simply 
given by I(ε)= N.I1(ε). This result implies that the hole positions are completely uncorrelated and, 
consequently, the total scattering intensity is the sum of the individual intensities; i. e. no interference 
between wavelets generated by different holes occurs. 

(ii)Holes with short range spatial correlation (2D liquid-like structure, Fig. 2b). 
The scattered wavelet produced by each hole interferes with the others and thus the simple equation 

I(ε)= NI1(ε) is not longer obeyed. The interference effects due to the spatial correlation in hole 
positions are accounted for by the “structure function” S(ε), so that  I(ε)=NI1(ε)S(ε). The structure 
function for a set of holes with short-range order is different from 1 at small scattering angles and tends 
to 1 at high angles. 

(iii)Periodically arranged holes (2D crystal-like structure, Fig. 2c).  
In this case, for particular values of the angle ε (ε=εn), the wavelets corresponding to the scattering 

produced by all holes are in phase. Thus the total scattering amplitude is A(εn)=NA1(εn), where A1 
refers to the amplitude produced by each hole, and A(ε≠εn)=0. The total intensity, 2)()( εε AI = , is 
then given by I(ε=εn)=N2I1(εn) and I(ε≠εn)=0. The structure function S(q) is composed of narrow peaks 
with non zero values (S(q)=N) for well-defined angles, ε≈εn, which only depend on the geometry of the 
arrangement of  holes. This is analogous to the effects described by the well-known Bragg law 
corresponding to the X-ray diffraction by 3D crystals.  

 
 

 
Fig. 2: Schematic masks and corresponding light scattering intensity for (a) a gas-like (dilute) set 

of holes, (b) a liquid-like (concentrated) set of holes with short range spatial order, and (c) a crystal-
like concentrated set of holes with long range spatial order. 

 
All previous considerations also apply to the case where, instead of circular holes on a plane, we 

have spheres located in the three dimensional space. 
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Elastic scattering of X-rays by nanostructured materials is a phenomenon similar to the described 
scattering of visible light by a mask with micrometric holes. A 3D analogous of the mask may be a 
material containing nano-pores or an arrangement of nano-clusters. The individual pores or clusters 
play the same role in X-ray scattering experiments as the microscopic holes in the mask. The small-
angle scattering is produced by electron density heterogeneities at nanometric level such as, in the 
mentioned example, the clusters or pores. As it will be seen, the small-angle X-ray scattering technique 
provides relevant information about the shape, size, size distribution and spatial correlation of 
heterogeneities in electron density.  

The properties of nanostructured materials are often very different from those of the same materials 
in bulk state. They depend not only on the structure at atomic scale but also, and often strongly, on the 
structure at  nanometric scale. For example, relatively small variations in the shape and/or size of metal 
or semiconductor nanocrystals embedded in a glass matrix induce dramatic changes in the optical 
properties of these nanocomposites. This example illustrates why the characterization of materials at a 
nanometric scale is a relevant issue for materials scientists. Furthermore, it will be demonstrated along 
this chapter that small-angle scattering technique actually is a very useful technique for structural 
characterizations at a nanometric scale. 

 
 
2. Small-angle X-ray scattering by nanostructured materials with an 

arbitrary structure. 
The basic process of the scattering of X-ray by materials is the photon-electron interaction. As it 

will be seen, the X-ray scattering intensity produced by any material varies with the scattering angle 
and the characteristics of this function directly depend on the electron density function ( )rρ . The 
electron density function contains all the information that is practically needed in order to fully 
describe the material structure. 

X-ray scattering by materials is named as “small-angle X-ray scattering” (or SAXS) when the 
measurements are confined to angles smaller than ~10 degrees. These measurements provide relevant 
information if the average radius of the clusters and/or inter-cluster distances are about 5-500 times the 
wavelength used in the experiment (typically λ=1.5 Å). On the contrary, if the objects are very large as 
compared to the X-ray wavelength (with sizes above say 1µm), the scattering intensity is concentrated 
within a extremely small angle domain, close to the direct X-ray beam, that is hidden by the narrow 
direct beam stopper placed close to the detector. On the other hand, the X-ray scattering at small-angles 
does not contain any information about the oscillations in electron density associated to the atomic 
nature of the structure. This information can only be found at wide scattering angles. These comments 
imply that the window of sizes that are probed by the small-angle X-ray scattering technique ranges 
from about 10 Å up  to 1000 Å.  

The experiments of small-angle X-ray scattering are usually performed in transmission mode. 
Thus, for a wavelength much larger than 1.5 Å, photons would be strongly absorbed by the sample. On 
the other hand, if a much smaller wavelength is used, the scattering would concentrate at too small 
angles making practical analyses difficult. Therefore, most of the SAXS experiments reported in the 
literature are performed using X-ray wavelengths ranging from 0.7  to 1.7 Å .  

 
 
2.1. Scattering of x-rays by an electron.  
The elastic scattering produced by an isolated electron was derived by Thompson. The amplitude of 

the wave scattered by each electron has a well-defined phase relation with the amplitude of the incident 
wave, thus making interference effects possible. In the particular case of a non-polarized X-ray beam, 
such as those produced by a classical X-ray tube, the scattering power of one electron per solid 
detection angle, Ie, is a function of the angle between the incident and the scattered beam, 2θ:   

 



 4

                                       )
2

2cos1()2(
2

2
0

θθ +
= ee rII                                                          (1)         

 
where  I0 is the intensity of the incident beam (power/cm2) and re is the classical radius of the electron, 

2262 10.90.7 cmre
−= . For small scattering angles 12cos2 ≈θ  so as the scattering intensity per electron 

is simply given by 
 
                                                      2

0)2( ee rII =θ                                                                   (2) 
 
If a crystal monochromator is inserted in the beam path, the X-ray beam becomes partially 

polarized and Eq (1) does not longer hold but, at small angles, Eq. (2) remains still valid as a good 
approximation. 

In addition to the coherent or elastic X-ray scattering, the electrons also produce inelastic Compton 
scattering. Compton scattering being incoherent (i. e. no phase relationship exists between incident and 
scattered waves), the scattered waves do not interfere and thus the scattering intensity is not modulated 
by structure correlation effects. On the other hand, since the intensity of Compton scattering within the 
small-angle range is weak, its contribution can in practice be neglected. 

As the scattering intensity per electron, Ie, will later appear in all the equations defining the 
scattering intensity produced by materials, it will be omitted for brevity.  

 
2.2 General equations. 
The scattering amplitude and intensity related to the elastic interaction between a narrow 

monochromatic X-ray beam – with a wavelength λ - and an arbitrary material are functions of the 
scattering vector q , which is usually defined as the difference between the wave-vectors Q  and 0Q  - 
both with modulus equal to  λπ2  - having the directions of the scattered and incident beam, 
respectively (Fig. 3). Since Q  and 0Q  are proportional to the linear momentum of the scattered and 

incident photons ( Qhp = , h being the Plank constant), respectively, the difference 0QQq −=  is 
proportional to the photon momentum transfer, qhp =∆ , associated to the photon scattering process. As 
illustrated in Fig. 3, the modulus of q  is 4π sin θ/λ, θ being half the scattering angle. 

                      
 
Fig. 3: X-ray beam paths from the source to the detector, both elements located far away from the 

sample. The segment BCAB +  is the optical  path difference from which the phase shift is determined. 
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The basic theory of X-ray scattering by a 3D material whose structure is defined by an electron 
density function )(rρ  will be presented. The electron density function may represent the high 
resolution structure – including its successive more or less high peaks corresponding to single atoms of 
different types - or  only the low resolution structure – exclusively accounting for the nanometric 
features of the material. A low resolution electron density function describes, for example, the shape 
and size of nano-precipitates embedded in a solid or liquid matrix but not their detailed 
crystallographic structure.  

The amplitude of the X-ray wavelet produced by the scattering of the electrons located inside a 
particular volume element dv  is  

 
                                        ϕρ ∆= i

e edvrAqdA .)()(                                                        (3)   
                                

where Ae is the amplitude of the wavelet scattered by one electron and dvr )(ρ  is the number of 
electrons in the volume element dv .  dvrAe )(ρ  is the modulus of the amplitude of the scattered 
wavelet and ϕ∆ie is a phase factor that accounts for the phase difference, ϕ∆ , between the wavelets 
associated to the scattering by electrons in a volume element located at 0=r  and in another arbitrary 
volume element dv . The amplitude eA  will be set equal to 1 in the following equations for brevity. 

The optical path difference, ∆s, associated with two wavelets corresponding to the X-ray scattering 
by electrons inside a volume element at 0=r and another at r (Fig. 3) is  

 
).ˆ.ˆ( 0 rQrQBCABs −−=+=∆                                                   (4) 

 
where 0Q̂ and Q̂  are unit vectors in the directions defined by 0Q  and Q , respectively. Thus the phase 
shift defined as λπϕ s∆=∆ 2  becomes  

 

                   rqrQQrQQ .).().ˆˆ(2 0
0 −=−−=

−
−=∆

λ
πϕ                                       (5) 

 

Substituting ϕ∆  in Eq. (3) and integrating over the whole volume V, the total scattering amplitude 
(setting eA =1) is given by 

 
                                                dverqA rqi

V

.).()( −∫= ρ                             (6) 

 
This is the amplitude of the scattered waves under the assumptions of the kinematical theory of X-

ray scattering disregarding multiple scattering and absorption effects [1]. Eq. (6) indicates that )(qA  
simply is the Fourier transform of the electron density )(rρ . The amplitude )(qA is defined in the 
reciprocal or Fourier space ( q  space) and is a complex function, i. e. its value is specified by the real 
and imaginary parts or, alternatively, but the modulus and phase. 

Inversely, the electron density )(rρ can mathematically be obtained by a Fourier transformation of 
the amplitude function )(qA : 
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Taking into account the mathematical properties of the Fourier transformation, we know that the 
electron density, )(rρ , defining the high-resolution material structure (i. e. the atomic configuration), 
can only be determined if the complex function )(qA  (modulus and phase) is known over a large 
volume in q  space. On the other hand, if the amplitude )(qA is known only within a rather small 
volume in q  space close to q =0, Eq (7) yields the low-resolution features of the structure.  

Nevertheless, a fundamental difficulty arises in the analysis of the results of scattering experiments 
because the X-ray detectors count photons, i.e. what is experimentally determined is the scattering 
intensity )(qI  and not the complex amplitude )(qA . Since  2* )()().()( qAqAqAqI == , the square 
root of the measured )(qI  function provides only the modulus of the scattering amplitude: 

 
                                                       [ ] 2/1)()( qIqA =                                                      (8)   
   
Thus Eq. (7)  cannot be directly applied to derive neither the electron density function )(rρ  and, 

consequently, nor the material structure. This is the known phase problem that crystallographers and 
materials scientists always face when they try to determine the detailed material structure from the 
results of  X-ray scattering experiments. 

A procedure that can be applied to determine simple low resolution structures, circumventing the 
phase problem, is to begin with a proposed structure model providing an initial, guessed, electron 
density function )(rρ . The scattering amplitude is determined using Eqs. (6) and then the trial intensity 

2)()( qAqI = is compared to the experimental intensity. The use of ad-hoc iterative computer packages 
allows for many and fast modifications of the structure model, until a good fit of the calculated 
function to the experimental curve is achieved. This procedure is currently applied to the determination 
of the low-resolution structure (envelope function) of proteins in solution. 

Another procedure that is often applied to the study of materials transformations starts from the 
theoretical calculation of the scattering functions I(q) that are predicted from basic thermodynamic or 
statistical models and is followed by their direct comparison with the experimental results. This 
procedure is generally applied to verify the correctness of newly proposed theoretical models for 
different structural transformations. This topic will be discussed in section 7. 

Since the amplitude of the scattered wave, )(qA , cannot be experimentally determined, it seems 
that it would be useful to deduce a relationship connecting the scattered intensity defined in reciprocal 
space, )(qI , to a function related to the structure in real space, both functions related by a Fourier 
transformation.  

The electron density )(rρ  can be written as the sum of an average density ρa and its local 
deviations defined by )(rρ∆ :   

 
                                                            )()( rr a ρρρ ∆+=     (9) 
 

Substituting this form for )(rρ  in Eq. (6) the scattering amplitude becomes 
 

                                              ∆+= ∫∫ −− dverdve
V

rqirqi

V a
.. )()qA( ρρ    (10) 

 
For a macroscopic sample (with a very large volume compared to the X-ray wavelength), the first 

integral yields non-zero values only over an extremely small q range, close to q=0, that is not reached 
in typical SAXS experiments. Thus the scattering amplitude )(qA over the accessible q  range is given 
by 
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V
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so as  the scattering intensity )(qI becomes 

 
                                 21

).(
21 .).().()( 21 dvdverrqI rrqi

V V

−−∆∆= ∫ ∫ ρρ    (12) 

 
Making rrr =− 21 ,  Eq. (12) can be written as 

 
 

dvdverrrqI rqi

V V
2

.
22 ).().()( −∆+∆= ∫ ∫ ρρ     (13) 

 
or 

    dverVqI rqi

V

.)()( −∫= γ      (14) 

 
where 

 

)´(´).(´).´(.´)(1)(
'

rrrdvrrr
V

r
V

+∆∆=+∆∆= ∫ ρρρργ                        (15) 

 
the bar indicating the average over the analyzed sample volume (*). 

The function γ( r )  - named correlation function [2] - is the volume average of the product of 
( )rρ∆  in two volume elements dv located at 1r  and 2r  connected by a vector r . The function γ( r ) can 

directly be determined from an experimental scattering intensity function I( q ) by a Fourier 
transformation: 

 

( ) q
rqi dveqI

V
r ∫= .

3 ).(
2

1)(
π

γ      (16) 

 
 The correlation function γ( r ) is related to the structure (i. e. to the  )(rρ  electron density 

function) and can easily be determined, provided )(rρ  is known, by applying Eq. (15). But, inversely, 
from a known γ( r ) function, )(rρ  cannot generally  be unambiguously inferred. 

 
2.3. Small-angle scattering by a macroscopically isotropic system 
In the particular case of a isotropic system, the correlation function is independent of the direction 

of the vector r , i. e.  )(rγ  can be written as )(rγ  . Consequently, the scattering intensity is also 
isotropic. In this case the function rqie .− is replaced in Eq. (14) by its  spherical average <  >: 

 

                                                    
qr

qre rqi sin. =−      (17) 

 
______________ 

(*) Three types of averages will be mentioned along this chapter, (i) )(rf : spatial average over the 
whole object or irradiated sample volume ; (ii) < )(rf >:  angular average for all object orientations; 
and (iii) {f(R)}: average over the radius distribution  for spherical objects.   
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Thus, for isotropic systems, Eq. (14) becomes 
 

      dr
rq

rsinqrrVqI
.

.)(4)(
0

2γπ∫
∞

=      (18) 

 
and Eq. (15) is given by 

 

dq
rq

rsinqqIq
V

r
.

.)(4
)2(

1)(
0

2
3 ∫

∞
= π

π
γ       (19) 

 
From Eq. (15) the correlation function for r=0 is  

 
2)().(.)(1)0( rdvrr

V V
ρρργ ∆=∆∆= ∫                 (20) 

 
so as implying that )0(γ  is equal to the spatial average of the square electron density fluctuations over 
the whole volume. Taking in Eq. (19) the limit for r→0, we have sin(qr)/qr→1  and thus the integral of 
the scattering intensity in reciprocal space dqqIqQ )(4

0

2∫
∞

= π  becomes equal to  ( )0)2( 3 γπ V . From 

Eq. (19) and (20) one finds that )0(γ , Q and 2)(rρ∆ are related by 
 

Q
V3)2(

1)0(
π

γ = = 2)(rρ∆     (21) 

 
Thus, the integral of the scattering intensity in reciprocal space, Q, is proportional to the spatial average 
of the square electron density fluctuations over the whole sample volume 2)(rρ∆ . 
 
 
3. Small-angle scattering by a isotropic two-electron density structure  

 
3.1 The characteristic function 
The X-ray scattering by isotropic nanostructured systems composed of two well-defined 

homogeneous phases will now be described. The volume fractions of the two phases are defined by  φ1  
and φ2 and the constant electron density within each of them by  ρ1  and  ρ2, respectively (Fig. 4a and 
4b). The correlation function γ(r) for a isotropic two-electron density model can be expressed as  [2, 3] 

 
( ) )()( 0

2
2121 rr γρρϕϕγ −=      (22) 

 
where )(0 rγ is a isotropic function - named as characteristic function - that only depends on the 
geometrical configuration  of the two-phases.  

The characteristic function )(0 rγ  has a precise meaning for the particular case of a single isolated 
nano-object (that may be anisotropic) with a volume V. In this case )(0 rγ is  

 

                                                      
V

rVr )(~
)(0 =γ                              (23) 
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Fig. 4: Schematic examples of two-electron density systems. (a) A set of isolated objects with a 

constant electron density embedded in a homogeneous matrix. (b) Continuous and interconnected 
phases, both with a constant electron density. 

 
 

)(~ rV  being the volume common to the nano-object and its “ghost” displaced  by a vector r , as 
illustrated in Fig. 5.   If the system is composed of many isolated nano-objects with random 
orientations, the isotropic characteristic function  is given by )()( 00 rr γγ = . 
 
 

                                                                
 

Fig. 5: Colloidal particle and its “ghost” displaced by a vector r . 
 

Taking into account Eq. (22), Eqs. (18) and (19) can, respectively,  be rewritten as 
 

( ) dr
rq

rsinqrrVqI
.

.)(4)( 00

22
2121 γπρρϕϕ ∫

∞
−=     (24) 

and  
 

( )
dq

qr
rsinqqIq

V
r ∫

∞

−
=

0

2
2

2121
30

.)(4
)2(

1)( π
ρρϕϕπ

γ    (25) 

 
The characteristic function )(0 rγ can be defined for any type of two-density systems including 

those with bicontinuous geometries. It can be demonstrated that )(0 rγ  exhibits a asymptotic behavior 
within the small r range - that is independent of the detailed configuration of the interfaces - given b [1] 

 

    (a)                                                        (b)             

r

)(~ rV
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                                                  ...
4

1)(
21

0 +−= rVSr
ϕϕ

γ                  r→0    (26) 

 
where S is the total interface area of the two-density system within the sample volume V. 

 

3.2. The integral of the scattering intensity in reciprocal space 
From the expression for γ0(r) (Eq. 25) for r=0 and taking into account that γ0(0)= 1 (Eq. 26),  the 

integral of the scattering intensity in reciprocal space, Q,  can be written as 
 

( )2
2121

3

0

2 )2()(4 ρρϕϕππ −== ∫
∞

VdqqIqQ     (27) 

 
Thus the integral Q only depends on the electron density contrast factor ( )2

21 ρρ −  and on the volume 
fractions occupied by both phases, but not on their detailed geometrical configuration. For example, in 
structural transformations that maintain constant the electron densities and the volume fractions of both 
phases, even thought the structure and, consequently, the shape of the scattering intensity curves vary, 
the integral Q remains constant. The integral Q (or Q/4π) is often named as Porod invariant. Examples 
of transformations that occur without significantly affecting the value of the integral Q are the 
processes of growth of nano-clusters by coarsening or coalescence.  
 

3.3. Asymptotic behavior of scattering curves at high q. Porod law 
The general properties of Fourier analysis tell us that the asymptotic trend, at high q, of the 

scattering intensity I(q) is connected to the behavior of the γ(r) function at small r. Taking into account 
Eq. (26), the correlation function γ(r) can be approximated at small r by 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= r

V
Sr

21

2
2121 4

1)(
ϕϕ

ρρϕϕγ       (28) 

 
This relation implies that the value of the first derivative of γ(r) at r=0 is    

 

                                                ( )
V
S

4
)0(' 2

21 ρργ −−=                                                   (29) 

 
Moreover, Eq. (18) can be rewritten as 

  

                                            drqrr
dq
d

q
VqI )cos()(4)(

0
γπ

∫
∞

−=                         (30) 

 
A first integration by parts of the integral in Eq. (30) yields 

 

                drqrsinr
qq

qrsinrdrqrr
r

)().('1)()()cos()(
0

0
0

γγγ ∫∫
∞

∞

=

∞
−=                      (31) 

 
Since γ(r)→0 as r→∞ and sin(qr)→0 as r→0, the first term is equal to zero. The remaining one can be 
written as  
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drqrr
qq

drqrr
qq

qrrdrqrsinr
q r

)cos()("1)0(')cos()("1)cos()(')().('1
02202020 | γγγγγ ∫∫∫
∞∞∞

=

∞
−−=−=−   

(32) 
 
In Eq. (32), provided γ’’(r) is a continuous function, the second term decreases for q→∞ faster than 

the first one. It has been shown that this condition is always fulfilled unless the interface surface 
contains portions that are each other parallel, as it happens in the case of spheres and cylinders [4]. 
Assuming this condition is met,  Eq. 30 becomes  

 

                               42

)0('8)0('4)(
qqdq

d
q

qI πγγπ
−=⎥

⎦

⎤
⎢
⎣

⎡
−−=                          (33) 

 
and, reminding that γ′(0) is given by Eq. (29),  the asymptotic behavior of  I(q) is given  by  

 

                                   ( )
4

2
21 .2)(

q
SqI ρρπ −

=          q→∞    (34) 

 
Eq. (34), named as Porod law, holds for most types of isotropic two-electron density systems with 

sharp interfaces. This equation is often applied to the study of disordered porous materials and to other 
two-phase systems whose relevant structure feature is the surface area.  

The behavior of I(q) at high q is analyzed using a Porod plot (I(q)q4 versus q4) that is expected to 
be asymptotically constant. This plot allows one to determine (i) the asymptotic value of I(q)q4 and, 
from it, the interface surface area and (ii) eventual positive or negative deviations from Porod law. 
Density fluctuations in the phases produce a deviation of Porod’s law evidenced by a positive slope of 
the linear part of Porod’ s plots and a smooth (not sharp) transition in the electron density between the 
two phases leads to a negative slope [5]. 

The determination of the interface surface area using Eq. (34) requires the measurement of the 
scattering intensity in absolute units (section 8.2.3). If the scattering intensity is only known in relative 
scale, it is still possible to obtain the surface area using together Porod’ s law (Eq. 34) and the Porod 
invariant (Eq. 27). The surface area  per unit volume is then determined from 

  

                                         
Q
qqI

V
S q ∞→=

])([
4

4

21
2 ϕϕπ      (35) 

 
For the very particular case of identical spherical or cylindrical nano-objects, the oscillations 

remain, even for very high q values. In these cases, the Porod plot asymptotically show undamped 
oscillations superposed to a constant plateau. From the features of such oscillations, it is possible to 
determine the distance between the parallel portions of the interface [4]. However, if the spherical or 
cylindrical nano-objects exhibit a wide size distribution, the mentioned oscillations smear out.  

For anisotropic two-electron density systems, Ciccariello et al. [6] demonstrated that the Porod law 
still holds along all q directions but, in this case, the parameter S (Eq. 34 and 35) has a different 
meaning. Porod’ s law applies to either, dilute or concentrated systems of isolated nano-objects, 
provided they are not very thin sheets or very narrow cylinders; in these particular cases the asymptotic 
intensity is proportional to 1/q2 and 1/q, respectively  [7]. 
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4. Small-angle scattering of a dilute system of isolated nano-objects. 
General equations 

4.1 The characteristic function for a single isolated object 
In the particular case of a dilute and isotropic system composed of a large number, N, of randomly 

oriented and isolated  nano-objects, all having the same shape and size, the total intensity is 
 

∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
==

N

i

N

i
ii qI

N
NqIqI

1 1
11 )]([1)]([)(    (36) 

 
The intensity I(q) is N times the individual intensity )(1 qI produced by one nano-object of volume V1 
averaged for all orientations: 

 
)()( 1 qINqI =     (37) 

 
 Thus one can derive the scattering intensity, <I1(q)>, from the characteristic function for a single 

object averaged for all orientations, )()( 00 rr γγ = , both functions being connected through a Fourier 
transformation (Eq. 19). The spherically averaged characteristic function, )(0 rγ , for a single isolated 
and homogeneous object with an electron density ρ1 embedded in an also homogeneous matrix with a 
density ρ0, has the following properties [1]: 

i) It can be expressed as  
 
                           ( )( )[ ]2

0110 )()( ρργγ −= VVNrr                                          (38) 
 
ii)  It is a positive and decreasing function. 
iii) The asymptotic behavior at low r can be approximated by  
 

( )rVSr 110 41)( −=γ                                        (39) 
 
where S1 and V1 are the object surface area and volume, respectively. 
iii) γ0(r)=0  for   r>Dmax,  Dmax being the maximum diameter of the scattering object.  

iv) The volume integral of γ0(r) is 1
0

0
2

max

.4 Vdrr
D

=∫ γπ  

 v) The scattering intensity is given by 
 

    ( ) ∫−==
max

0
0

2
1

2
0111 .

.)(4)()(
D

dr
rq

rsinqrrVqIqI γπρρ    (40) 

 
The properties of γ0(r) for a spherically averaged single object, listed above, were derived from the 

general characteristics of the γ0(r) function for arbitrary isotropic two-electron density systems (section 
3), assuming the basic conditions inherent to an isolated nano-object immersed in a macroscopic 
volume, namely φ1=NV1/V and φ2≈1. 

 
4.2. Scattering intensity at q=0 
From Eq. (40) and taking into account the property (iv) mentioned in the preceding section, the 

extrapolated value to q=0 of the scattering intensity produced by a single nano-object and by a dilute 
set of N identical objects are, respectively, given by 
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( ) 2

1
2

011 )0( VI ρρ −=     (a)                     ( ) 2
1

2
01)0( VNI ρρ −=     (b)         (41) 

 
The differences in the X-ray path length in the forward scattering direction (q=0), associated to the 

wavelets scattered by each electron inside a nano-object, is zero. Consequently, all of them scatter in 
phase so that the amplitude is nA ∆=)0(1 , ∆n being the excess in electron number inside the objects 
with respect to the matrix. Thus the scattering intensity results I1(0)=[A1(0)]2=∆n2 which is equivalent 
to Eq. (41a).  

The invariant Q (Eq. 27), for a dilute set of nano-objects of same size and shape, becomes 
( ) 1

2
01

38 VNQ ρρπ −= . Thus the volume V1 can be derived, regardless the object shape, from the 
quotient I(0)/Q as follows 

 

Q
IV )0(8 3

1 π=       (42) 

 
 
4.3. Asymptotic trend of the scattering intensity at small q. Guinier law  
4.3.1. Dilute and monodispersed set of identical nano-objects 
The scattering intensity produced by a dilute set of N identical and randomly oriented nano-objects 

is N times the intensity scattered by one object averaged for all orientations, )(1 qI , (Eq. 40) so that 
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2
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2
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D
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qr
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The qrqrsin  factor in Eq. (43) can be substituted, for small q, by its approximated form 
( ) ( ) ...61sin 22 +−= rqqrqr . Keeping only the two first terms of the series, Eq. (43) becomes 
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Eq. (44) can be rewritten as 
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where   
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Rg being the radius if gyration with respect to the “center of mass” of the electron density function that 
is defined for a homogeneous object as     
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Since the parabolic shape of I(q) within the small q range (Eq. 45) is also described by the first two 

terms of the series representing a Gaussian function,  the scattering intensity in the limit of small q can 
be written  as 

 

     ( ) 32
1

2
01

22

.)(
qRg

eVNqI
−

−= ρρ     (48) 
 
that is the well-known Guinier law [8]. Guinier plots of the scattering intensity (log I versus q2) are 

commonly used in order to derive the radius of gyration Rg from the slope of the straight line that is 
experimentally observed within a more or less wide q range at small q. This linear plot is also used to 
determine extrapolated scattering intensity I(0).  

Guinier law also holds for dilute sets of objects with arbitrary and variable electron density ρ( r ) 
embedded in a homogeneous matrix with density ρ0. In this case the radius of gyration Rg is defined as 
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The radius of gyration of a homogeneous and spherical object is related to its radius R 

by RRg 53= . In the case of a cylinder with radius R and height H, the radius of gyration is given by 

( ) ( )12/8/ 22 HDRg += .  
We will now focus the features of the small-angle X-ray scattering produced by a two-electron 

density system composed of a set of N spatially uncorrelated and anisotropic objects, all of them with a 
common orientation. For this system the scattering is obviously anisotropic so as the intensity function 
depends on the direction of the vector q . In the limit of small q , Guinier law becomes [8] 

 
                                    ( ) 22 .2

1
2

011 )( DD qR
D eVNqI −−= ρρ       (50) 

 
where qD refers to the direction along which the scattering intensity is measured and RD is the average 
inertia distance from a plane containing the center of “mass” of the electron density function, along the 
qD direction. RD is so defined as 

 
22

1

.1

1

D
V

DD rdvr
V

R == ∫                                              (51) 

 
The features of the small-angle scattering intensity function corresponding to a dilute set of highly 

anisotropic objects with the same orientation are schematically illustrated in Fig. 6.  
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Fig. 6: (a) Schematic setup for a 2D recording of the scattering intensity. The nano-object is a long 
ellipsoid with its major axis along the y direction. (b) Iso-intensity lines indicating a anisotropic 
scattering intensity growing toward the origin. (c) and (d) Schematic Guinier plots along the directions 
x and y, respectively. 

 
 
Fig 6a displays the geometry of the setup for the determination of the scattering intensity in two 

dimensions using a 2D gas detector or an image plate. A long nano-object (Fig. 6a) yields a anisotropic 
scattering pattern whose main features are shown in Fig 6b. The inertia distances along two 
perpendicular directions, parallel to axes qx and qy (Fig. 6b), can be determined using Guinier plots 
(Fig 6c and 6d, respectively). A rotation of the object of 90 degrees around the y axis allows for the 
derivation of the inertia distance along the third perpendicular direction. 

 
4.3.2. Dilute and isotropic system composed of very anisotropic nano-objects 
For a dilute set of very elongated cylinders with a nanometric radius R and for large and very thin 

platelets with a thickness T, Eq. (48) only applies within a small range, at very low q, that is not in 
practice attained in typical SAXS experiments. For very long and thin cylinders the function that 
exhibits a Gaussian q-dependence within the accessible small q-range is qI(q) [1,7,8]:  

                                                             

                                                   
22

2
1

)(
qRceqqI

−
∝                                     (52) 

 
where Rc is the radius of gyration of the circular section, 2/RRc = . On the other hand, for very thin 
platelets with a nanometric thickness T and large lateral dimensions, the function that obeys a Guinier-
type q dependence at small q is: 

 
                                                

22

)(2 qRteqIq −∝                                         (53) 
 

with 12/TRt = .  
 
4.3.3. Dilute and isotropic system of polydispersed  nano-objects  
A dilute and isotropic system composed of nano-objects with a distribution of radii of gyration 

defined by N(Rg) yields a total scattering intensity I(q), at small q, given by the sum of the individual 
contributions of each of them  (Eq. 48): 
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Substituting the Gaussian function ( )3exp 22qRg− , that is valid for small q by the parabolic function 

( )31 22qRg− , Eq. (54) can be rewritten as 
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or again 
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where { }2
1V  is the average value  of 2

1V given by  
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and {Rg}G is a weighted average value of Rg (named Guinier average) defined by 
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{ }

GgR  is an average that weight much more the large objects than small ones. For the simple case of a 
polydisperse set of spherical nano-objects, Eq. 58 becomes 
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Guinier law (Eq. 56) is in practice applied to dilute sets of polydisperse nano-objects only when the 
size distribution has a moderate width. For very polydisperse systems, the q-range over which Guinier 
law holds is very small. On the other hand, Guinier plots yield in this case an average radius of 
gyration far from the arithmetic average and strongly biased towards those of the biggest objects. This 
effect is schematically illustrated for spherical objects in Fig. 7. Radius distributions with the same 
average but with different widths (Fig. 7a) lead to different Guinier average radius. On the other hand, 
the extrapolated intensity I(0) for a polydisperse system, being proportional to the average { }2

1V , also 
depends on the detailed shape of the size distribution function. Both effects are schematically 
illustrated in Fig. 7b.  
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Fig. 7: (a) Narrow, N1(R), and wide, N2(R), radius distribution functions for spheres, both with the 

same radius average {R}. The {R}G arrow indicates the Guinier radius average corresponding to the 
wide distribution N2(R). (b) Schematic Guinier plots corresponding to the radius distributions N1(R) 
and N2(R). The magnitude of the slope of the linear part, at small q, and the extrapolated intensity I(0)  
for N2(R) are larger than for N1(R). 

 
 
5.  Small-angle scattering by a dilute system of nano-objects of simple 

geometry 
The scattering intensity produced by two types of nanostructured materials consisting of a dilute set 

of colloidal particles embedded in a homogeneous matrix will be discussed in this section. These 
systems are  (i) nano-objects of constant electron density ρ1 embedded in a matrix with a constant 
density ρ0 and (ii) nano-objects with a centro-symmetrical electron density, defined by its density 
function ( )rρ , also embedded in a homogeneous matrix of electron density ρ0.  

 
5.1. Homogeneous spherical nano-objects embedded in a homogeneous matrix 
The total scattering intensity produced by a dilute set of N identical homogeneous objects with 

electron density ρ1 embedded in a homogeneous matrix with density ρ0 is N times the scattering 
intensity produced by each nano-object (Eq. 40). In the particular simple case of a isolated spherical 
nano-object with radius R,  the characteristic function γ0 is given by [1, 8] : 
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and thus the  scattering intensity per nano-object, I1(q) (Eq. 40),  becomes 
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with  Dmax=2R. Solving the integral of Eq. (61), I1(q) becomes 
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Instead of starting from the characteristic function γ0(r), as described above, the scattering intensity 

produced by a single sphere can be alternatively derived from the amplitude A1(q) as follows 
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qr
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Since the integral in Eq. (64) is equal to ( ) ( )qR Φ334π , the same result as Eq. (62) follows. 

Intensity functions predicted by Eq. (62) or 64 are plotted in Fig. 8 for two sphere radii, namely 
R1=22 Ǻ and R2=28 Ǻ. As expected, the intensity I(0) (being proportional to 6R ) is higher for the 
larger sphere.  At small q the intensity functions satisfies Guinier law (inset in Fig. 8), the radius of the 
spheres being related to their radius of gyration by ( ) gRR 2/135= . At high q the intensity functions 
exhibit several maxima and zeros, the zeros being located at qR=4.52, 7.54, 10.87,... These oscillations 
were actually observed in a number of experimental SAXS studies of monodisperse or nearly 
monodisperse systems such as, for example, for nano-composites consisting of spherical PbTe nano-
crystals embedded in a homogeneous matrix [9] that will be described in section 5.5.1. 

 

                    
 
Fig. 8: Scattering intensity curves corresponding to identical spherical objects with radius R=22 Å 

(---) and 28 Å (___). Both curves are multiplied x 50 for q>0.15 Å-1 in order to clearly display the 
secondary maxima. Inset: Guinier plots of both curves. 
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5.2. Isotropic system of polydisperse nano-objects with simple shapes  
The scattering intensity function related to a dilute set of N spherical nano-objects with a radius 

distribution defined by N(R) – schematically illustrated for two particular cases in Fig. 9 a and b - is 
calculated by solving the following equation 

 
dRRqIRNqI ),().()( 1∫=     (65) 

where N(R)dR is the number of spheres with a radius between R and R+dR ( NdRRN =∫ )( ), and 
I1(q,R) is the scattering intensity produced by an isolated sphere (Eq. 62). Thus the total scattering 
intensity is  
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Fig. 9: Schematic views of a system composed of a dilute set of (a) monodisperse and (b) 

polydisperse spherical nano-objects. (c) Scattering intensities corresponding to three samples 
containing spherical objects with the same average radius {R}=40 Å and a Gaussian distribution with 
three different standard deviations: σ = 0 (____), σ = 10 (-----)  and  σ= 25 Å (……). 
 
 

In Fig. 9c the scattering intensity curves related to three sets of spherical objects with Gaussian 
radius distributions, with the same average  radius {R}=40 Å, are plotted. The standard deviations of 
the three Gaussians are σ=0 Å, 10 Å  and 25 Å, respectively. For the polydisperse sets of spheres (σ=10 
and 25Å) the secondary maxima and zeros, exhibited by the set of identical spheres (σ=0), smear out. 
On the other hand, the intensity I(0), being proportional to {R6} (Eq. 56) is, as expected,  higher for 
larger σ values. 
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The issue generally addressed by materials scientists is the derivation of the radius distribution 
N(R) from the measured I(q) functions. A package named GNOM, developed by D. Svergun and 
collaborators [10], numerically solves the integral equation connecting I(q) and N(R) (Eq. 66). The 
output of GNOM program yields the volume distribution function, D(R), related to N(R) for spheres by 

 

)(.
3

4)( 3 RNRRD π
=     (67) 

 
The GNOM package can be applied to determine the volume distribution function of other types of 

nano-objects with simple shapes. The intensity function I1(q) related to objects of complex shapes can 
be independently determined and used as an input file. In all these cases, provided the system is dilute 
and all nano-objects have the same shape, the output yields the volume distribution function. Other 
programs that also solve Eq. (66) were developed. 
 

5.3. Heterogenous isotropic nano-objects 
The small angle X-ray scattering by a centro-symmetrical nano-object, embedded in a matrix with a 

constant density ρ0, will now be focused. Since the electron density of this object only depends on the 
modulus of the position vector, the SAXS intensity can be written, analogously to Eq. (64), as 
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where R is the radius corresponding to the external boundary of the nano-object 

 For an electron density ρ(r) modeled by a multi-step function,  Eq. (68) has a simple solution.  In 
the case of n steps defining different shells with densities ρi,  it becomes  
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with ρn+1=ρ0, ρ0 being the electron density of the matrix, or of the solvent in case of colloidal particles 
immersed in a liquid. The integral in Eq. (69) is equal to the function Φ(q) given by Eq (63) so as 
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Eq. (70) has been applied to an investigation aiming at modeling the scattering intensity produced 

by a dilute set of spherical PbTe nano-crystals embedded in a silicate glass during the early stages of  
nucleation and growth. For this simple two-step model (Fig 10a) the intensity I1(q) is given by 
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The scattering intensity function I1(q) and the two partial amplitudes between brackets, A1(q)  and 
A2(q),  are plotted in Fig. 10b. Since ρ1> ρ2 and ρ2 < ρ0, A1(q)  and A2(q)  are in opposite phase. 
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Fig. 10: (a) The solid line represents the electron density as a function of the radius for a simple 

isotropic two-step model of a spherical nano-object surrounded by a depleted shell. The dashed line 
corresponds to a more realistic model for the density profile inside the depleted shell around the 
spherical object. (b) Schematic scattering intensity under Guinier approximation, I(q), produced by the 
two-step model defined in Fig 10a. Scattering amplitudes associated with the nano-object (A1) and with 
the depleted shell (A2). The curve A is the sum of both amplitudes. 

 
 

The different parameters in Eq. 70 or 71 are determined by non-linear fitting procedures. In the 
case in which the shell with an electron density ρ2 corresponds to the depleted zone produced by up-hill 
migration of atoms from the matrix toward segregated spherical clusters, the following relations are 
obeyed: 
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Eqs. (72) implies that all atoms inside the central cluster came from the surrounding depleted shell so 
that the initial state corresponds to a homogeneous material. This approach was applied in order to 
characterize Guinier-Preston zones in Al-Ag alloys [11]. 

Simple smooth functions were also used to model the electron density of depleted shells around 
growing spherical nano-crystals embedded in a supersaturated solid solution. For a Gaussian profile 
characterized by a radius of gyration Rg much larger than R, the scattering intensity can be written as  
[12] 
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where )(qRΦ is given by Eq. (63).  

The model of spherically symmetric nano-objects, with a r-dependent electron density, was also 
successfully applied to studies of isotropic colloidal micelles composed of macromolecules, with 
hydrophilic head and hydrophobic tail, embedded in water.  

The functions I1(q) presented above also describe the q dependence of the scattering intensity 
produced by a dilute set of N identical nano-objects.  As it will be described in section 6, and similarly 
to the function plotted in Fig. 10c, scattering curves with a maximum at q≠0 are also observed for 
concentrated systems of simple colloidal particles, the peak in this case being a consequence of 
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interference effects produced by inter-particle spatial correlation or close packing. Therefore a peak 
eventually observed in an experimental scattering curve can safely be exclusively assigned to intra-
particle interference effects, as described in this section, only if the system is dilute.  

 
5.4. Polydispersed nano-objects with irregular shapes 
Dilute sets of nano-objects with different shapes and some polydispersivity yield a scattering 

intensity function with known asymptotic behaviours at small and high q. At small q, Guinier law 
applies and, at high q, Porod law holds for a variety of object geometries. A semi-empirical equation 
for the whole scattering intensity function that obeys both - Guinier and Porod - asymptotic trends was 
proposed by Beaucage [13]: 
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where  ( ) ]6/[ 32/1
gkqRerf
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The error function is a cut-off of the Porod regime for the low q range. The parameters G, B, k and 

P depend on the electron density contrast, size and shape of the objects. For simple two-electron 
density systems composed of globular nano-objects (nor flat disk neither thin cylinders) these 
parameters are: ( ) 2
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     The semi-empirical Eq. (74) can also be applied to dilute sets of other more complex objects 

such as fractals, polymers and low dimensional objects (such as flat disks and narrow cylinders). For 
these systems, Eq. (74) also holds, but in these cases the set of parameters G, B, P and k are defined 
from the particular features of the proposed models or experimentally determined by adequate fitting 
procedures [13]. 
 

5.5  Examples of structure characterization of dilute systems of isolated objects 
embedded in a homogeneous matrix. 

5.5.1 Spherical nano-objects with approximately same size. Growth of PbTe nano-crystals 
embedded in a silicate glass  

Many investigations demonstrated that SAXS is a useful technique for the study of the process of 
formation of nano-crystals or liquid nano-droplets in a homogeneous matrix. For systems containing 
spherical nano-objects with a high contrast in electron density (e. g. metal nano-crystals in glass), the 
experimental results generally provide a precise characterization.  

A SAXS study of a particular system composed of PbTe nanocrystals embedded in a silicate glass 
[9] will be now described. This nano-material exhibits interesting non-linear optical properties in the 
infrared making it potentially useful for applications to telecommunication devices. An initially 
homogeneous silicate glass, doped at high temperature with Pb and Te, was quenched and then 
submitted to an isothermal annealing at 650C. The initially isolated Pb and Te species diffuse through 
the supersaturated glass and nucleate PbTe nanocrystals which progressively grow. In the meantime a 
set of SAXS intensity curves were successively recorded.  

The experimental results, displayed in Fig.11, indicate that the SAXS intensity progressively 
increases for increasing annealing time. At high q, the curves exhibit an oscillation and a secondary 
maximum that are characteristic of a set of spheres of nearly identical size. This maximum 
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progressively shifts towards smaller q as expected for growing nano-spheres. The position and 
intensity of the observed secondary maximum are consistent with the theoretical prediction (Eq. 62). 
We can notice that the secondary maximum is not clearly apparent in the early stages of crystal growth 
because of the high statistical dispersion in scattering intensities at high q. The positive deviation of the 
experimental points from the theoretical model at very small q indicates the existence of rather large 
heterogeneities of the electron density in the glass matrix. 

 
 

                     
Fig 11: PbTe nano-crystals embedded in a homogeneous silicate glass. Scattering intensity curves 

corresponding to a dilute set of spherical PbTe nano-crystals during isothermal growth (T=650C) [9]. 
The continuous line is the best fit of Eq. (66) using a Gaussian N(R) function with a time varying 
radius average and a constant relative standard deviation [σ /{R}] =0.08. The curves were vertically 
displaced for clarity  

 
The curves displayed in Fig 11 were fitted using Eq. 66, which applies to a dilute set of spherical 

objects, assuming a time-varying average nano-crystal radius and a Gaussian radius distribution, N(R), 
with a time-independent relative standard deviation σ/{R}= 0.08.   For an annealing time of  2 hours 
the best fit lead to {R}=32.5 Å and σ=2.6 Å. Finally, it was demonstrated that the time dependence of 
the average radius {R} agrees with the prediction of the classical theory of nucleation and growth of 
spherical precipitates in a homogeneous matrix. 

 
5.5.2 Spheroidal nano-objects with a time-varying size distribution. First stages of the 

aggregation of colloidal ZnO clusters in a liquid suspension 
 Powders composed of ZnO nano-particles obtained by the sol-gel route are used as precursors 

for the development of materials with interesting properties. The first step of sol-gel processing leading 
to ZnO nano-particles is the formation of a liquid suspension of zinc acetate in ethanol in which LiOH 
is added under ultrasound treatment. Maintaining the solution inside a close cell at a constant 
temperature, the dissolved molecules start to aggregate, yielding colloidal particles of progressively 
increasing size.  Tokumoto et al [14] performed an in situ SAXS study in order to study the first steps 
of the aggregation process. The different experimental scattering functions obtained after increasing 
periods of time were analyzed assuming that the system is dilute and that the colloidal particles are 
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nearly spherical. In order to determine the radius distribution of the colloidal particles, the integral Eq. 
66 was solved by using the GNOM package [10].  

The mentioned numerical procedure was applied to all the recorded experimental scattering curves 
of the studied ZnO based suspension, corresponding to different periods of aggregation time, thus 
yielding the set of particle volume distribution functions D(R) (Eq. 67) plotted in Fig. 12. The shape of 
D(R) and its time variation demonstrated that the kinetics formation of the ZnO colloidal particles is 
characterized by two main stages. During the first one, a growing peak centered at R= 17 Å is 
apparent,indicating a continuous formation of small particles. The number of these olygomers 
increases monotonously for increasing reaction time, while their average size, {R}=17 Å, remains 
constant. In a second stage, the volume distribution function exhibits a still growing peak at 17 Å and 
the appearance and growth of a second one corresponding to an initial average particle radius {R}= 60 
Å.  The position of this peak shifts continuously toward higher R values up to 110 Å for a period of 
time of 2 hours. The described time variation of the volume distribution function clearly indicates the 
continuous formation of colloidal primary particles and their simultaneous aggregation and consequent 
growth.  

                                   
Fig 12: ZnO based colloidal suspensions. Time-dependent volume distribution functions D(R) of 

ZnO colloidal particles maintained inside a sealed cell during SAXS measurements [14]. The time 
increases from 10 up to 120 min. The volume functions were derived, using the GNOM package [10], 
from the set of experimental SAXS curves.  

 
 

6. Small-angle scattering of a concentrated set of nano-objects 
Many nano-materials consist of a concentrated set of isolated nano-phases embedded in a 

homogeneous matrix, e.g. colloidal sols (solid nano-clusters embedded in a liquid matrix) and nano-
hybrid materials (solid inorganic clusters embedded in a  solid polymeric matrix). Often these systems 
cannot be considered as dilute in the sense that the scattering intensity is not simply given by 
I(q)=N.I1(q) (Eq. 37) over the whole q range. It will be described in this section how to analyze SAXS 
results corresponding to materials whose structure can be described by simple models, namely (i) 
concentrated systems composed of isolated nano-objects with spherical shape and (ii) fractal structures 
built up by the aggregation of primary nano-objects in solid or liquid solutions. 
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6.1 The hard sphere model 
For a concentrated system of N of nano-objects Eq. (37), ><= )()( 1 qINqI , does no longer hold 

over the whole q range. In the case of simple isotropic systems consisting of centro-symmetrical and 
spatially correlated objects, it is possible decoupling the function defining the q dependence of the total 
scattered intensity I(q) in two terms: the intensity produced by an isolated object, I1(q) (often named as 
form factor) and the structure function, S(q), which accounts for interference effects between the 
elementary scattered wavelets. Thus the scattering intensity expected from this model can be written as 

 
)().(.)( 1 qSqINqI =      (76) 

 
Eq. (76) is rigorously obeyed only when the scattering system is composed of identical spheres (or 

more generally of centro-symmetrical objects) and can be used as a more or less good approximation 
for not too anisometric structure units. Obviously, for dilute systems, S(q)=1 holds over the whole q 
range.  

The structure function corresponding to a isotropic set of spherical objects, like those schematically 
shown in Fig. 13a and 13b, is given by  [8] 
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where Vp=V/N is the volume available per object and g(r) is a function  defined in such a way that 
4πr2dr.g(r)/Vp  yields the average number of nano-objects, N(r), at a distance between r and r+dr from 
an object located at the origin. From this definition, we notice that g(r) equal to 1 corresponds to a 
random spatial distribution. For a set of completely disordered objects (an “ideal gas”) g(r)=1 for all r. 
For any type of system with short-range correlation, g(r) tends to 1 in the high r limit. 
 
   

                                     
 

Fig. 13:  Schematic dilute (a) and concentrated (b) systems of hard spheres. (c) g(r) function for 
the hard sphere model. (d) Scattering intensity determined using Eq. (76) with S(q) defined by Eq.(78), 
for different quotients v1/vp starting from 0 (top) up to 0.05 (bottom). 
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In the simple case of a ideal solution of spherical nano-objects, in which the only correlation is a 

hard sphere interaction due to impenetrability, g(r) is a step function as shown in Fig. 13c. Substituting 
this function in Eq. (77) the structure function S(q)  results [8] 
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where V1 is the volume of the sphere, ( ) 3

1 3/4 RV π= , and Φ(q,R) is a function similar to  that already 
used to define the scattering amplitude  produced by spherical particles (Eq. 63): 
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The scattering intensity given by Eq. (76) with the structure function S(q) and the function Φ(q,R) 

defined by Eq. (78) and (79), respectively, are displayed in Fig. 13d for several ratios V1/Vp. This 
equation leads to physically acceptable results only for low concentrations. For example, for 
V1/Vp>0.12, the intensity becomes negative at very small q. This happens because the step function 
g(R) displayed in Fig. 13c does not apply for high values of the concentration factor (V1/Vp). These 
results indicate that the direct application of Guinier law (Eq. 48) to concentrated systems may lead to 
an apparent radius of gyration smaller than the real one. A general conclusion from this is that a linear 
behavior eventually observed in Guinier plots does not guarantee that Guinier law can safely be 
applied. In order to determine the average radius of gyration of concentrated nano-objets an equation 
including the structure function should be fitted to the whole scattering intensity curves. 

 
6.2 Spherical nano-objects embedded in a solid matrix 
A class of hybrid materials prepared by the sol-gel procedure are composed of inorganic nano-

clusters embedded in a polymeric matrix. The nanoheterogenous structure of these materials can be 
characterized using a simple two-electron density model consisting of high electron density clusters 
embedded in a homogeneous matrix [15]. Certainly, the polymeric phase exhibits electron density 
fluctuations at molecular level that produces small-angle scattering but its contribution to the total 
scattering intensity is assumed to be weak and/or not strongly varying with q. The basic assumption is 
that the dominant contribution to small angle scattering intensity comes from the electron density 
contrast between the rather heavy inorganic nano-clusters and the light polymeric matrix. 

A semi-empirical structure function that describes the spatial correlation of colloidal spherical 
objects, derived using the Born-Green approximation, is given by [8]   
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where k, named as packing factor, refers to the degree of correlation of the structure and d is the 
average distance between the spatially correlated nano-objects. The maximum value of k is expected 
for the closest packing of spheres (kmax= 5.92). The function Φ(q,d) is a defined as 
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Some examples of theoretical scattering functions, I(q), are displayed in Fig. 14a and 14b for 

different values of d and k. Increasing values of the packing factor k yield more pronounced and well-
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defined peaks. The q value corresponding to the maximum of the scattering curves, qmax, decreases for 
increasing average distances d. This last property justifies the semi-quantitative simple equation  

 

max

2
q

d π
=      (82) 

 
that is often applied in the literature in order to derive an estimate of the average distance between  
clusters.  
 

             
Fig. 14: Scattering intensity curves corresponding to different systems containing spatially 

correlated spheres. The spheres have all them the same radius, R=10 Å. (a) Packing factor k=5 and 
average distances d=30 Å(-.-.-.-), d=50 Å(-----) and d=70 Å (____). (b) Average distance d=50 Å and 
packing factor k=1 (-.-.), k=3 (------) and k=5 (____).  

 
 

Even if the nano-objects are not spherical but they have a globular shape, the structure function 
given by Eq. (80) is in many cases assumed to be valid as a good approximation. The total scattering 
intensity, I(q)=NI1(q)S(q) (Eq. 76), is thus determined  using the intensity I1(q) defined by Eq. (62) for 
spherical colloidal objects or by Eq. (75) (with N=1) for non-spherical (globular) nano-objects. This 
model also approximately applies to materials composed of moderately polydisperse nano-objects. 

Eq. (82) is only a rough approximation for the determination of the average distance between nano-
objects. As a matter of fact, the trend of the curves plotted in Fig. 14a and b, indicates that, instead of 
2π in Eq. (82), a value 5.6 yields a more precise estimate of d for a wide range of typical  R and k 
values. Thus we should remind that Eq. (82) only yields a rough estimate of the average inter-object 
distance and that a more precise evaluation can only be achieved by fitting realistic model functions to 
the whole experimental scattering curve. 

 
6.3 Fractal structures  
The fractal model has been applied to describe the structure of many materials generated by 

clustering processes in a liquid or solid medium. Many sols (gel precursors) that have been studied by 
small-angle scattering in situ exhibit this type of structure. Fractal objects can be characterized by three 
relevant structural parameters: (i) a  radius r0, which corresponds to the size of the individual primary 
particles (basic nano-objects that build up the fractal structure), (ii) a fractal dimension D that depends 
on the mechanism of clustering or aggregation, and (iii) a correlation length ξ that defines the whole 
aggregate size if the fractal objects are isolated or  a cut-off distance of the fractal structure for 
percolated systems such as, for example, fractal gels.  

0.0 0.1 0.2 0.3
0.0

0.5

1.0

1.5

In
te

ns
ity

 (a
. u

.)

q (Å1) 
 

(a)                                                                   (b) 

q (Å1) 
0.0 0.1 0.2 0.3

0.0

0.5

1.0

1.5



 28

For a homogenous object or for a fractal aggregate, such as those schematically illustrated in Fig. 
15a and 15b, respectively, the total N of primary objects or building blocks located inside a sphere of 
radius r, measured from the center of mass, is given by   
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This equation implies that the mass function M(r) is also proportional to rD. 
 

                   
 
 

Fig. 15: (a) Schematic log-log plot of the mass M(r) of a homogeneous object. (b) The same for a 
fractal object. (c) Scattering intensity (Eq. 88) corresponding to a fractal object with r0=3 Å, ξ=1000 Å 
and D=2  (____). Scattering intensity produced by a basic particle (form factor) defined by Eq. 87 (------
-) and structure function S(q) defined by Eq. 86  (…….). (d) Scattering intensity curves  (Eq. 88) for 
r0=3 Å, D=1.8 and ξ ranging from 20 Å (bottom) up to (2500 Å) (top). 

 
 

The exponent in Eq. (83) for homogeneous objects is D=3, while D<3 for fractal structures. The 
particular values of D, the fractal dimension, depend on the particular mechanism of aggregation. 
Many mechanisms were theoretically analyzed and the respective fractal dimensions of the resulting 
structures were determined. This implies that the experimental evaluation of the dimension D may 
yield a useful insight about the predominant mechanism that governs the aggregation process. 

In order to define the radial distribution function g(r) associated to a fractal structure, Sinha et al 
[16] included a cut-off function that makes the number density of primary objects at high r to be equal 
to the average number density. Later on, Chen and Teixeira [17] have used the general theory of liquids 
in order to define the function g(r) as follows 
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Thus,  substituting Eq. (84) in the general Eq. (77),  the structure function S(q) becomes 
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and,  solving Eq. (85), S(q) results [18] 
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Since the primary particles are much smaller than the fractal aggregates, I1(q) is  a constant within a 

wide q range, so as the variation of the scattering intensity at small and intermediate q´s is dominated 
by the structure function. At high q, S(q) becomes a constant and so, over this q range, the variation in 
the scattering intensity is governed by I1(q). Several simple functions have been used for I1(q), such as 
the intensity produced by spherical particles (Eq.  62), the Beaucage function (Eq. 75) or the Debye-
Bueche function given by 
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A being a constant.  

Thus, selecting I1(q) defined by Eq. (87), the scattering intensity produced by a fractal aggregate 
becomes  
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Several scattering intensity functions defined by Eq (88) for different structural parameters are 

plotted in log-log scale in Fig. 15c and d. If the condition 0r>>ξ  is obeyed, the scattering intensity 
exhibits three distinct and simple q dependences over different q ranges (Fig. 15c). The main features 
of the scattering curves are directly and simply connected to the relevant structure parameters of the 
fractal nano-objects as described below. 

(i)The scattering intensity extrapolated to q=0 is related to ξ  and Rg  by 
 

        DI ξ∝)0(         and      D
gRI ∝)0(      with      ( ) ξ

2/1

2
1

⎥⎦
⎤

⎢⎣
⎡ +

=
DDRg  (89) 

 
(ii) Over the small q range (q<1/ξ) the scattering intensity exhibits a behavior similar to Guinier 

law (Eq. 48): 
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iii) In the intermediate q range, i. e. for 0/1/1 rq <<<<ξ , the scattering intensity exhibits a simple 

power q-dependence (a linear behavior in a log-log plot), the magnitude of the exponent being the 
fractal dimension: 

 
                                    DqqI −∝)(      (91) 
 
iv) At  high q (q>>1/ro) the scattering intensity asymptotically satisfies Porod’s law (Eq. 34): 
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v) Two crossovers of the straight lines in the log I vs. log q plot, at q=q1 and q=q2 (q2>q1) are 

apparent. The radius of the primary particle ro is simply related to q2  by ro=1/q2 and the size parameter 
of the fractal aggregate or correlation length is given by ξ=1/q1. 

Thus, if ξ>> ro, the relevant structure parameters ξ, D and ro can be directly and easily determined 
from log-log plots of the scattering intensity. If the two crossovers are not well defined - as in the two 
first curves displayed in Fig. 15d - the fit of the I(q) function defined by Eq. 88 to the whole 
experimental data is the only way to determine ξ, D and ro. However, one should be cautious about the 
physical meaning of a proposed “fractal” model when the condition ξ>>ro is not obeyed. It is a general 
consensus that, in order to safely establish the fractal nature of the aggregates, the quotient ξ/ro should 
be larger than about 10.  

On the other hand, as power q-dependences with an exponent leading to a D value smaller than 3 
are also expected for non-fractal objects of low dimensionality (linear chains or thin platelets), it is 
useful to add independent arguments in order to give a stronger support to a proposed fractal model. If 
the aggregation process is studied by SAXS in situ - during the growth of the aggregates - many 
successive scattering intensity curves can be determined (Fig. 15d).  In this case, an alternative method 
for evaluating the fractal dimension can be applied. Displaying the several scattering curves as Guinier 
plots (log I(q) versus q2) and applying the relations given by Eq. (90),  the correlation length of the 
aggregates, ξ, the radius of gyration, Rg, and the extrapolated intensity, I(0), can be determined for the 
different scattering curves. A log-log plot of  I(0) versus ξ (or log I(0) versus log Rg) is expected to be 
linear (Eq. 89) and the fractal dimension D is thus determined as the slope of the straight line. Eventual 
variations of the exponent D along the growth process indicate changes in the characteristics of the 
mechanism of aggregation. An example of the use of this approach will be described in section 6.5.1 
[19]. 

 
6.4. Hierarchical structures 
Materials may contain heterogeneities at multiple structural levels. For example, nanometric 

clusters can be formed in a homogeneous phase and these nano-objets may segregate and form 
domains of tenth or hundredth nanometers (Fig. 16a). Often, for these complex systems, the scattering 
intensity curves in log-log scale exhibit a smooth step-like shape as schematically shown in Fig. 16b. 
The scattering intensity produced by this type of materials can, in many cases, be described by a semi-
empirical equation proposed by Beaucage et al [20]:  
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where the index 1 corresponds to the first -  coarse  - structure level and the index 2 to the fine 
substructure. Both main terms are analogous to Eq. (74), the first one having a high-q cut-off described 
by a Gaussian function )3/exp( 22qRc− with a cut-off radius Rc equal to the parameter Rg2 (Rc=Rg2). A 
schematic overall shape of the I(q) function that may be expected for a two-level structure is displayed 
in the log-log plot shown in Fig. 16b.  
 

                               
 
Fig. 16:  (a) Two-level hierarchical structure. (b) Schematic scattering intensity showing the two q 
ranges from which the relevant information related to each structure level is derived 
 
 

If the scattering experiment covers a very wide q range, more than two structural levels can be 
characterized. In addition, the scattering objects in each structural level may be spatially correlated. Eq. 
(93) can be generalized for multiple (n) structural levels also including correlation effects thus 
becoming 
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where the structure functions Si(q) may be one of those described in section 6.2 (Eq. 78 or 80). 

Since the q range that are to be covered for the study of many-level structures is very wide, several 
experimental studies of the same sample using different setup collimation conditions and/or 
wavelengths are required. Typical studies include ultra-small angle X-ray scattering and light scattering 
measurements. Reference [20] reports several examples that illustrate satisfactory fits of Eq. 94 to 
experimental scattering curves corresponding to materials with many structural levels. 

 
6.5 Examples of investigations of fractal aggregates and hierarchical structures. 
6.5.1. Fractal structures. Aggregation process in zirconia-based sols and gels 
Zirconia–based sols and gels were investigated by SAXS by many authors. Lecomte et al [21] 

studied this material in situ, during the aggregation process in the sol state. All scattering curves, 
plotted as log.I(q) vs. log.q  in Fig. 17, exhibit a well-defined linear regime. The magnitude of the slope 
of the straight line (1.7) was assigned to the fractal dimension D of the growing aggregates (Eq. 91). 
The low-q limit of the linear portion of the scattering curves displayed in Fig. 17 progressively shifts 
toward lower q for increasing periods of time. This indicates that 1/1 q∝ξ  - the magnitude of the 
aggregates size - grows continuously. The high-q limit of the linear range, near q2, is not apparent in 
the main set of curves displayed in Fig. 17, but in the inset, corresponding to the final gel state and 
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measured up to a higher maximum q value, the high q cross over toward a Porod behavior ( 4)( −∝ qqI ) 
can be noticed. This suggests that the primary sub-units have a smooth and well-defined external 
surface.  
                 

                        
 

Fig. 17: Zirconia-based sols. Log I vs. log q plots for increasing periods of time from 4 hours 
(bottom) up to 742 hours (top) [21]. The inset is the scattering intensity curve of the final gel obtained 
after a period of about twice the gelling time.  

 
  
The described results indicate that the fractal clusters in the studied zirconia-based sol result from 

the aggregation of very small colloidal particles formed at the beginning of the hydrolysis and 
condensation reactions. On the other hand, the maximum observed in the scattering curves is related to 
the existence of spatial correlation between the fractal aggregates, which could be analytically 
described by an inter-aggregate structure function S’(q) (Eq. 78 or 80) included as an additional factor 
in Eq. 88.  A fractal dimension close to 1.7, as that experimentally determined, was theoretically 
derived by computer simulation for the mechanism of growth named diffusion limited cluster 
aggregation. Since the fractal dimension is time independent, it was concluded that the mechanism of 
aggregation is the same during the whole growth process. 

A SAXS study of sulfate-zirconia sols with many compositions (different HNO3, H2O and H2SO4 
contents) was performed by Riello et al [19]. In order to characterize the aggregation mechanisms, 
these authors determined the scattering curves, maintaining the sols in an open cell, after progressively 
increasing time periods. Firstly, applying Guinier,  I(0) and Rg were determined for each scattering 
curve and then these values were plotted as log I(0) vs. log Rg. This plot is expected to be linear (Eq. 
89). The experimental results indicated two successive different linear regimes: for Rg<20 Å the slope 
is D≈1 while, for Rg>20 Å, D ranges from 1.73 to 1.93 depending on the chemical composition of the 
sol.  

The same authors also studied several sulfate-zirconia sols with different compositions in sealed 
cells [19]. Since in sealed condition the reactions in the sols are very fast, only the scattering curves 
corresponding to the final states were determined (Fig. 18a). The log I(0) vs. log Rg plot corresponding 
to the final states of all the studied samples is displayed in Fig. 18b. It can be noticed that the 
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experimental points also lie on two straight lines with similar slopes as those observed for the in situ 
studies during the growth in open cells.  

           
Fig. 18: Sulfate-zirconia sols with different HNO3, H2SO4 and H2O contents. (a) Scattering 

intensity of a few selected samples inside a sealed cell in their final aggregation state. (b) Plot of I(0) 
vs. Rg, in log-log scale, corresponding to the final states of sols with different H2SO4 contents [19]. 

  
 
The slope D≈1 of the log I vs log Rg plots, for small Rg, suggested that the aggregation process in 

all the studied sulfate-zirconia sols starts by the formation of short linear chains. This precursor regime 
is followed by another involving the cross-linking of the chains that leads to a three-dimensional fractal 
structure. Values of D close to 1.8, as those experimentally determined, are expected for diffusion 
limited cluster aggregation (DLCA). It was also concluded that, even though the sizes of the final 
aggregates in sols with a number of different compositions are different, the mechanism of growth in 
all of them is essentially the same. 

 
6.5.2. Multilevel hierarchical structure. Structure of Fe doped organic-inorganic nano-

hybrids  
A SAXS study of organic-inorganic nanohybrid materials named di-ureasils doped with Fe(II) was 

reported by Silva et al [22]. These nanostructured materials have interesting magnetic properties that 
can be tailored by an adequate control of the preparation conditions, their structural characterization 
being necessary in order to explain the magnetic behavior. The structure of the undoped hybrids can be 
well described by a two-electron density model consisting of isolated and spatially correlated siliceous 
colloidal particles or clusters embedded in a polymeric matrix [15]. The associated SAXS patterns are 
characterized by a correlation peak located at a decreasing q value for increasing molecular weight of 
the polymer molecule.  

Fig. 19 displays the scattering intensity produced by a di-ureasil hybrid doped with 0.76 weight % 
Fe(II). In order to describe the structure of the Fe(II) doped nano-hybrids, the multilevel model 
proposed by Beaucage [20] was applied. The SAXS intensity corresponding to the fine structure level 
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is dominated by a cluster-cluster correlation peak centered at q=0.15 Å-1 that is also observed for the 
undoped samples. For the doped hybrid, this peak is slightly shifted towards higher q.  For q<0.1 Å-1 
the scattering intensity is mainly associated with a coarser structure.  The modeled scattering curve 
given by Eq. 94 for two structure levels, including the structure function S(q) for the fine structure 
given by Eq. (80), is indicated in Fig. 19 as a continuous line.  Fig. 19 also displays the Guinier and 
Porod contributions to the total scattering intensity corresponding to both levels and the oscillatory 
structure function. The radii of gyration Rg obtained by the best fit procedure are 7.5 Å for the small 
clusters and 54 Å for the coarse domains. 

 
 
 
     

 
 

               
 

 
 

 
 

Fig. 19: Fe(II) doped di-ureasil hybrids. Experimental scattering intensity from a sample 
containing 0.76 weight % Fe(II). The continuous line is the best fit of Eq. 94 to the experimental curve. 
The dashed lines indicate the Guinier and Porod contributions to the scattering intensity produced by 
siliceous clusters and the structure function (oscillatory curve). The point lines are the Guinier and 
Porod contributions to the scattering intensity yielded by the coarse domains [22].  

 
 
Similar analyses of several SAXS curves for different Fe(II) doping levels, up to 4.5 weight%, 

indicated that the average distance between silicious clusters decreases for increasing Fe(II) doping 
[22]. The reported results suggested that the Fe(II) ions are dispersed in the polymeric matrix and that 
they induce a retraction effect that leads to the observed decrease in the average inter-cluster distance. 
The formation of the coarse domains was assigned to a phase separation process promoted by the 
addition of Fe(II) ions. The domains with relatively high silicious particle and Fe(II) concentrations 
(and thus with a high electron density) are assumed to be embedded in a silicious/Fe(II) depleted 
region. An alternative interpretation would be the independent segregation of Fe(II) ions forming rather 
large Fe(II)-rich aggregates of high electron density dominating the scattering intensity below q=0.15 
Å-1.   

 
 

7. Nano-phase separation  
Nanohetereogeneous materials are formed by phase separation processes starting from a unstable 

supersaturated solution brought into a miscibility gap by fast quenching. When the supersaturated 
solution is close to the binodal curve (the solubility limits), the transformation occurs through the 
mechanism of nucleation and growth of a minor new phase. This leads to a two-phase material 
composed of isolated amorphous or crystalline clusters embedded in the solid matrix. The growth of 
these clusters can generally be characterized by SAXS, using a model of either a dilute or concentrated 
set of spherical clusters, as described in previous sections. 
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 The issue is more difficult when the composition of the quenched material lies close to the center 
of the miscibility gap. In this case, the final two-phase system exhibits a bicontinuous geometry, both 
phases occupying about the same volume fraction, and thus the structure cannot be modeled by a set of 
isolated nano-objects. Under this condition, a theoretical model that was suggested to describe the 
nano-phase transformation is named spinodal decomposition [23]. At advanced stages, even after 
nearly reaching the equilibrium concentrations, both phases still evolve by a coarsening process.  

The subject to be addressed now is how the results of in situ SAXS measurements during phase 
separation can be applied in order to verify the correctness of the proposed theoretical models. 

 
7.1. Early stage of nano-phase separation.  
Spinodal decomposition is a diffusion process that describes nano-phase separation under 

isothermal conditions in an initially homogeneous material brought by fast quenching into the central 
part of a miscibility gap. A linear diffusion equation was derived by Cahn [23] that is expected to hold 
for the early stages of the process. This equation applies to isotropic materials and includes a 
composition gradient term that accounts for a “surface” energy contribution coming from the incipient 
interfaces that start to develop during the first stages of phase separation. Cahn equation yields the time 
dependence of the Fourier components η(k,t) of the time varying electron density function, 
characterized by a wave-number k. As we have seen in section 2 (Eq. 6 and 11) the magnitude of the 
Fourier wave-vector k is equal to the modulus of the scattering vector q. On the other hand, the 
function η(k,t) is proportional to the X-ray scattering amplitude A(q,t). Thus the time dependence of 
the experimental SAXS intensities I(q,t), for each q value, is proportional to [η(k,t)]2. 

According to the solution of the linear Cahn equation, and taken into account the arguments stated 
above, the time dependence of the small-angle scattering intensity for each q value results 
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D being an effective atomic diffusion coefficient, which is negative for phase separating systems (“up-
hill” diffusion). Eqs (95) and (96) indicate that the function R(q) is positive within the range  0<q<qc 
and negative for q>qc, as shown in Fig. 20a.  Thus the scattering intensity is expected to grow 
exponentially for for q<qc and to decrease also exponentially for q>qc,. The maximum growth rate 
occurs at q=qm, qm being related to qc by 

 
                                                             mc qq .2=                             (97) For q=qc 

the growth rate is zero so that, for this particular  q value, the intensity is time invariant. For a series of 
SAXS curves, corresponding to increasing isothermal annealing times, the existence of a critical q 
value q=qc can clearly be observed as a crossover of all scattering intensity curves (Fig. 20b). Another 
feature that is expected from the linear Cahn theory for a set of successive scattering curves is a well-
defined maximum at a time independent q value, q=qm, this value corresponding to the maximum of 
the amplification factor R(q). These features were experimentally observed in phase separation 
processes of many materials. At more advanced stages, a continuous shift of the maximum of the 
SAXS curves toward small q values is experimentally observed, so implying that the structure coarsens 
and the linear Cahn equation does not longer apply.  
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Fig. 20: Spinodal decomposition. (a) Amplification factor R (Eq. 96). (b) Scattering curves for a 

model system during early times of isothermal nano-phase separation.  Time periods increase from 
bottom to top.  
 
 

For a number of materials, the simple relation mc qq .2=  (Eq. 97) was not experimentally verified. 

Instead, it was observed that qc is larger than mq.2 , this deviation being later accounted for by a 
modified Cahn equation that includes an additional term corresponding to the contribution of statistical 
fluctuations in electron density. 

 
7.2. Advanced stages of nano-phase separation.  
In order to describe the advanced stages of nano-phase separation (i.e the coarsening regime) a 

statistical model has been proposed [24]. This model assumes that the binary system is composed of A 
and B atoms arranged in a simple cubic lattice and is described by an occupation function η(ri) that 
takes the value +1 or –1 when the site ri is occupied by an atom A or B, respectively. A probability 
function for atom interchanges and a simple  equation for the energy of the system were proposed. This 
model is analogous to that used for ferromagnetic Ising spin systems. Finally, the theoretical time-
dependent structure function for isotropic systems, S(q,t), has been calculated by computer simulation. 
Taking into account that in this model the scattering objects are atoms, I1(q) can be approximated at 
small q by a constant value, so that the SAXS intensity can be written as 

 
                                       ),(),( tqStqI ∝                                                               ( 98) 
 
This statistical model leads to remarkably simple results for advanced stages of phase separation, 

when the two phases have nearly reached the final electron concentration and volume fractions. Under 
these conditions the integral of the scattering intensity Q (Eq. 27) becomes time independent and the 
pure coarsening process starts.  The results of computer simulations [24] for the coarsening regime 
indicate that the time dependent structure function, and thus the experimental scattering intensity, the 
different moments Sn(q,t) and In(t), and the normalized moments qn(t) defined by  
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exhibit the following properties: 
i)The scattering intensity curves I(q,t) and the structure functions S(q,t)  corresponding to different 

annealing times (Fig. 21a) display a so-called dynamical scaling property evidenced by the existence of 
a characteristic time-independent function F(x) (Fig. 21b) expressed as 
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where ( )1qqx = . Since I2 and S2 are proportional to the invariant Q (Eq. 27), these  moments are 
time-independent.  

ii)The normalized first moment of the scattering intensity function, q1(t), has a power time 
dependence: 

 
                                                                   attq −∝)(1      (101) 
 

the exponent a depending on the detailed mechanism of aggregation. 
iii)The maximum of the structure function S(qm,t) and thus that of the scattering intensity I(qm, t)  

exhibit a time dependence given by 
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Fig. 21:  Dynamical scaling property. (a) Different scattering intensity curves from a system in 

advanced stages of nano-phase separation for increasing periods of isothermal annealing from t1 to t4. 
(b) Scaled structure function, [ ]3

1)( qqI vs. ( )1qq . 

 
 
In addition, all other moments and normalized moments are also connected by simple relations. A 

number of investigations using small-angle (X-ray or neutron) scattering have demonstrated the 
dynamical scaling properties for a number of different nanoheterogeneous systems, such as crystalline-
crystalline [25], amorphous-amorphous [26] and nanoporous materials [27].  

 
7.3. In situ study of nanoporous SnO2-based xerogels 
The theories that were described in section 7.2 referring to classical phase separation processes 

were applied by Santilli et al [27] to an in situ SAXS study of the time evolution under isothermal 
condition of the nano-porosity developed in SnO2 xerogels. This nanoporous material, after a short 
period, preserves its apparent density thus suggesting that the total fraction of porous volume remains 
constant during the advanced stages of isothermal annealing.  
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The series of scattering intensity curves corresponding to a SnO2 xerogel isothermally annealed at 
400C, displayed in Fig. 22a, exhibit a peak whose q position progressively shifts toward smaller q 
values indicating the coarsening of the nanoporous structure [27]. This qualitative feature is expected 
from the statistical model that predicts the dynamical scaling property (section 7.2).  The SAXS results 
displayed in Fig. 22b, in which the scattering curves shown in Fig. 22a are replotted in a [S(q,t)q1

3/S2] 
versus (q/q1) scale, indicate that the dynamical scaling property of the nanoporous structure is 
quantitatively verified. 

 
Fig. 22: SnO2 based porous xerogels. (a) Scattering intensity curves corresponding to a 

nanoporous SnO2 xerogel held at 400C during increasing periods of time from 4.5 min. (bottom) up to 
62.5 min (top) [27]. (b) Same curves plotted as [S(q,t)q1

3/S2] versus (q/q1). 
 
 
In the same work [27], the authors also demonstrated that, at lower temperatures (T=300C) and 

during the first stages of pore growth, the maximum of the scattering intensity remains at the same q 
value. This result is expected from the solution of the linear Cahn equation for spinodal composition 
[23].  

The overall conclusion was that the Cahn model for spinodal decomposition and the statistical 
theory that predicts the dynamical scaling property of the structure function, derived for simple 
crystalline binary solid solutions, also applies to the structural transformations in nanoporous xerogels 
during isothermal annealing. 

 
7.4. Fractal clusters in a homogeneous medium 
Materials consisting of a concentrated set of fractal aggregates embedded in a homogeneous solid 

or liquid matrix may also exhibit the dynamical scaling property. In this case,  Eqs (100), (101) and 
(102) are still expected to hold but the exponent in Eq. (100) and the quotient (a’/a) in Eq. (102) are the 
fractal dimension D instead of 3.  

An experimental demonstration of the dynamical scaling property for a system consisting of 
zirconia-based fractal aggregates embedded in a liquid matrix was reported by Lecomte et al. [21]. 
These auhors performed the in situ SAXS study of the formation and growth of zirconia-based sols that 
was described in section 6.5.1. The scattering curves displayed in Fig. 17 exhibit an increasing 
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maximum that shifts progressively toward lower q for increasing periods of time. The fractal 
dimension derived from the scattering results was D=1.7.  The same set of curves displayed in Fig. 17 
is replotted in Fig. 23 using a  [I(q/qm)q1.7] versus (q/qm) scale. The authors have here considered that 
the first normalized moment q1 can be replaced as a reasonable approximation by the position of the 
maximum, qm, and that I2 is time independent. It is readily apparent that all different scattering curves 
merge in a single scaled one thus demonstrating the dynamical scaling property for the studied system. 

 
 
 

                                  
 
Fig. 23: Scattering intensity curves displayed in Fig. 17 here replotted as [I(q)qm

1.7] versus (q/qm)  
[21],  qm being the q value corresponding to the maximum of the scattering curves. 

 
 
This result together with those mentioned in the preceding sections suggest  that the statistical 

model for nano-phase separation and the dynamical scaling property [24] exhibit universal features that 
allow for a unified and clear description of nano-phase separation and aggregation processes in a wide 
variety of materials. On the other hand, the experimental results displayed in Fig. 17, 18 and 23 
illustrate the usefulness of in situ small angle X-ray scattering experiments for a direct verification of 
the correctness of general theories that predict the time variation of the structure function when applied 
to materials prepared by the sol-gel procedure.   

 
8. Miscellaneous 
8.1. Grazing incidence small-angle X-ray scattering (GISAXS) 
8.1.1  Basic concepts 
Thin films deposited on solid substrates, like those prepared by dip coating with liquid sol 

precursors, deserve the attention of many scientists because of their often interesting technological 
properties. These films usually have a thickness ranging from a few nanometers up to a few microns. 
Many films are not fully homogeneous. Some are composed of a matrix containing isolated nano-
clusters spatially correlated or not and often they exhibit anisotropic features. Others are nanoporous. 
The features of the nano-clusters or nano-pores cannot be studied using the classical transmission 
small-angle X-ray scattering technique because the substrates are generally thick. Thus, for these 
mounted films, the grazing incidence small-angle X-ray scattering (GISAXS) technique is applied [28]. 
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This technique probes a sample volume much larger than in classical transmission SAXS experiments, 
this feature being particularly useful for the analysis of very thin films. 

The schematic geometry of a GISAXS setup is shown in Fig. 24a. The X-ray penetration depth ∆y 
- the distance from the surface to the plane where the beam intensity I0 is decreased by absorption 
down to I0/e  - defines the thickness of the film layer that is probed in GISAXS measurements.  If the 
incidence angle α (Fig. 24a) is close to the critical angle for total X-ray reflection αc (typically a few 
milliradians), the refracted beam travels parallel to the external surface and its penetration is very small 
(a few to about ten nanometers depending on the average film composition and density). If a thicker 
layer needs to be probed, the incidence angle α should be set slightly higher than αc. For  α>αc the 
penetration depth is  ∆y=sinα/µ, where µ is the linear X-ray absorption coefficient.   

                                        

                              
Fig. 24: Zn-based thin films. (a) Schematic GISAXS setup. (b) GISAXS patterns recorded with an 

image plate for In-doped ZnO-based films prepared by the pyrosol procedure [29]. Top: Film 
deposited on a glass substrate at 350C. Bottom: Film deposited on a glass substrate at 450C.  A 
vertical beam-stopper attenuates the intense X-ray specular reflection.  

 
Nanoheterogeneous thin films produced by sol dip coating can be well characterized by combined 

X-ray reflectivity and GISAXS measurements. Reflectivity measurements yield the thickness and 
average mass density of the films and GISAXS provides relevant information about their structure at a 
nanometric scale. If the films are very thin (~ a few nanometers thick) the scattering intensity is very 

(a) 

Refracted  beam 

Reflected beam 

Incident beam 

           I. P. 

 

q

 

 

qy 
 

qx 
 

qy 
 

(b) 

Sample 

 qx 



 41

weak and thus only GISAXS setups installed in synchrotron beam lines allow for the recording of 
useful patterns within reasonable time periods. 

 
8.1.2 GISAXS study of nanoporous In-doped ZnO thin films and metal clusters in glass 

surface layers. 
The GISAXS technique was applied to a structural characterization of nanoporous ZnO-based thin 

films deposited on a glass substrate by the pyrosol method [29]. The films were deposited at different 
temperatures from 300C up to 450 C.  Fig. 24b display two GISAXS patterns recorded with an image 
plate corresponding to films that were deposited at 350 and 450C. The intensity profiles of the 
GISAXS intensity were recorded along narrow strips close to the shadows of the beam-stopper along 
the x and y directions and, in the analysis, it was assumed that the nano-pores are not spatially 
correlated. We can notice that the pattern corresponding to the film deposited at 350 C is clearly 
anisotropic suggesting that the nano-pores are elongated with their major axis perpendicular to the 
external surface of the substrate. On the other hand, the GISAXS pattern for a deposition temperature 
T=450 C is isotropic so indicating a porous structure without  preferred orientation.  

The GISAXS pattern corresponding to the film deposited on a substrate at 350C was analyzed 
along the x and y directions. The Guinier plot along the x direction yielded a pore radius of inertia (Eq. 
50), parallel to the surface of the film, equal to 13 Å. Along the y direction, perpendicular to the 
surface, a similar Guinier plot indicated a wide size distribution, with radii Ry ranging from 10 up to 35 
Å. The same analysis corresponding to the isotropic film deposited at 450C indicated a wide dispersion 
in pore sizes. The clear differences observed in the two analyzed patterns demonstrated that the 
characteristics of the nano-porosity of the studied ZnO thin films strongly depend on the deposition 
temperature.  

Many other thin films containing a variety of nano-objects were also characterized by GISAXS. 
For example, Cattaruzza et al [30] studied the formation by ion implantation of spherical Cu-Ni 
clusters in thin glass surface layers. The experimental GISAXS patterns that these authors obtained are 
isotropic and exhibit a peak due to the spatial correlation of the metal clusters. In order to determine the 
relevant structural parameters, the experimental GISAXS curves were modeled in the same way as in 
classical SAXS, using the form factor for spheres, a simple theoretical structure function as those 
described in section 6.2, and a single-mode analytical radius distribution function. 

 
8.2. Anomalous scattering 
The anomalous small-angle X-ray scattering technique (ASAXS) can be used to study three-phase 

materials, two of the phases being isolated nano-objects. In many cases these structures cannot be 
characterized using a simple two-electron density model. The ASAXS technique applies the known 
characteristic of the strong variation in the atomic scattering factor for X-ray wavelengths close to the 
λK or λL absorption edges. Anomalous scattering experiments require the determination of two or more 
scattering intensity curves using different X-ray wavelengths. One wavelength is chosen far from the 
absorption edge of the selected element and another very close to it. The difference between both 
curves yields particularly useful information when the selected “anomalous” atom is concentrated only 
in one of the isolated nano-phases.  

ASAXS has been applied to the characterization of catalysts consisting of metal clusters embedded 
in nanoporous substrates [31]. The difference between the SAXS curves, corresponding to wavelengths 
far from and close to the metal absorption edge, only depends on the size, shape and spatial correlation 
of the metal clusters thus suppressing the strong contribution from nano-pores. In ASAXS 
measurements the intensity is usually expressed in absolute units and should be very precisely 
determined in order to perform properly the curve subtractions. In order to improve the quality of the 
final data, more than two scattering curves, using several X-ray wavelengths, are recorded. This is 
particularly necessary and useful if the metal is a minor component only occupying a very small 
fraction of the total sample volume. 
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8.3 SAXS setups 
8.3.1. Classical cameras 
The basic requirements of a classical experimental setup for small-angle X-ray scattering are (i) 

possibility of measuring the scattering intensity down to very small angles, (ii) low parasitic scattering 
from the slits and from the air irradiated by the incident beam, and (iii) intensity of the incident beam, 
and thus of the scattered intensity, as high as possible. 

The simplest systems utilize a filtered X-ray Cu Kα beam, provided by a sealed or a rotating anode 
source, with a linear cross-section. The cross-section of the incident beam is defined by three sets of 
slits, as shown in Fig. 25a. Slit S1 has a width similar to the apparent width of the source line and is 
located as close as possible to the tube exit window, S2 defines  the (small) divergence of the beam and  
S3, a guard slit located as close as possible of the beam without touching it, suppresses the usually 
strong parasitic scattering produced by  S2. Typical widths of slit S1 and S2 are around 100 µm, their 
values depending on the minimum angle to be reached in the scattering measurements. A reduction of 
slit openings induces a decrease in the minimum angle to be reached but also diminishes the number 
rate of photons in the incident beam. A more detailed description of the geometry of the classical setup 
is given in [32]. 

In more complex setups, a cylindrically bent crystal monochromator is inserted close to the X-ray 
source in order to (i) suppress most of the white radiation only keeping the Kα emission and eventually 
a few harmonics, and (ii) focus the initially divergent incident beam at the detection plane. 

A commercially available SAXS setup, named as Kratky camera, is used in many laboratories. In 
this camera, whose basic geometry is shown in Fig. 25b, a block system was designed in such a way to 
strongly reduce the parasitic scattering in one side of the incident beam down to very low scattering 
angles [32].  

 
 
 

                      
 
Fig. 25:  Classical SAXS setups. (a) Standard slit setup with slit collimation. The dashed lines 

indicated the limit of the angular range with high parasitic scattering. (b) Kratky slit setup. The main 
components of both setups are slit sets (Sn), sample holder (S), beam-stopper (BS) and detector (D).  B1 
and B2 (metallic blocks) are components specific of the Kratky  camera [32]. 
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8.3.2 Synchrotron SAXS beam lines 
Most the synchrotron laboratories around the world, with electron energy above 1 GeV,  have one 

or more beam lines dedicated to small-angle X-ray scattering experiments. Some are equipped with a 
two-crystal monochromator that also focuses the beam. Others, in operation in several synchrotron 
facilities such as LURE (Orsay, France), Photon Factory (Tsukuba, Japan) and LNLS (Campinas, 
Brazil), utilize a one-crystal monochromator elastically bent for horizontal focusing. In these beam 
lines, the vertical width of the incident monochromatic beam is defined by horizontal narrow slits to 
allow reaching very small angles in the scattering measurements. Some SAXS beam lines are also 
equipped with a cylindrical mirror for vertical focusing. 

A layout of the synchrotron SAXS beam line that is in operation from 1997 at LNLS, Campinas, 
Brazil, is shown in Fig. 26 [33].  The first optical element that the white synchrotron beam emerging 
from the 1.37 GeV electron storage ring hits is a triangular and elastically bent silicon crystal. When, in 
order to select the  X-ray wavelength, the θ angle is changed, the silicon (111) Bragg reflected beam 
modifies its direction and thus the bench where the collimating slits, sample holder and detector are 
placed, is rotated accordingly. The monochromator-to-sample distance is kept constant at dms=180 cm 
and the sample-to-detector distance dsd can be varied from 30 up to 200 cm. The useful wavelengths 
range from 1.30 to 1.90 Å. In one of the possible configurations, a vacuum path (under a pressure of 
about 10-2 Torr) starts at the monochromator exit and end just after the beam stopper, close to the 
detection plane, without any internal window. This vacuum path totally suppresses the parasitic 
scattering from air.  

 
 

Fig. 26:  Layout of the LNLS SAXS beamline [33]. From left to right: slit set, crystal 
monochromator, slits (2 sets), sample holder, and, at the end of the beam line, beam-stopper and gas 
detector or image plate. The vacuum path starts just after the monochromator and ends near the 
detector. 

 
 
A sealed cell can be used for in situ studies of liquid solutions. This cell is filled and emptied 

externally, without breaking the vacuum of the beam path volume, and can be heated by water 
circulation for in situ SAXS studies at temperatures up to ~90C. Another camera can be inserted for 
studies of solid samples up to approximately 900C, thus allowing for in situ high temperature 
investigations of structural transformations under isothermal conditions. The high temperature 
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attachment is windowless over the whole incident beam path and also allows for simultaneous 
recording of SAXS and WAXS patterns. 

 
8.4. Experimental procedures and data treatment 
8.4.1.Sample thickness 
Materials studied by classical transmission small-angle X-ray scattering are rather thin plates with 

parallel external faces or, in the cases of liquid samples, they are confined inside a cell with parallel 
and very thin windows. The maximum scattering intensity that a given sample may yield corresponds 
to an optimal thickness that depends on the chemical composition and the wavelength used. The SAXS 
intensity is proportional to the sample volume or, for a beam of constant cross-section, to the thickness, 
x, of the sample. Since the scattered beam is attenuated by a factor exp(-µx), where  µ is the linear X-
ray absorption coefficient, the scattered intensity is proportional to xex )(. λµ− , this function having a 
maximum for xid=1/µ. Since the variation of  I(q) near the maximum is not very steep,  sample 
thicknesses from about 1/3 to 3 times xid are acceptable. Very thick samples should not be used in 
order to avoid an eventual too large relative contribution from harmonics in a crystal monochromatized 
beam or from the hard part of the white spectra in a Kα filtered beam, which may produce spurious 
effects in the scattering curves. Typical ideal sample thicknesses for CuKα radiation (λ= 1.54 Ǻ) are 
about 20 µm for Cu, 130 µm for silica glass and ~1 mm for simple polymers and water. 

 
 8.4.2. Suppression of the parasitic scattering and normalization  
 The experimental scattering intensity curves obtained using classical or synchrotron setups are 

generally determined using a 1D or a 2D position sensitive detector. The resulting scattering curves 
need to be corrected for the effects from (i) the parasitic scattering produced by slits, sample holder 
windows and air, (ii) the non-homogeneous response of the detector and (iii) the continuous decay in 
the intensity of the incident beam associated with the decreasing electron current in the electron storage 
ring. 

The parasitic scattering intensity is generally measured in an equivalent experimental condition but 
without the sample. In the case of colloidal particles in dilute liquid solutions it is preferable to subtract 
the scattering produced by the pure solvent because, by doing that, the scattering intensity coming from 
the density fluctuations in the liquid matrix is also suppressed. 

In order to properly subtract the parasitic scattering, the total scattering intensity and the parasitic 
intensity curves should firstly be multiplied by the respective sample attenuation factor A (or divided 
by the transmittance). This suppresses absorption effects on both curves. The described subtraction and 
normalization, leading to the scattering intensity in relative (arbitrary) units  I(q), is performed using 
the following equation  
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where the sub-indexes T and P refer to the measurements of total and parasitic scattering, respectively, 
R(q) is the detector response function, i0 a function proportional to the intensity of the incident X-ray 
beam (e. g. the electron or positron current in the synchrotron source) and ∆t is the period  of data 
collection.  
 

8.4.3. Smearing effects 
All theoretical equations for the scattering intensity presented in this chapter, [I(q)]th, assume ideal 

experimental conditions, i. e. the incident X-ray radiation is monochromatic, the beam has a point-like 
cross-section and the scattering intensity is measured using a detector with a very small sensitive 
surface area. If, in a real scattering experiment, these conditions are not fulfilled, smearing effects on 
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the measured scattering intensity curve, [I(q)]exp, may be significant and should be suppressed before 
further fine analyses.  

In most of the SAXS experiments using classical X-ray sources, the predominant smearing effect 
comes from the rather long length of the linear beam cross-section and/or large width of the detector 
sensitive window. Synchrotron beam lines usually provide an incident beam with a point-like cross 
section at the detector plane. In this case, the main factor that may produce a relevant smearing effect is 
the eventual non-negligible lateral width of the detector window. For typical wavelengths and 
geometrical conditions, detector slits larger than 1 to 2 mm may produce significant smearing effects, 
particularly at very low q.  

Smearing effects can be suppressed using ad-hoc and commercially available computer packages 
[34]. Unfortunately, all the developed mathematical procedures also strongly enhance the statistical 
dispersion of the experimental points. In order to minimize this drawback, the measured scattering 
intensity curves should be properly smoothed prior to the application of any desmearing program. An 
alternative method, employed for example in the GNOM package [10], is to mathematically smear the 
theoretical model function [I(q)]th and then fit the derived function to the as obtained (smeared) 
experimental curve [I(q)]exp. 

 
 8.4.4. Scattering intensity in absolute units 
The intensity of the incident X-ray beam in SAXS experiments is much higher than the scattered 

intensity and is difficult to be precisely determined. Therefore most of the published measurements of 
small-angle X-ray scattering are reported in relative units; e. g. by the I(q) function given by Eq. 103. 
Nevertheless, the determination of the SAXS intensity in absolute units may yield useful information 
from solution studies such as the molecular weight of macromolecules and the number density and 
average electron density of colloidal particles. 

The scattering intensity in absolute units or scattering power can be expressed by the specific 
scattering cross section function given by 
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where V is the irradiated sample volume, Io  the photon flux of the incident beam per unit cross section 
area, E0 the total photon  flux of the incident beam (power per unit time), x the sample thickness and 
I(q)  the number of photons per unit time counted by a small area S of the detector located at a distance 
D from the sample.  

The determination of the total number of photons per unit time in the incident beam, E0, requires 
special care because it cannot be precisely measured by directly using a common detector. A method 
that has been often applied in the past is based on the use of calibrated filters that strongly attenuate the 
incident beam. This method is not precise enough because of the negative effects related to the strong 
contribution of hard X-ray harmonics. Another procedure evaluates the intensity of the direct beam by 
comparing the experimental scattering intensity yielded by the sample to that produced by precisely 
calibrated standard solid samples, whose scattering intensity is a priori known in absolute units. This 
method requires a periodic re-calibration of the standard sample.  

A third method compares the experimental scattering intensity from the sample to the intensity 
produced by the statistical fluctuations in electron density of water [35]. The scattering intensity in 
absolute units can then be expressed as 
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where ( )[ ]wwe kTr χρ 22  is the known scattering cross-section corresponding to the statistical density 
fluctuations of water, k being the Boltzmann constant, T the absolute temperature  and  ρw and χw the 
average electron density and the isothermal compressibility coefficient, respectively, of water. Both 
measurements of I(q), corresponding to the sample and to water, should be performed under identical 
experimental conditions and properly normalized.  
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Small-angle scattering by a macroscopically isotropic material
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Small-angle scattering by an arbitrary two electron density model
The reduced correlation function
The integral of the scattering intensity in reciprocal space
Asymptotic behavior of scattering curves at high q.  Porod equation
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Small-angle scattering of a dilute system of isolated nano-objects. 
General equations
The reduced correlation function for a single isolated object
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Asymptotic trend of the scattering intensity at small q. Guinier equation 

Dilute and monodispersed system (identical nano-objects)

( ) ∫−=
max

0
0

2
1

2
21

sin)(4)(
D

e rd
qr

qrrrVNIqI γπρρ

( ) ( ) ...61sin 22 +−= rqqrqr( ) ∫ −−=
max

0

22

0
2

1
2

21 )]
6

1).((4)(
D

e drrqrrVNIqI γπρρ

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−= ∫ 2

2
2

1
2

21
0

0
2

1

2
2

1
2

21 6
1)(41

6
1)(

max

ge

D

e RqVNIdrrr
V

qVNIqI ρργπρρ

∫=
max

0
0

2

1

2 )(41 D

g drrr
V

R γπ 2
2/1

21 rrdr
V

R
Vg =⎥⎦

⎤
⎢⎣
⎡= ∫

( ) 32
1

2
21

22

.)(
qR

e

g

eVNIqI
−

−= ρρ

2/1
2

).(

.).(

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
∫

∫
V

V
g

rdr

rdrr
R

ρ

ρ

RRg 53=
( ) ( ) 12/8/ 22 HDRg +=

Guinier equation



x

y

qy

qx

qx
2 qy

2

Log I(qx) Log I(qy)

qy

qx

22.1
D

V
DD rrdr

V
R == ∫( ) 22 .2

1
2

211 )( DD qR
D eVNqI −−= ρρ

Dilute and isotropic system of very anisotropic nano-objects

22

2
1

)(
qRceqqI

−
∝

22

)(2 qRteqIq −∝
12/TRt =



Log I(q)

q2

R (R)G

N(R)

R

1

2

2

1

Dilute and isotropic system of polidispersed nano-objects

( ) g

qR

gge dReRVRNIqI
g

32
1

2
21

22

).()..()(
−

∫−= ρρ

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−= ∫∫ ggggggge dRRRVRN

N
qdRRVRN

N
NIqI 22

1

2
2

1
2

21 ).()..(
6

).()..(1)( ρρ

( ) { }
{ }

32
1

2
21

22

.)(
qR

e

G

eVNIqI
−

−= ρρ

{ } ( ) ggg dRRVRN
N

V 2
1

2
1 ).(1

∫= { }
2/1

22
1.)(1

⎥⎦
⎤

⎢⎣
⎡= ∫ gggG dRRVRN
N

R



0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.2

0.4

0.6

0.8

1.0

I(q
)/I

(0
)

q (A-1)

 R=10 A
 R=20 A
 R=30 A

Spherical nano-objects embedded in a homogeneous matrix

3

0 16
131)( ⎟

⎠
⎞

⎜
⎝
⎛+−=

R
r

R
rrγ

( ) ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−−=

R

e dr
qr

qrr
R
r

R
rVIqI

0

2
3

1
2

211
sin.4

16
131)( πρρ

[ ]2
23

2
211 )(

3
4.)()( qRIqI e Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

πρρ

3)(
cossin3)(

qR
qRqRqRq −

=Φ

dRRqIRNqI ),().()( 1∫=

dR
qR

qRqRqRRRNIqI e

2

3

6
2

2
21 )(

cossin3).(
3

4)()( ⎥
⎦

⎤
⎢
⎣

⎡ −
⎟
⎠
⎞

⎜
⎝
⎛−= ∫

πρρ

)(.
3

4)( 3 RNRRD π
=



0.00 0.05 0.10 0.15 0.20
0.1

1

10

100

1000
In

te
ns

ity
  (

a.
 u

.)

q (A-1)

 <R>=40 sig=0
 <R>=40sig=10
 <R>=40sig25



ρ1

ρ2

ρµ

r

Electron
density

R1 R2

(60)

(61)

2

0

2
1 .

.sin)(4)( ⎥
⎦

⎤
⎢
⎣

⎡
= ∫

∞
dr

rq
rqrrIqI e ρπ

( )
2

1 0

2
11

.4)( ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑ ∫

=
+

n

i

R

iie qr
qrsinrIqI πρρ

( )( )
( )

2

1
3

13
11

cos334)(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= ∑

=
+

n

i i

ii
iiie qR

qRqRsinqRRIqI πρρ



Nanoclusters of atoms. Debye equation
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The hard sphere model
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(b) Scaled structure function.

Nanophase separation and dynamical scaling property.
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Fractals
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Determination of the fractal dimension  in real space

2.. RaVM == ρ RaM log.2loglog +=
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Determination of the fractal dimension  in real space
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Aggregation of colloidal particles
Models of growth and results of calculations

of the fractal dimension 
using computer simulation

Mechanism of growth Fractal dimension (3D) Fractal dimension (2D)
Eden 2
Witten Sanders 2.45 1.65-1.70
Witten Sanders linear trajectory 2.97 1.92-1.95
Tip-to-tip 1.43 1.26
Self-avoiding walk 1.66 1.33
Cluster-cluster random walk 1.75-1.80 1.44-1.48
Cluster-cluster ballistic 1.81-1.95 1.50-1.54
Ideal linear polymer 2.00
Swollen linear polymer 1.66
Ideal branched polymer 2.16
Dense particle 3.00
Diffusion limited cluster-cluster
aggregation (DLCA) 1.78
Reaction limited cluster-cluster
aggregation (RLCA) 2.11
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Position
sensitive
detector

Synchrotron

Monochromator

Sample

ε

q = (4π/ λ) sin (ε/2)
for small ε:   q = (2π/ λ) ε

Determination of the fractal dimension from 
results of SAS experiments
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Effects on SAXS curves by the variation of D from 1.8 up to 2.5

I(q)=NI1(q)S(q)
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Effects on SAXS by the variation of the overall size of 
the aggregate from 1000 up to  500000Å I(q)=NI1(q)S(q)
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Effects on SAXS curves produced by the variation of the
size of the building block units  (r0) from 100 Å down to 1 Å

I(q)=NI1(q)S(q)
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movie






Proteins in solution  (D. Proteins in solution  (D. SvergunSvergun))

•• RestaurationRestauration of structural models of structural models abab initioinitio
using only results of smallusing only results of small--angle scattering angle scattering 
experimentsexperiments

•• Characterization of proteins in solution using Characterization of proteins in solution using 
SAXS and (high resolution) crystallographic SAXS and (high resolution) crystallographic 
data obtained by single crystal XRDdata obtained by single crystal XRD

•• Example of application: Example of application: Phosphoenolpyruvate
carboxykinase (PEPCK)



Bead models
Position(j) = X(j) = 1 or 0

♦ M≈ (Dmax/r0)3≈103 >>Ns
parameters, too many for 
conventional minimization

♦ No unique shape restoration 
unless constrained

♦ Able to describe complex 
shapes

Chacón, P. et al. (1998) Biophys. 
J. 74, 2760-2775.

Svergun, D.I. (1999) Biophys. J.
76, 2879-2886



Ab initio program DAMMIN
Using simulated annealing, finds a compact dummy 
atoms configuration X that fits the scattering data by 
minimizing

where χ is the discrepancy between the experimental 
and calculated curves, P(X) is the penalty to ensure 
compactness and connectivity, α>0 its weight.

)()],(),([)( exp
2 XPXsIsIXf αχ +=

compactcompact

looseloose

disconnecteddisconnected



Local and global search

• Local search always 
goes to a better point 
and can thus be 
trapped in a local 
minimum

• To avoid local minima, 
global search must be 
able go to a worse 
point

Local

Global



Aim: find a configuration of M variables {x} minimizing a function f(x)
of these variables.

1. Start from a random configuration  x at a “high” temperature T.
2. Make a small step (random modification of the configuration) x 

→ x’ and compute the difference ∆ = f(x’) - f(x).
3. If  ∆ < 0, accept the step; if ∆ > 0, accept it with a probability e- ∆ /T

4. Make another step from the old (if the previous step has been 
rejected) or from the new (if the step has been accepted) 
configuration.

5. Anneal the system at this temperature, i.e. repeat steps 2-4
“many”
(say, 100M tries or 10M successful tries, whichever comes first) 
times,then decrease the temperature (T’ = cT, c<1).

6. Continue cooling the system until no improvement in f(x) is 
observed.

Simulated annealing





movie
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