

1936-24

Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications

7 - 25 April 2008

Small angle x-ray scattering (Applications)

> Aldo Craievich University de Sao Paulo Brazil

SAXS. Applications

Aldo F. Craievich Institute of Physics University of São Paulo Brazil (craievich@if.usp.br)

La Habana Cuba Julio de 2007

Content

SAXS - Applications

Basic reference

"Small-angle X-ray scattering by nanostructured materials". A. F. Craievich. Handbook of Sol-Gel Science and Technology, Vol II Chapter 8, Kluwer Publishers (2005)

Dilute set of spherical nano-objects embedded in a homogeneous matrix

Dilute set of PbTe nano-crystals embedded in a homogeneous silicate glass (Kellermann et al)

Scattering intensity curves corresponding to a dilute set of spherical PbTe nano-crystals during isothermal growth (T=650C). The continuous line is the best fit of Eq. (1) using a Gaussian N(R) function with a time varying radius average and a constant relative standard deviation [σ /{R}] =0.08. The curves were vertically displaced for clarity

$$I(q) = I_e (\rho_1 - \rho_2)^2 \left(\frac{4\pi}{3}\right)^2 \int N(R) R^6 \left[3\frac{\sin qR - qR\cos qR}{(qR)^3}\right]^2 dR$$
(1)

GNOM program (Svergun et al)

Input I(q) Output $V(R)=N(R)^*(4/3)\pi.R^3$

ZnO-based colloidal suspensions (Tokumoto et al).

Time-dependent volume distribution functions V(R,t) of ZnO colloidal particles in liquid solution. Time period range:10 to 120 min.

The volume functions were derived, using the GNOM package, from jn situ SAXS measurements.

Spherical nano-objects embedded in a solid matrix Dense systems

$$I(q) = N.I_1(q).S(q)$$

$$S(q) = \frac{1}{1 + k\Phi(qd)} \qquad \qquad \Phi(qd) = 3\frac{\sin(qd) - qd\cos(qd)}{(qd)^3}$$

$$d = \frac{2\pi}{q_{\max}}$$

Fe(II) doped di-ureasil hybrids (Silva et al)

$$I(q) = S_{1}(q) \left[G_{1} \cdot e^{-\frac{1}{3}R_{g1}^{2}q^{2}} + B_{1} \cdot e^{-\frac{1}{3}R_{c}^{2}q^{2}} \left\{ erf\left(qR_{g1} / 6^{1/2}\right)^{3} / q \right\}^{4} \right] + \left[G_{2} \cdot e^{-\frac{1}{3}R_{g2}^{2}q^{2}} + B_{2} \cdot \left\{ erf\left(qR_{g2} / 6^{1/2}\right)^{3} / q \right\}^{4} \right] ..(1)$$

Experimental scattering intensity from a hybrid sample containing 0.76 weight % Fe(II).

The continuous line is the best fit of Eq. 1 to the experimental curve.

The dashed lines indicate the structure function (oscillatory curve) and the Guinier and Porod contributions to the scattering intensity produced by siliceous clusters. The point lines are the Guinier and Porod

contributions to the scattering intensity yielded by the coarse domains.

Multilevel hierarchical structure (Beaucage)

Two-level structure:

$$I(q) = \left[G_{1} \cdot e^{-\frac{1}{3}R_{g1}^{2}q^{2}} + B_{1} \cdot e^{-\frac{1}{3}R_{c}^{2}q^{2}} \left\{\left[erf\left(qR_{g1} / 6^{1/2}\right)\right]^{3} / q\right\}^{4}\right] \cdot \left\{\left[G_{2} \cdot e^{-\frac{1}{3}R_{g2}^{2}q^{2}} + B_{2} \cdot \left[\left[erf\left(qR_{g2} / 6^{1/2}\right)\right]^{3} / q\right]^{4}\right]\right\}$$

$$I(q) = \sum_{i=1}^{n} \left[G_i \cdot e^{-\frac{1}{3}R_{gi}^2 q^2} + B_1 \cdot e^{-\frac{1}{3}R_{g(i+1)}^2 q^2} \left\{ \left[erf\left(qR_{gi} / 6^{1/2}\right) \right]^3 / q \right\}^4 \right]$$

Fractal objects: I(q)=N.I₁(q).S(q)

Log r

Homogeneous object

Fractal object

M(r) = a.r^D or:
$$N(r) = \left(\frac{r}{r_0}\right)^D$$

$$\frac{N}{V}g(r) = \frac{N}{V} + \left(\frac{D}{4\pi r_0^D}r^{D-3}\right)e^{-r/\xi}$$
$$S(q) = 1 + \frac{D}{r_0^D}\int_0^\infty r^{D-1}e^{-\frac{r}{\xi}}\frac{\sin qr}{qr}dr$$

$$I_{1}(q) = \frac{A}{\left(1 + r_{0}^{2}q^{2}\right)^{2}}$$

$$S(q) = 1 + \frac{1}{(qr_0)^D} \frac{D.\Gamma(D-1)}{\left[1 + 1/(q^2\xi^2)\right]^{(D-1)/2}} \sin\left[(D-1)\tan^{-1}(q\xi)\right]$$

$$I(q) = N.I_1(q).S(q)$$

$$I(q) = \frac{A}{\left(1 + r_0^2 q^2\right)^2} \cdot \left\{ 1 + \frac{1}{\left(qr_0\right)^D} \frac{D \cdot \Gamma(D-1)}{\left[1 + 1/(q^2 \xi^2)\right]^{(D-1)/2}} \sin\left[(D-1)\tan^{-1}(q\xi)\right] \right\}$$

Simulation of SAXS intensity functions for a growing cluster building up a fractal aggregate, for increasing time periods (The rather high value of the minimum q does not allow to observe the crossover 1, at low q)

Aggregation of colloidal particles Models of growth and results of calculations of the fractal dimension using computer simulation

Mechanism of growth	Fractal dimension (3D)	Fractal dimension (2D)
Eden		2
Witten Sanders	2.45	1.65-1.70
Witten Sanders linear trajectory	2.97	1.92-1.95
Tip-to-tip	1.43	1.26
Self-avoiding walk	1.66	1.33
Cluster-cluster random walk	1.75-1.80	1.44-1.48
Cluster-cluster ballistic	1.81-1.95	1.50-1.54
Ideal linear polymer	2.00	
Swollen linear polymer	1.66	
Ideal branched polymer	2.16	
Dense particle	3.00	
Diffusion limited cluster-cluster		
aggregation (DLCA)	1.78	
Reaction limited cluster-cluster		
aggregation (RLCA)	2.11	

Sulfate-zirconia sols with different HNO3, H2SO4 and H2O contents. (Riello et al)

(a)Scattering intensity of several sol samples inside a sealed cell in their final aggregation state.

(b) Plot of I(0) vs. R_g , in log-log scale, corresponding to the final states of sols with different H_2SO_4 contents.

Aggregation of colloidal particles Models of growth and results of calculations of the fractal dimension using computer simulation

Mechanism of growth	Fractal dimension (3D)	Fractal dimension (2D)
Eden		2
Witten Sanders	2.45	1.65-1.70
Witten Sanders linear trajectory	2.97	1.92-1.95
Tip-to-tip	1.43	1.26
Self-avoiding walk	1.66	1.33
Cluster-cluster random walk	1.75-1.80	1.44-1.48
Cluster-cluster ballistic	1.81-1.95	1.50-1.54
Ideal linear polymer	2.00	
Swollen linear polymer	1.66	
Ideal branched polymer	2.16	
Dense particle	3.00	
Diffusion limited cluster-cluster		
aggregation (DLCA)	1.78	
Reaction limited cluster-cluster		
aggregation (RLCA)	2.11	

Nanophase separation and dynamical scaling property.

 a) Different scattering intensity curves from a system in advanced stages of nanophase separation, for increasing periods of isothermal annealing from t₁ to t₄.
 (b) Scaled structure function.

a) Scattering intensity curves corresponding to a nanoporous SnO₂ xerogel held at 400C during increasing periods of time from 4.5 min. (bottom) up to 62.5 min (top).
(b) Same curves plotted as [l(q,t)q₁³] versus (q/q₁).

Zirconia-based sols (Lecomte et al)

Log I vs. log q plots for increasing periods of time from 4 hours (bottom) up to 742 hours (top). The inset is the scattering intensity curve of the final gel

Zirconia-based sols (Lecomte et al)

Scattering intensity curves replotted as $[I(q)q_m^{1.7}]$ versus (q/q_m) , q_m being the q value corresponding to the maximum of the scattering curves (Assumption: $q_m \sim q_1$).

Dilute and isotropic system of very anisotropic nano-objects

Thin needles:
$$qI(q) \propto e^{-\frac{1}{2}R_c^2 q^2}$$
 Thin disks: $q^2I(q) \propto e^{-R_t^2 q^2}$

Grazing Incidence SAXS

GISAXS

SAXS (transmission)

both allow us to study very small objects (nanometer scale range)

small information depth is required (5 to few hundred of nanometers from top surface)

incidence and/or exit angles of the radiation must be comparable to the critical angle $\alpha_{\rm c}$

information is obtained over the entire irradiated volume sample

incidence normal to the sample surface

Why GISAXS?

Limitations:

- low signal-to-background ratio
- low signal from thin layer film (SAXS Intensity ∞ irradiated volume of the sample)
- substrate absorption
- modification of the thin layer consequence of substrate thinning processes
- sometimes thinning is not possible

Optimization of the scattering intensity

 $I_{mesured} = I(q)ste^{-\mu(E,z_i)t}$ scattered intensity: dependence with sample thickness s: beam cross section area s t: Irradiated volume t: sample thickness μ: lineal absorption coefficient $I_0/I_t = e^{-\mu(E,z_i)t}$ sample attenuation $\{E: photon energy\}$ z_i: atomic number of element i $I_{measured} = I(q)ste^{-\mu t}$ **Dependence with energy Dependence with element** 1.0 1.0 aluminum 0.8 0.8 silicon 17438 eV 0.6 8040 eV 0.6 $I_{S} = I(q)ste^{-\mu t}$ 0.4 iron 0.4 0.2 0.2 $i t_m = 1/\mu$ 0.0 0.0-30 10 20 40 60 0 50 200 400 600 800 1000 0 Sample thickness (µm) Sample thickness (µm)

Typical experimental setup

GISAXS intensity from different objects

spheres $\langle R \rangle$ = 10 nm

 $\langle R \rangle = \langle W \rangle / 2 = 10 \text{ nm}$ σ/ (R)=0.2- H/W =2

σ/ (R)=0.2

The analysis of GISAXS intensity allows
determination of:•shape•size dispersion•spatial ordering•nanoparticle concentration

Examples of application:

•Studies of nanocomposite thin films

•Studies of microdomain formation and ordering in thin films and surfaces of copolymer materials

•Studies of semiconductor and metallic nanostructures (quantum dots, wires, and wells). Nanometer-sized metallic particles embedded in glass matrix (candidates for applications in the fields of nonlinear integrated optics and photonics)

Zn-based thin films prepared by sol dip coating (Tokumoto et al).

(a) Schematic GISAXS setup.

(b) GISAXS patterns recorded with an image platefor In-doped ZnO-based films prepared by the pyrosol procedure.Top: Film deposited on a glass substrate at 350C.Bottom: Film deposited on a glass substrate at 450C.

Anomalous or Resonant SAXS

General expression for the atomic scattering factor

The atomic scattering factor shows a sharp fluctuation in the vicinity of absorption edges

Two correction terms, f' and f'', must be added to account for this "anomalous" behavior

1- For heavy elements L edges falls into x-rays region.

2 - Since L shell has six 2*p* electrons compared to two electrons in the K shell, the dispersion correction in L edges are larger by a factor approximately 3.

3 - K electrons are localized close to the nucleus, so the Fourier Transform of their wavefunction is essentially constant.

So in general, the q dependence of scattering correction factors can be neglected

 $f_{atm}(\vec{q}, E) = f_0(\vec{q}) + f'(E) + i f''(E)$

Dependence of atomic scattering amplitude in small-angle range:

So, in small-angle region: $f_{atm}(E) = Z + f'(E) + i f''(E)$

Atomic form factor calculation: http://www-phys.llnl.gov/Research/scattering/fftab.html

Dependence of the atomic scattering factor with the energy for a Bi atom

For small-angles scattering: $f_{atm}(E) = Z + f'(E)$ (we assumed that f'' << f')

Because f' is a negative number, near absorption edge the atom scatters as an atom with a smaller number of electrons $f_{Bi}(E_1 = 12981 \text{ eV}) = 83 + (-4.94) = 78.06$ electrons $f_{Bi}(E_2 = 13319 \text{ eV}) = 83 + (-7.52) = 75.48$ electrons $f_{Bi}(E_3 = 13413 \text{ eV}) = 83 + (-12.06) = 70.94$ electrons

SAXS intensity: without considering the effect of anomalous scattering

 $F^{i}(\vec{q}) = \int [\rho(\vec{r}) - \rho_{0}] \exp(-i\vec{q}\cdot\vec{r})d^{3}\vec{r}$ (scattering amplitude of object i)

The differential scattering cross section per unity volume (intensity) is given by:

$$\frac{d\Sigma}{d\Omega}(\vec{q}) = \left|\sum_{i} F^{i}(\vec{q}) exp(-iq \cdot R_{II}^{i})\right|^{2}$$

(waves are summed and the total intensity is equal to summed wave times it complex conjugate)

$$\rho(\vec{r}) = \frac{\sum_{i} n_{i} Z_{i}}{\delta V(\vec{r})} \qquad \rho_{0} = \left\langle \frac{\sum_{i} n_{i} Z_{i}}{\delta V(\vec{r})} \right\rangle$$

 $\rho~(\vec{r})$: local electron density at the point \vec{r}

 ρ_0 : average electron density (token over all irradiated volume of the sample

 Z_i : atomic number of element i, n_i : number of atoms in the small $\delta V(\vec{r})$ volume $\langle ... \rangle$ average over the total volume

Implications of f' in the SAXS intensity

Electron density is substituted by an "effective" electron density dependent of E:

$$\rho$$
 (\vec{r}) , $\rho_0 \rightarrow \rho$ (\vec{r} ,E) , ρ_0 (E)

$$\rho(\vec{r},E) = \frac{\sum_{i}^{i} n_{i} f_{atm}^{i}(E)}{\delta V(\vec{r})} \qquad \rho_{0}(E) = \left\langle \frac{\sum_{i}^{i} n_{i} f_{atm}^{i}(E)}{\delta V(\vec{r})} \right\rangle \qquad f_{atm}(E) = Z + f'(E)$$

As a consequence:

 $F^{i}(\vec{q},E) = \int [\rho(\vec{r},E) - \rho_{0}(E)] \exp(-i\vec{q}\cdot\vec{r})d^{3}\vec{r}$ (scatt. amplitude of object i)

and so, also the total SAXS intensity: $\frac{d\Sigma}{d\Omega}(\vec{q},E) = \left|\sum_{i} F^{i}(\vec{q},E) \exp(-iq \cdot R_{II}^{i})\right|^{2}$

depend of the photons energy

The difference in the scattering intensity measured at energies E1 and E2 is given by:

$$\frac{d\Sigma}{d\Omega}(q,E_{1}) - \frac{d\Sigma}{d\Omega}(q,E_{2}) = \left[\frac{d\Sigma}{d\Omega_{A}}(q,E_{1}) + \frac{d\Sigma}{d\Omega_{B}}(q)\right] - \left[\frac{d\Sigma}{d\Omega_{A}}(q,E_{2}) + \frac{d\Sigma}{d\Omega_{B}}(q)\right]$$
$$\frac{d\Sigma}{d\Omega}(q,E_{1}) - \frac{d\Sigma}{d\Omega}(q,E_{2}) = \frac{d\Sigma}{d\Omega_{A}}(q,E_{1}) - \frac{d\Sigma}{d\Omega_{A}}(q,E_{2})$$

From the difference only the contribution of element A is obtained:

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(q,E_1) - \frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(q,E_2) = N_A \left| F(q,R_A) \right|^2 \left\{ \left[\rho_A(E_1) - \rho_0 \right]^2 - \left[\rho_A(E_2) - \rho_0 \right]^2 \right\}$$

High energy resolution

Because the anomalous effects are larger in a narrow energy range near the absorption edge, a high energy resolution is a pre-requisite to any ASAXS experiment

> -2-∆E=25 eV -4 ∆E=5 eV f'(electrons) -6 Ni K edge (8333 eV) -8 -10-8100 8200 8300 8000 8400 energy (eV)

In general $\Delta E/E \sim 10^{-4}$ or at least 10^{-3} is necessary

Choice of photons energy

•Measurements has to be performed as much as possible near the absorption edge to enhance the variation of f_{atom}

•Always below the absorption edge to avoid fluorescence (typically 5-15 eV below depending of the energy resolution)

•The number of measured energies depend of the information you are looking for

•Different elements in same sample can be probed (different edges)

•If different edges are studied sample thickness must be adjusted allowing for acceptable attenuation

ASAXS from Bi nanocrystals embedded in sodium borate glass

SAXS intensity as a function of the x-ray energy measured using a position-sensitive detector. A progressive decrease in the scattering intensity is observed for a continuous increase in the photon energy from 13,183 up to 13,413 eV. This is the expected behavior due to the reduction of the atomic scattering factor when the photon energy approximates to the energy of the Bi absorption edge. On the other hand, for high q values, where the SAXS intensity of Bi clusters is small, a q and *energy* independent intensity is still observed. This q independent intensity is known to be due to fluctuation in the glass matrix density in nanometric scale dimension. Since for the studied composite all Bi atoms are inside the Bi nanocrystals they do not contribute to the matrix scattering intensity and so also no dependence with the energy is expected for it.

Scattering cross section per sample unity volume
$$\frac{d\Sigma}{d\Omega_{tot}}(\vec{q},E) = \frac{d\Sigma}{d\Omega_{cat}}(\vec{q},E) + \frac{d\Sigma}{d\Omega_{pore}}(\vec{q})$$

 $\frac{d\Sigma}{d\Omega_{cat}}(\vec{q},E)$ scattering from Pt particles and $\frac{d\Sigma}{d\Omega_{cat}}(\vec{q},E)$ scattering from Pt particles
 $\frac{d\Sigma}{d\Omega_{cat}}(\vec{q}) = (n_{Pt}f_{Pt} - n_Mf_M)^2 \frac{N}{V_s} \int N(R) |F(\vec{q},R)|^2 v(R)^2 dR$ $v(R) = \frac{4}{3}\pi R^3$
since $n_{Pt}f_{Pt} >> n_Mf_M$ $\frac{d\Sigma}{d\Omega_{cat}}(\vec{q}) = (n_{Pt}f_{Pt})^2 \frac{N}{V_s} \int N(R) |F(\vec{q},R)|^2 v(R)^2 dR$
sphere form factor $|F(\vec{q},R)|^2 = \left|\frac{\sin(qR) - qR\cos(qR)}{(qR)^3}\right|^2$
 $N(R)$: radius distribution function
 $\frac{N}{V_s}$: number of Pt nanoparticles per unity volume
 $\frac{d\Sigma}{d\Omega_{pore}}(\vec{q}) = 2\pi |n_{el}f_{el} - n_Mf_M|^2 A_{pore}q^{-4}$

From the difference of two ASAXS measurements at X-ray energies E_1 and E_2

$$\frac{d\Sigma}{d\Omega_{\text{tot}}}(\vec{q},E_{1}) = \frac{d\Sigma}{d\Omega_{\text{cat}}}(\vec{q},E_{1}) + \frac{d\Sigma}{d\Omega_{\text{pore}}}(\vec{q})$$

$$\frac{d\Sigma}{d\Omega_{\text{tot}}}(\vec{q},E_{2}) = \frac{d\Sigma}{d\Omega_{\text{cat}}}(\vec{q},E_{2}) + \frac{d\Sigma}{d\Omega_{\text{pore}}}(\vec{q})$$

$$\frac{d\Sigma}{d\Omega_{\text{tot}}}(\vec{q},E_{1}) - \frac{d\Sigma}{d\Omega_{\text{tot}}}(\vec{q},E_{2}) = \frac{d\Sigma}{d\Omega_{\text{cat}}}(\vec{q},E_{1}) - \frac{d\Sigma}{d\Omega$$

the separated catalyst scattering is obtained:

$$\frac{N}{V_{s}}\int N(R)\left|F(\vec{q},R)\right|^{2}v(R)^{2}dR = \frac{1}{\left[n_{Pt}f_{Pt}(E_{1})\right]^{2} - \left[n_{Pt}f_{Pt}(E_{2})\right]^{2}}\left[\frac{d\Sigma}{d\Omega_{tot}}(E_{1}) - \frac{d\Sigma}{d\Omega_{tot}}(E_{2})\right]$$

Pt clusters scattering cross section

Fig. 5. Small-angle scattering cross sections at two X-ray energies $E_1(\cdot)$ (10350 eV) and E_2 (O) (11546 eV) and difference (\Box) for 5, 10 and 60 wt% PVC electrodes in their reduced state at 0.25 V versus Ag/ AgCl. The differences arise from the Pt particles and are fitted by log normal particle size distributions (solid line).

Size distribution function

A fractal nano-object

craievich@if.usp. br

Licurgus roman calice Glass containing metallic nanoparticles

Reference: "Small-angle X-ray scattering by nanostructured materials". A. F. Craievich. Handbook of Sol-Gel Science and Technology. A Sakka, Editor. Volume II: Characterization of Sol-Gel Materials and Products. Chapter 8, Pages 161-89 Kluwer Publishers (2005).