

1936-25

Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications

7 - 25 April 2008

Small angle x-ray scattering (Application to structure transformations)

> Aldo Craievich University de Sao Paulo Brazil

A SAXS/WAXS application: Mechanisms of formation, melting and crystalization of metallic nanoclusters

Aldo F. Craievich Institute of Physics University of São Paulo Brazil (craievich@if.usp.br)

1.37 GeV electron storage ring - LNLS - Campinas - Brazil

- 8 hard x-rays
- 4 soft x-rays and VUV

beamlines in operation

- 600MeV booster in
 - operation
- 1 wiggler in operation
- 1 undulator planned

LNLS 2006: 12 beam lines in operation 3 beam lines under construction

Nanostructured materials

- Self-organized systems - Mechanisms of formation and phase transitions

- Structure characterization
 - Structure and properties

 Nanostructured materials: macroscopic objects composed of nanometric building blocks

-Properties of nanostructured materials: They strongly depend on the shape and size of the nanometric building blocks.

-Properties of nanostructured materials: They strongly depend on the shape and size of the nanometric building blocks.

... are relevant structural characteristics.

Metallic clusters through different stages of growth: a TEM study

Nanoclusters (CdTeS, Bi) embedded in a glass matrix **Preparation and optical properties**

LNLS SAXS beamline Kellermann et al. J. Appl. Cryst. (1997) 30, 880-883

Nucleation and growth of PbTe nanocrystals in a silicate glass - A. F.C., G. Kellermann, O.L. Alves and L.C. Barbosa. Phys. Rev. Lett. 89, 235503 (2002)

SAXS results and modelling

Time variation of the electron concentration function

Coarsening of liquid Bi nanodroplets

G. Kellermann and A. F. C Phys. Rev. B, 67, 085405 (2003)

Bi in borate glass (TEM image)

3. CLASSICAL THEORY OF DROPLET COARSENING

• According to the model proposed by Lifshitz-Slyosov (1961) [6] and Wagner (1961) [7] (LSW), when the supersaturation of the doping element in the matrix become small, *spherical clusters* with a radius R smaller than a critical radius R_c start to dissolve while those with radii larger that R_c still grow.

$$N(R,t) = f(t) \frac{4(R/R_c)^2}{9} \left(\frac{3}{3+R/R_c}\right)^{7/3} \times \left(\frac{3/2}{3/2-R/R_c}\right)^{11/3} e^{\left(\frac{R/R_c}{-3/2+R/R_c}\right)}$$

where f(t) is a function of the annealing time. During the coarsening stage R_c coincides with $\langle R \rangle$. The concentration of solute atoms in the matrix c(t) and number density of clusters n(t) are time dependent functions.

Theoretical predictions: Time dependence of structure parameters

According to Lifshits-Slyosov (1961) and Wagner (1961) – LSW model:

$$[< R >^{3} (t)] = < R_{0} >^{3} + \kappa(t - t_{0})$$
 : average nanodroplet radius

$$n^{-1}(t) = n_{0}^{-1} + \beta(t - t_{0})$$
 n: droplet number density

$$\varphi(t) = \varphi_{e} - [\chi'(t - t_{0})]^{-1/3} \quad \varphi: \text{droplet total volume fraction}$$
t: isothermal annealing time
t_{0}: initial time for "coarsening"

Liquid Bi nanodroplets embedded in a soda-borate glass. SAXS results

SAXS curves corresponding to the nanocomposite during its coarsening under isothermal condition. High temperture in situ study

Phys. Rev. B, 67, 085405 (2003)

q (Å-1)

Determination of the coefficient of atomic diffusion from SAXS results

The parameters κ , $\beta \in \chi$ ' are related to the coefficient of atomic diffusion of the solute D by:

$$\kappa = \frac{8\sigma v^2 c_e D}{9kT} \qquad \qquad \beta = \frac{4\sigma c_e v D}{(c_0 - c_e)kT} \qquad \qquad \chi' = \left(\frac{1/v - c_e}{1 - \varphi_e}\right)^3 \chi$$

 σ : free surface energy per unit nanodroplet-matrix interface area, v: atomic solute volume; c_e : solute equilibrium concentration.

Since the parameters σ e c_e are often unknown, these equations cannot be directly applied for the determination of D.

Assuming that $[1/v-c_e] \approx [1/v]$, we obtain:

$$D=\frac{9}{4}(\kappa^2\chi')^{1/3}$$

$$[\langle R \rangle^{3}(t)] = \langle R_{0} \rangle^{3} + \kappa(t - t_{0}) \qquad \varphi(t) = \varphi_{e} - [\chi'(t - t_{0})]^{-1/3}$$

Average radius

Volume fraction of nanodroplets

Arrhenius plot

The relative width of the radius distribution, $s_R=s/<R>=0.21$, is invariant along the whole coarsening process for any system.

Remaining question: How to reduce the relative width of the size distribution ??

Isothermal aggregation of Ag atoms in sodium-borate glass

G. Kellermann and A. F.C. Phys. Rev. B70, 054106 (2004) and Phys. Rev. B 70, 099902 (2004).

Bi nanocrystals: Structure and melting. (Precise determination of T_m) *Kellermann and Craievich, Phys Rev B, 65, 134204 (2002)*

WAXS and SAXS

Small-angle x-ray scattering - SAXS

How to check the validity of theoretical equations that predict $T_m(R)$??

-Determining experimentally a precise $T_m(R)$ function using a simple model system and combining in situ WAXS and SAXS technique using a S. R. set up.

Classical procedure for the determination of $T_m(R)$

NEW PROCEDURE: Use a SINGLE SAMPLE with a wide size distribution and determine T_m (R) by using combined IN SITU SAXS and WAXS results

In our calculation we have considered that for a given temperature T all Bi nanoparticles with a radius $R < R_{min}(T)$ are completely melted and that the particles with $R > R_{min}(T)$ still remain crystalline.

The melting temperature was determined comparing the crystalline phase volume $V_{cry}(T)$ function, obtained by X-ray diffraction (XRD), with the function $V_T(R_{min})$ that describes the total volume occupied by the particles with radius R>R_{min}:

$$V_T(R_{\min}) = \int_{R_{\min}}^{\infty} v(R) dR$$

v(R) is the volume dispersion function calculated from small-angle X-ray scattering (SAXS) intensity. The error bars in R corresponds to the range [$R_{min} - \sigma_R$, $R_{min} + \sigma_R$] for which V_T falls between the V_{cry}± σ_V (T) uncertain limits.

Melting temperature as a function of 1/R

-The crystal lattice of Bi nanocrystals is rhombohedral, like those in bulk state. The nanocrystals have a contracted structure. Both lattice parameters (a and c, hexagonal unit cell) are smaller than in bulk crystals

 $(<\delta V/V> = 1.3 \pm 0.1 \%$ for < R> = 2.7 nm).

-The Tm(R) function obeys the law classical law of Couchman and Jesser:

The difference of the surface energy of the interface crystal/glass and liquid/glass = surface energy of the crystal-liquid interface:

$$\sigma_{lg} - \sigma_{cg} = \sigma_{lc} = 116.10^{-3} \text{ J/m}^2.$$

Melting of Bi nanocrystals. Theoretical model

FREEZING OF BI LIQUID NANO-DROPLETS

G. Kellermann and A. F. C. In preparation (2005)

Freezing of liquid Bi droplets Undercooling reduction (and suppression) for small nanodroplets

Melting and crystallization in Ni nanoclusters: The mesoscale regime Y. Qi, Tahir C, W L. Johnson, W A. Goddard , J. Chem. Phys., 115, 385 (2001)

I - The melting temperature of Bi nanocrystals is a linear function of the reciprocal radius:

 $T_{m}(R) = T_{m}(bulk) - a * (1/R)$

The melting temperature of Bi nanocrystals with R~2nm is 344K, i. e. 60 % lower than the melting temperature of bulk Bi (544K).

The surface energy of the solid-liquid Bi interface is equal to 116.10^{-3} J/m².

II - The frezing temperature of Bi nanodroplets is a linear function of the reciprocal radius:

 $T_{f}(R) = T_{f}(bulk) - b * (1/R)$

This equation is similar to that corresponding to the melting temperature of Bi, but the magnitude of the slope b < a so as, for R~1.4 nm, we have $T_m = T_f$. This implies that, for nanodroplets with R<1.4 nm, undercooling effects are suppressed.

Self-organized nanomaterials. Current challenges

Precise in situ investigations, in real time, during the whole formation process.
 A clever preparation of nanomaterials is guided by the precise knowledge of the mechanisms and conditions of formation of nanostructured materials with desired properties.

(In situ studies of structural transformations during the formation process)

-Simultaneous determination of properties and structure of the same final material. Experimental determinations of the properties of nanomaterials accompannied by parallel and precise determinations of the relevant structural parameters (size, shape, density, spatial correlation) simultaneously, on the same samples. (Precise evaluation of the correlation between structure and properties).

- Theoretical studies and computer simulations of complex systems.

Theoretical research in order to better understand the processes of formation and the properties of "real" nanostructured materials composed of building blocks with different shapes, sizes, size distributions, spatial correlation, etc.

-Reference books of physical properties

The properties of macroscopic materials are usually reported in tables and/or plots. They are usually published in reference handbooks. *How to classify the properties of nanomaterials, which depend on sizes, shapes, spatial correlation of the nanometric building blocks? ...* "When scientists have learned how to control the arrangment of matter at a very small scale, they will see materials take an enormously richer variety of properties"

Richard Feynman (1959)

Is this coloured glass a new material ?

"When scientists have learned how to control the arrangment of matter at a very small scale, they will see materials take an enormously richer variety of properties"

Richard Feynman (1959)

This is a Roman Calice, more than 2000 years old !!!

It is a nanostructured glass. A glass matrix in which Au and Ag nanocrystals are embedded

References

- A. F.C., G. Kellermann, O.L. Alves and L.C. Barbosa. Phys. Rev. Lett. 89, 235503 (2002)
- G. Kellermann and A. F.C. Phys Rev B, 65, 134204 (2002)
- G. Kellermann and A. F.C. Phys. Rev. B, 67, 085405 (2003)
- G. Kellermann and A. F.C.Phys. Rev. B70, 054106 (2004) and Phys. Rev. B 70, 099902 (2004).
- L. J. Giovanetti, J. M. Ramallo Lopez, F. G. Requejo, D. I. Garcia Gutierrez, M. J. Yacaman and A. F.C. J. Mol. Catalysis A. 288, 299 (2005) and Submitted (2006).
- G. Kellermann and A. F.C. In preparation (2005).

All these experimental investigations were performed at LNLS, Campinas.

Acknowledgments

FAPESP and CNPq (Brazilian funding agencies) LNLS staff

