	The Abdus Salam International Centre for Theoretical Physics
--	---

1936-44

Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications

7 - 25 April 2008

Magnetic x-ray scattering

Nadia Binggeli

Abdus Salam International Center for Theoretical Physics

Trieste

Italy

Magnetic x-ray scattering

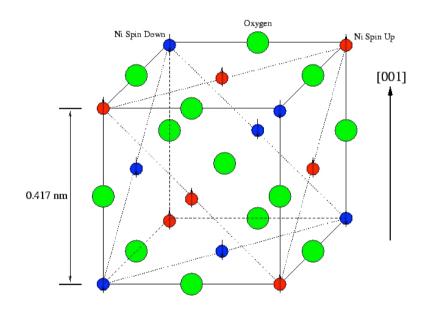
Nadia Binggeli

Abdus Salam International Center for Theoretical Physics, 34014 Trieste

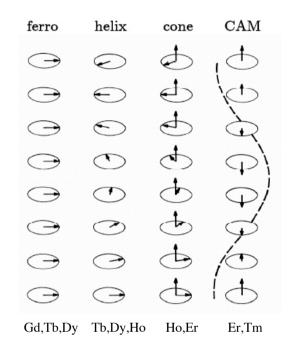
- Interest and a bit of history
- Theoretical outline: non-resonant and resonant scattering
- Some examples

Large variety of magnetic structures

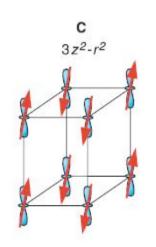
NiO

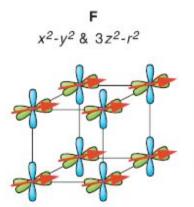


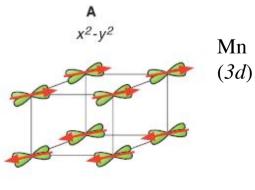
Rare Earths



La_{0.5}Sr_{0.5}MnO₃ (Coherently strained)







Determination of magnetic structures

- Standard probe: neutron scattering
- However x-ray scattering has some advantages:
 - is useful in the case of small samples
 - very *high momentum resolution* (period of incommensurate structures)
 - possibility of *separate determination of spin and orbital contributions* to the magnetic moment (by different polarization dependences, non-resonant)
 - *element sensitive* (resonant)

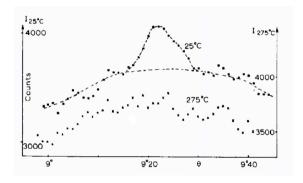
A bit of history

(1972) First observation of x-ray magnetic scattering

Antiferromagnetic order in NiO by Bergevin and Brunel,

Phys. Lett. A39, 141 (1972)

Tube source: Counts per 4 hours!

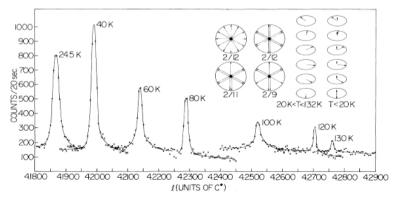


(1985) First Synchrotron radiation studies of magnetism

Magnetic x-ray scattering from Holmium,

Gibbs et al., Phys. Rev. Lett. 55, 234 (1985)

Synchrotron source: Counts per 20s



More history

(1985) Start of the resonant time

Prediction of resonant effect by Bume, J. Appl. Phys. 57, 3615 (1985)

(1985) First resonant scattering from a ferromagnet

X-ray resonant magnetic scattering from Nickel by Namakawa (1985)

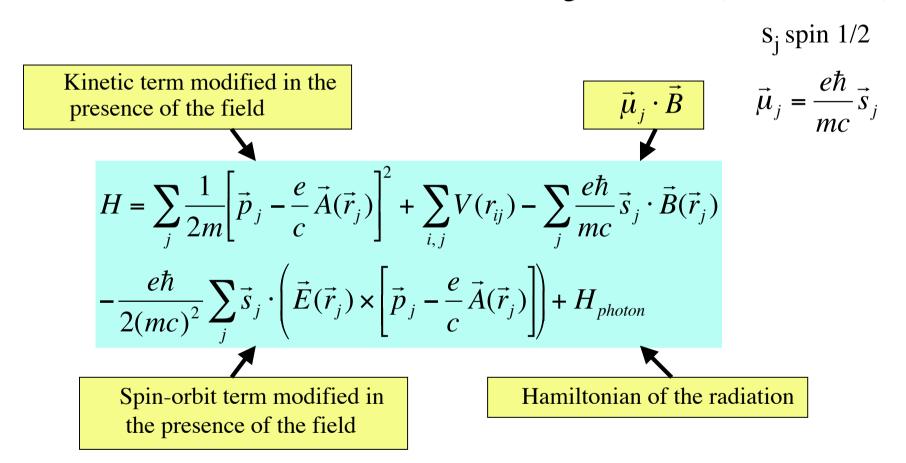
(1988) First resonant scattering from an antiferromagnet

Resonant x-ray scattering from Holmium by Gibbs et al., Phys. Rev. Lett. 61, 1241 (1988)

Since then magnetic x-ray scattering evolved from a scientific curiosity to a widely used technique

Electromagnetic radiation - electron interaction

• Hamiltonian for electrons in an electromagnetic field (Blume 1985):



With the fields **E** and **B** deriving from the vector and scalar potential **A** and ϕ :

$$\vec{B}(\vec{r}_j) = \vec{\nabla} \times \vec{A}(\vec{r}_j) \quad \text{and} \quad \vec{E}(\vec{r}_j) = -\vec{\nabla}\Phi(\vec{r}_j) - \frac{1}{c}\frac{\partial \vec{A}}{\partial t}(\vec{r}_j), \quad \vec{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$

• Electromagnetic waves described by the vector potential:

$$\vec{A}(\vec{r},t) = \sum_{\vec{k},\lambda} \left(\frac{hc^2}{\Omega \omega_k}\right)^{1/2} [\vec{\epsilon}_{\lambda} a(\vec{k},\lambda) e^{i(\vec{k}\cdot\vec{r}-w_kt)} + c.c.]$$
Normalization box volume

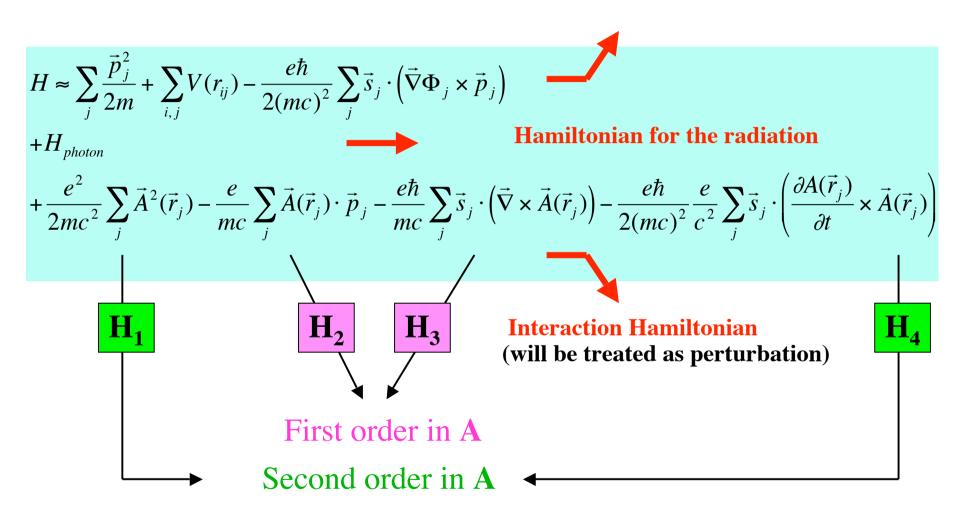
Polarization vector $\lambda = 1,2$ $(\vec{k}\cdot\vec{\epsilon} = 0)$

Note: in the second quantization formalism, H_{photon} takes the simple form (quantized radiation field):

$$H_{photon} = \sum_{\vec{k},\lambda} \hbar \omega_k (a^+(\vec{k},\lambda)a(\vec{k},\lambda) + 1/2),$$
 a^+ (a): photon creation (annihilation) operator

• Developing the Hamiltonian:

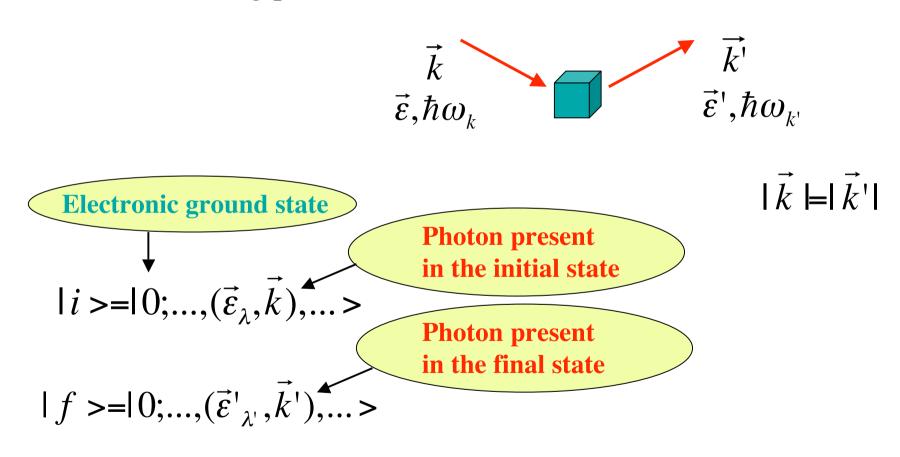
Hamiltonian for the electrons



H₃ and H₄ are related to the electron spin (linear dependence)

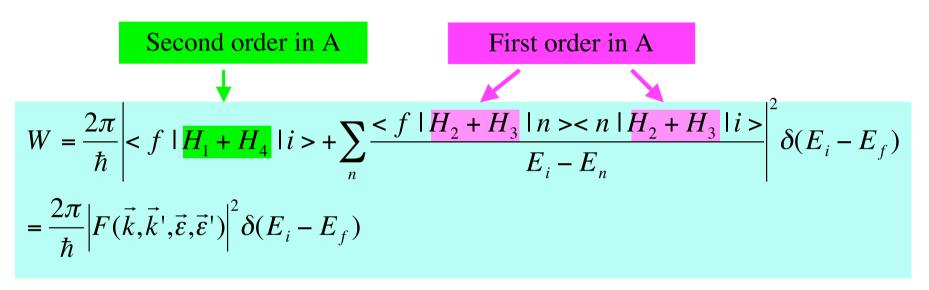
• We will here focus on elastic scattering

Elastic scattering processes:



• Probability of transition (per unit time) from state li> [electronic state lo>, photon $(\varepsilon, \mathbf{k})$] to state lf> [electronic state lo>, photon $(\varepsilon', \mathbf{k})$]:

(Fermi's "Golden rule")



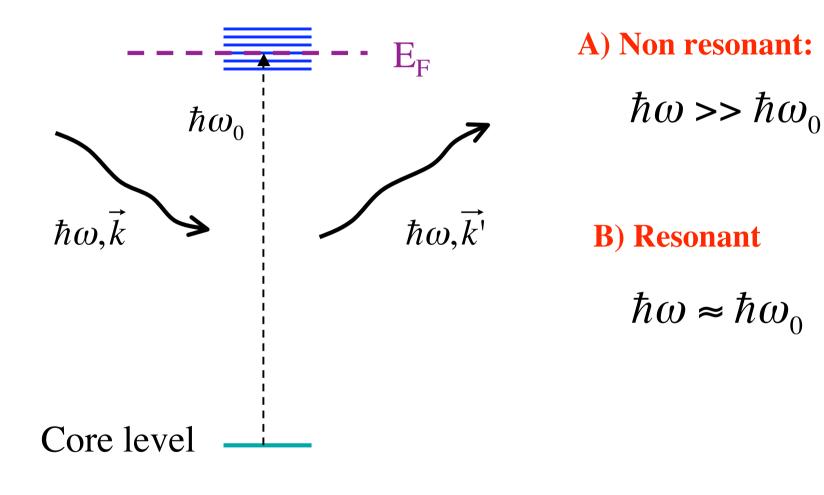
F: scattering amplitude

$$E_i = E_0 + \hbar \omega_{\vec{k}}$$

A)
$$\hbar \omega_{\vec{k}} >> E_n - E_0$$
 Non-resonant diffraction

B)
$$\hbar\omega_{\vec{k}} \approx E_n - E_0$$
 Resonant diffraction

Non-resonant and resonant scattering



Non-resonant and resonant scattering

A) Non-resonant case:

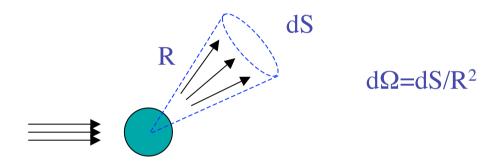
all four H_i contribute

B) Resonant case:

the contribution from $H_2 \sim \sum A(\mathbf{r_j}) \mathbf{p_j}$ dominates

• The quantity used to describe the intensity of the elastic scattering is the differential cross section:

$$\frac{d\sigma}{d\Omega} = \frac{\text{Number of photons per unit time scattered within } d\Omega}{\text{Number of incident photons per unit time per unit surface}}$$



• Elastic scattering cross section for an assembly of N atoms:

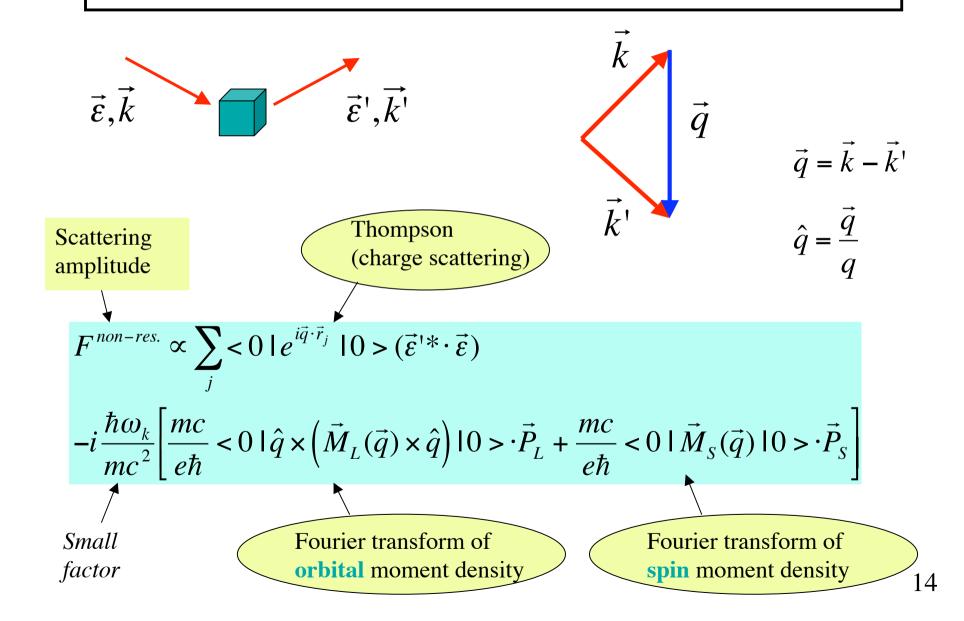
$$\frac{d\sigma}{d\Omega} = \left(\frac{e^2}{mc^2}\right)^2 \left|\sum_{N} e^{i\vec{q}\cdot\vec{R}_n} F_N(\vec{k}, \vec{k}', \vec{\epsilon}, \vec{\epsilon}')\right|^2,$$

F_N: atomic scattering amplitude

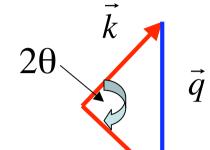
$$\vec{q} = \vec{k} - \vec{k}'$$

Periodic system: $\vec{q} \equiv \vec{G}_{hkl}$

A) Non-resonant scattering amplitude



A) Non-resonant scattering

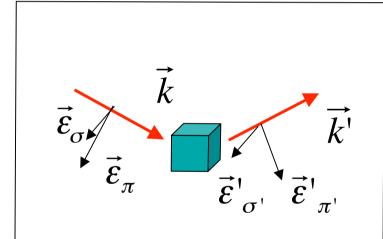


With:

$$\vec{M}_L(\vec{q}) = \sum_j e^{i\vec{q}\cdot\vec{r}_j} \vec{M}_L(\vec{r}_j)$$

$$\vec{M}_S(\vec{q}) = \sum_j e^{i\vec{q}\cdot\vec{r}_j} \vec{s}_j$$

$$\vec{P}_L = (\vec{\varepsilon}^{1*} \times \vec{\varepsilon}) 4 \sin^2 \theta$$



$$\vec{P}_{S} = \left[\vec{\varepsilon} \times \vec{\varepsilon}' + (\hat{k}' \times \vec{\varepsilon}'^{*})(\hat{k}' \cdot \vec{\varepsilon}) - (\hat{k} \times \vec{\varepsilon})(\hat{k} \cdot \vec{\varepsilon}'^{*}) - (\hat{k}' \times \varepsilon'^{*}) \times (\hat{k} \times \vec{\varepsilon}) \right]$$

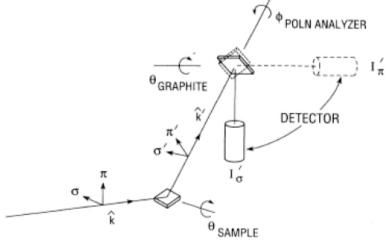
A) Non-resonant scattering

1) Has a mall intensity compared to Thompson scattering:

$$\left(\frac{\hbar\omega}{mc^2}\right)^2 \approx \left(\frac{\sim 10 keV}{511 keV}\right)^2$$
 of the order 10⁻⁴

2) Has a very different polarization factors for the orbital M_L and spin M_S contributions to the magnetic moment

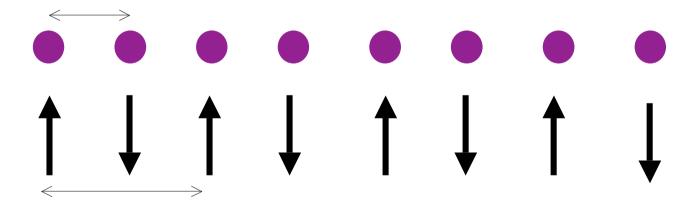
By selecting the incoming polarization and analyzing the outgoing polarization one can determine the orbital and spin moments



Magnetic scattering for an antiferromagnet

such as NiO

a: charge periodicity

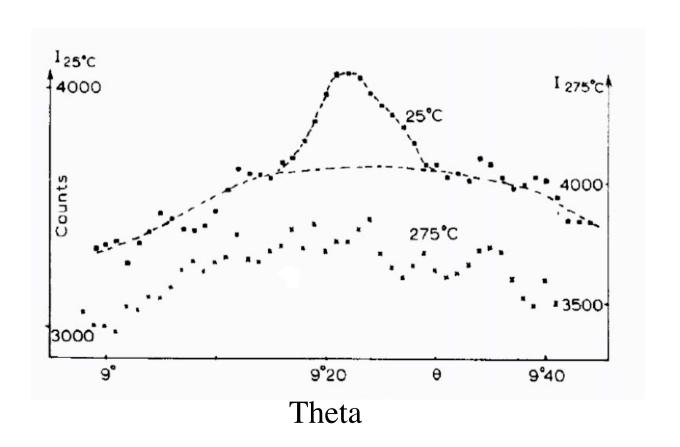


2a: magnetic periodicity → additional reciprocal vectors (superstructure) compared to the charge scattering

First observation of x-ray magnetic scattering

De Bergevin and Brunel, Phys. Lett. A39, 141 (1972)
Antiferromagnetic order in NiO
Laboratory x-ray tube
NiO (3/2.3/2.3/2) reflection

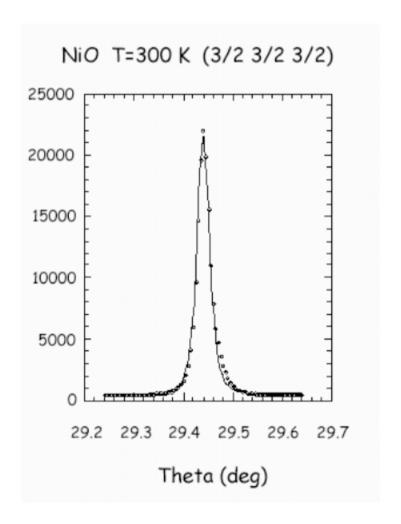
Counts per ~ 4 hours



X-ray magnetic scattering in NiO with synchrotron radiation

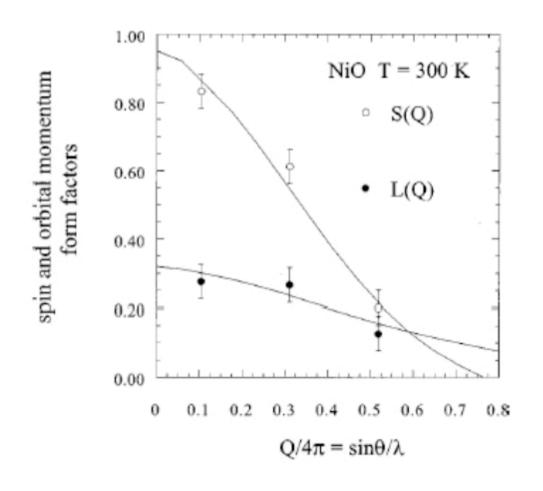
V. Fernandez et al., Phys. Rev. B57, 7870 (1998) ESRF ID20 Beamline

(counts/s)



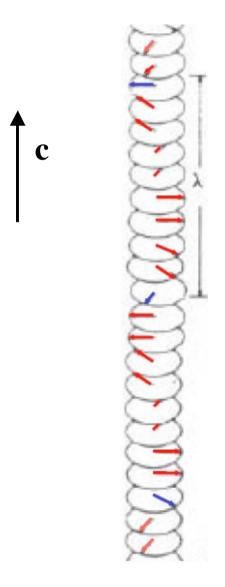
L and S separation for NiO

V. Fernandez et al., Phys. Rev. B57, 7870



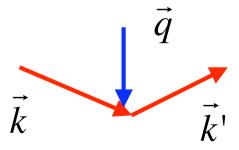
-> L/S=0.34

Application to Holmium magnetic structures



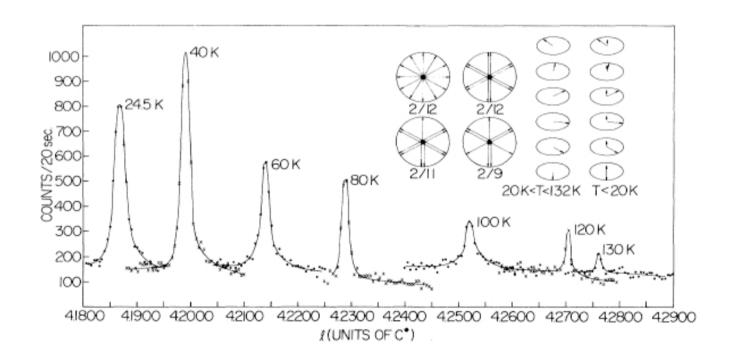
Helical phase (20<T<130K) s rotate from plane to plane with turn angle that depends on T (incommensurate magnetic spirales; reciprocal vectors: $\tau_{\rm m}//c$) (for T< 20 K cone structure)

Scattering geometry:



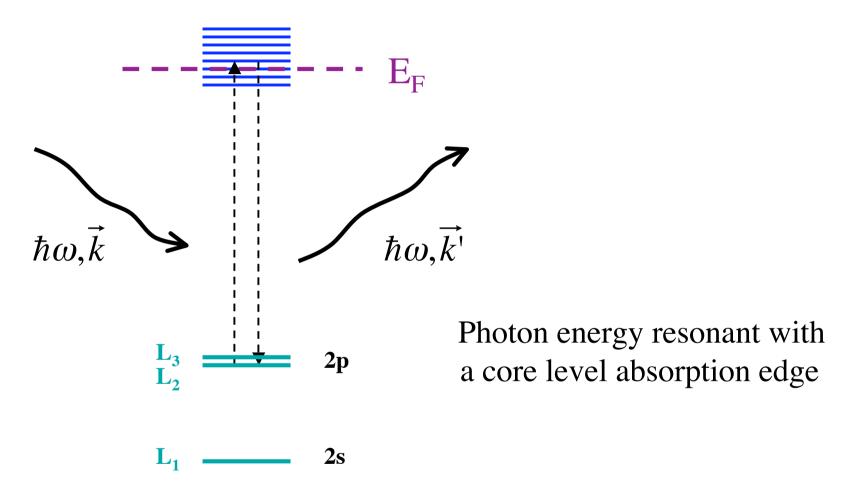
X-ray magnetic scattering in holmium with synchrotron radiation

D. Gibbs et al., Phys. Lett. 55, 234 (1985)



Excellent momentum resolution

B) Resonant scattering



Resonant elastic x-ray scattering is a second order process in which a core electron is virtually promoted to some intermediate states above the Fermi energy, and subsequently decays to the same core level 23

B) Resonant scattering amplitude

Scattering amplitude

$$F^{res.} \propto \sum_{n} \frac{\langle 0 | \vec{\varepsilon}^* \cdot \vec{p} e^{i\vec{k} \cdot \vec{r}} | n \rangle \langle n | \vec{\varepsilon}' \cdot \vec{p} e^{-i\vec{k}' \cdot \vec{r}} | 0 \rangle}{E_n - E_0 - \hbar\omega + i\Gamma/2}$$

Multipole expansion: $e^{i\vec{k}\cdot\vec{r}} \approx 1 + i\vec{k}\cdot\vec{r} + ...$

Strength of the transition depends on:

- -transition order
- -overlap integrals

In transition metals: $L_{2,3}$ edge **2p** -> **3d** (dipolar) 0.4-1keV **strong**

B) Resonant magnetic scattering

- 1) Has a large intensity (10^2-10^4) times larger than non-resonant)
- 2) Is element sensitive (from the core level binding energy)
- 3) Is less directly related to the magnetic moments (but is $\hbar \omega$ dependent -> spectrum)

Dipole-dipole scattering: Hannon-Trammel formula

Hannon et al., Phys. Rev. Lett. 61, 1245 (1988)

$$F^{res.} = -\frac{e^2}{mc^2} \Big[(\vec{\varepsilon}' \cdot \vec{\varepsilon}) f^{(0)} - i(\vec{\varepsilon}' \times \vec{\varepsilon}) \cdot \hat{z}_n f^{(1)} + (\vec{\varepsilon}' \cdot \hat{z}_n) (\vec{\varepsilon}' \cdot \hat{z}_n) f^{(2)} \Big]$$

 \hat{z}_n is a unit vector parallel to the magnetic moment of the nth ion

 $f^{()}$ are linear combination of the components of the atomic scattering tensor $f_{m,m}$,

Note: the Hannon-trammel formula is valid for local atomic site symmetry C_{4h} or higher - see, e.g., Stojic et al., Phys. Rev. B 72, 104108 (2005)

$L_{2,3}$ edge scattering in 3d transition-metal compounds

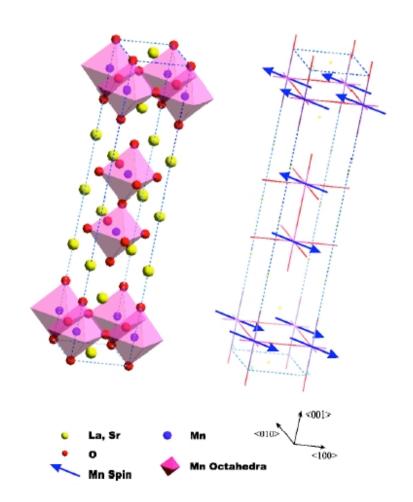
2p -> 3d: directly probes the magnetic electronic states

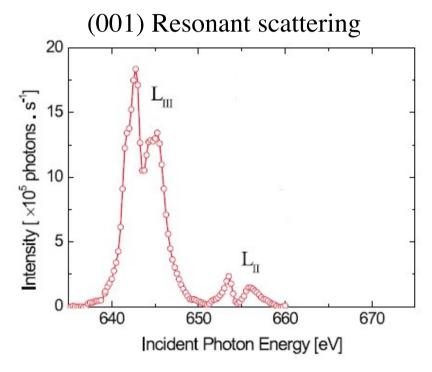
Soft x-ray magnetic scattering probes structures with long periods:

- Artificial superstructures/multilayers
- Complex crystals with large lattice or magnetic unit cells

Soft x-ray resonant magnetic scattering at the Mn $L_{2,3}$ edges in $La_{2-2x}Sr_{1+2x}Mn_2O_7$

Wilkins et al., Phys. Rev. Lett. 90, (2003)

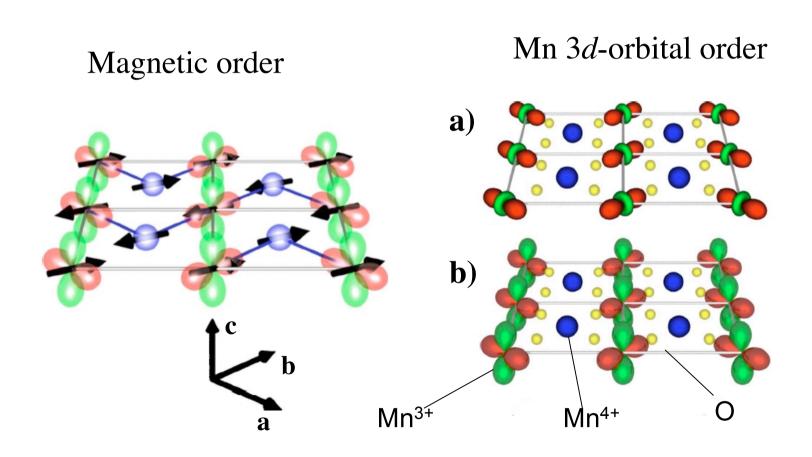




(001) scattering due to AFM magnetic scattering (charge scattering -non-resonant- found to be much weaker)

Soft x-ray resonant scattering at the Mn $L_{2,3}$ edges in $La_{0.5}Sr_{1.5}MnO_4$

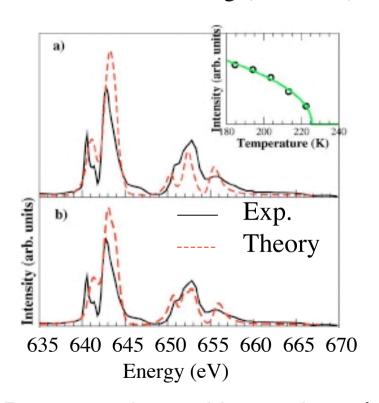
Wilkins et al., Phys. Rev. B 71, 245102 (2005)



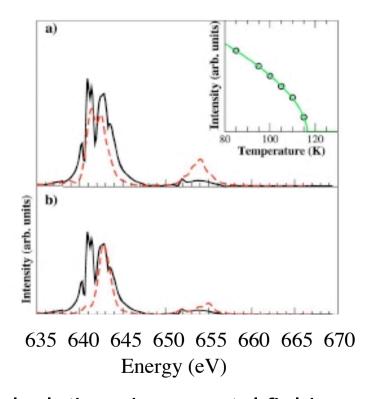
Soft x-ray resonant scattering at the Mn $L_{2,3}$ edges in $La_{0.5}Sr_{1.5}MnO_4$

Wilkins et al., Phys. Rev. B 71, 245102 (2005)

Orbital scattering (1/4,1/4,0)



Magnetic scattering (1/4,-1/4,1/2)



By comparison with atomic multiplet calculations in a crystal field: determination of magnetic & orbital structure; here -> a) x^2-z^2/y^2-z^2