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defmitions and the non-interacting electrons
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The photoelectric effect

Theoretical explanation by A. Einstein (1905):
QUANTIZATION OF LIGHT

Ann. d. Phys. 17, 132 (1905):
Die kinetische Energie solcher Hlektronen ist

early experiments by:
- H. Hertz (1886)

- W. Hallwachs (1888)
- P. Lenard (1902)



Photoelectron spectroscopy

Photoemission spectroscopy is a (photon in) - (electron out) experiment

The emitted electrons may be collected over a broad (angle integrated PES) or narrow
(ARPES) acceptance angle and their kinetic energy measured. The number of
photoelectrons measured versus their kinetic energy, within the energy and angular
windows (resolution) of the analyzer, yields a “photoemission spectrum” or “energy
distribution curve” (EDC spectrum)
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What kind of information carries a photoelectron ?

Angle-resolved photoemission is the most general tool for the investigation of
the occupied band structure of solids. Band mapping based on direct transitions
has been successfully applied to numerous material.

The momentum dependence of the quasi-particle peak lineshape along the Fermi
surface 1s a very sensitive probe of all the scattering (many body) processes.
Spin, light polarization and temperature dependences give information on
magnetic behaviour, symmetries, electron-boson interactions, phase transitions

. and more ...
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Fermi-Dirac distribution and the Fermi-level

The Density of States (DOS) tells us how many states exist at a given energy E.
The Fermi function f(£) specifies how many of the existing states at the energy
E will be filled with electrons. The function f(E) specifies, under equilibrium
conditions, the probability that an available state at an energy £ will be
occupied by an electron. It is a probability distribution function.

1
fE) = 1 + e(E—Ep)KT

. . RTINS

E. = Fermi energy or Fermi level » S
\ T=0K
k = Boltzmann constant = i ;
g
138x 102 J/K=8.6x 105 eV/K o k.
. 0.2 \ ook |

T' = absolute temperature in K | OT(\\ e



An approximate (but useful) model: Three-step model

Energy conservation: E,=hv-IEgl-¢,

Note: when sample and analyzer are in electrical contact, the electron kinetic energy
does not depend on the sample work function. The Fermi level position depends
exclusively on the analyzer work function and therefore it is an absolute reference,
valid also for insulators, which obviously do not exhibit a metallic Fermi edge.

A

Transmission through

Formation of the hot-electron the surface and detection
inside the crystal Traveling from the bulk to the surface

EK (interaction with excitations of the solid)
o)

>

L
ps!
lps|

Surface Analyzer



i

Photoexcitation process

Energy conservation
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Photoexcitation process: Momentum conservation

Photon Momentum P =hq=h/A

Photon Energy E=hv=hc/A
Typical prll)oton q= 2n£ iy E[eV]
wavenumber hc 12400 [eV - A]

=.01t0.05A" (for E=20to 100 eV)

= The photons impart very little
momentum in the photoemission
} 20-100 eV process, i.e. vertical transitions

= Therefore photon-stimulated
transitions are not allowed for
free electrons (energy and momentum
k conservation laws cannot be

satisfied at the same time).




In order to satisfy both energy and momentum conservation:
« The role of crystal translational symmetry is crucial
— i.e. no photoemission is allowed from truly free electrons.

E

G=2m/a

hao <

E=E+hv & k=k+G



##% Transport to the surface

Inelastic scattering of the hot-electrons (electron-electron, electron-
phonon, impurities etc...) produces a loss of electrons and a loss of energy

— Valence band measurements are sensitive to only within the
first few atomic layers of the material

— Spectral peaks have a “loss tail” towards lower kinetic

energies
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33k Transmission through the surface

At the surface the crystal symmetry is conserved in the surface plane but
is broken perpendicularly to the surface: the component of the electron
momentum parallel to the surface plane (k) is conserved, but k | is not

The potential barrier at the surface slows the electron
in the direction normal to the surface.

e—> k,
V,=Surface
— potential step
cooe “inner potential”
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\
/na state dispersion
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At the surface the crystal symmetry is conserved in the surface plane but

is broken perpendicularly to the surface: the component of the electron

momentum parallel to the surface plane (k) is conserved, but k | is not
Kinematic relations

}% \/lg%zzz‘l;kzn

\/_(Ekm + V)

0ut|| zn||

“Snell’s Law”

k|| = Sineout\’zh_mEkm — smO il_T(Ekm + VO)

Critical angle for emission from bulk states

(sin6,, ) \/ Ey
=N E,




First important results:

Eyi,=hv-IEgl-¢,

2m’E
K, =‘/ n;_lz  sin6,,, ~ 0.512E, sinf,,,

Band mapping is therefore completely determined for 1D or 2D
systems and surface states for which k,, is a good quantum number

Anyway, as we will see later, k | is uniquely determined
once E,; and k, are fixed



Angle-resolved photoemission from (quasi) 2D systems: a simple picture

Example: Cu(111) surface state
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Shockley Surface States of Nobel Metal (111) Surfaces

Cu(111) Ag(111) Au(111)
Z=29 Z=47 Z=79
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How a photoemission spectrum looks like in general?

- Cu(100)

Binding Energy rel. to E;

Count rate [arb]
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Bulk or surface states? Why bulk bands are quite sharp anyway?



Photoemission Intensity (arb. units)

e ST e A
e e

-
perenrd o,

T ’ -, o,

e " ot e

el
st

~ s,
e e

st

(a)

3
r
rd
ki
Y
}
[

7
rrrrror

_______

Binding Energy (eV)

Er

......

A

|

1
A

Al

\
4

s

§

J

A

l

3¢

)
X

it

\

5
|

8

Energy (eV)

-15

Photon energy: 105eV (AE=50meV)

in-plane dispersion alongI'- K- M- K-T



How we can recognize surface states from bulk bands?

Simple: fix k,, and change k | . Bulk states should have dispersion,

surface states should not.

A

intensity

Er
binding energy

bulk
state

intensity

;’

bulk  gyrface v
state state
E surface
state

surface
state

Er
binding energy

Easiest way: fix K, =0 (L , normal emission) and change the photon energy



[.I.Mazin V.P.Antropov, Physica C 385, 49 (2003)
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No dispersive peak at 1.65 eV:
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Electronic surface states: a simple
picture

crystal vacuum
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Bulk wave functions crossing a surface:
the decay into the vacuum

Consider the Bloch wave in the bulk 11) Kk (I') = U( I')C (k and r are vectors)

In the mathematical derivation of the Bloch theorem, nothing requires k to be a real
number (K is real only in the approx. of an infinite crystal: Born-von Karman boundary
conditions). In general k can be a complex number, so there are solution also in the form:

w k (r) = [U(r )ei redlor ]e_ e (remember k and r are vectors)

This wave function grows without limit in the direction of k and decays exponentially
in the direction opposite to K.



v, (1‘) _ [u(r)eiRe(k)r e Tm(k r

Since inside the crystal the charge density is always finite and periodic, this
solution has no relevance, but it is relevant by crossing the surface because the
charge density goes to zero in the vacuum: for a bulk state we have to match the
periodic wave inside the crystal with and exponential decay into the vacuum

crystal vacuum
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The form of the surface wave functions

The wave functions at the surface do obey to the crystal symmetry in the surface
plane only, but not perpendicularly because in this direction the translational
invariance (periodicity) is lost (vacuum on one side, bulk crystal on the other).

The surface state wave function inside the crystal should be in the form:

" , )
w k(r) _ [u(r// )el //r//elRe(Q)Z ]e Im( q)z

1.e. a periodic function modulated by an exponential decay from the surface into
the bulk, which should then match an exponential decay function into the vacuum.
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These states are characterized by the momentum k, and energy E(k,). K | is no more
a good quantum number. True surface states cannot be degenerate with bulk
states (i.e. for every k | there should not be any bulk state with the k, and E(k )
of the surface state), otherwise they can propagate periodically and infinitely into
the bulk and therefore are no more surface states.

Surface states live in the projected bulk band gaps
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Understanding the Solid State: Electrons in Reciprocal Space

Many properties of a solids are

determined by electrons near E; .
(conductivity, magnetoresistance, Allowed electronic states

superconductivity, magnetism) Repeated-zone scheme
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Fermi surface n (k) D T 0 - Ir
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Mathematical formulation

The problem 1is to find a function (I)(rl, r,,...,r,) of the r, coordinates of the
n valence electrons such that:

[—E "V + EU(IQ)+ E ¢ ¢O(1,1,...,1,) = EP(1,,1,..., T, )

< 2m Ir.—rjl

TR
/I N\

Kinetic energy

Potential energy in the ion electric field
Whit ions fixed at lattice positions R, each contribute

as Uy(R-r;) and U(I‘i)=ZR Uy(R-r;)

Hopeless problem; an exact solution is out of question



The simplest approx: free electrons (or quasi-free)

We ignore everything (which can be thought more or less constant or at least not
introducing large perturbations) apart the kinetic energy term.

2 2 _ _ - _
[_E v, + UO}(I)(rl,rz ey Tn) = EQ(r1,12..., Tn)
2m

i

2k2

Solution: € = E +UO

¢(r1,r2..., rn)=§,(r)d, (r2)..H_(rn)
I ixr

(I)j(I') = We

The k are restricted by suitable boundary conditions that depend on the crystal
symmetry. If we assume that the unit cell is a parallelepiped of edges a,, a, and
a, we have k,=h 2m/a, k,=k 2n/a , k,=I 21/a,



Example: 1D case Concepts:
Fermi level: the energy of the highest state

occupied by valence electrons according

—=— 7]

; i to their fermionic nature.
__ T _ i { Fermisurface: the iso-energetic surface at
sy yi i |f § { By inthe reciprocal lattice (diameter 2 ky)
. b { i {  Fermivelocity: Vy=hky/m

3-dimension

2-dimension

Too heavy approx?



Periodic Table of the Fermi Surfaces of Elemental Solids
http:/www.phys.ufl.edu/fermisurface
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Alkali & noble metals
(bce) and (fee)




How to Determine Fermi Vectors by Angle-Resolved Photoemission

bandwidth >> detection window bandwidth < detection window

w(k)

T

PES intensity
wi(k)

w(k) - IM(K)|? n(k)

Fig. 8. Schematic behavior of the detected photoelectron intensity near a Fermi level crossing for wide band (left and center) and narrow
band systems (right).



DENSITY OF STATES N(E)
N° of available electronic states
per unit of energy and volume

2D case

Consider adjacent constant energy contours E and E+0E.
How many k points in the skin JE between them?

Typically a/L ~ 10-7-10-3 n(k) = otk <> n(E) = 2mE
1.e. states almost continuous 43-52 / L2 431:2h2 / L2
1 on(E
N(E) = = &) = m2 = cons tan t
L° oE 21h

(Times 2 to account for the spin)



DENSITY OF STATES N(E)
N° of available electronic states
per unit of energy and volume

3D case

Consider adjacent constant energy spheres E and E+0E.
How many k points in the skin JE between them?

4 4
Eﬂk3 gﬁ(sz /h2)3/2
n(k) = <> n(E) =
(k) 8’/ L (E) 8’/ L
3/2
N(E) I on(E) _ (2m) B2 o BIV2

I3 9E  4mh°

(Times 2 to account for the spin)



/ DENSITY OF STATES N(E)
Jt/a

le > N” of available electronic states
---O—O—O—O—O—O—O—Cg--f}--@--@--e---

> per unit of energy and volume
/L

What about 1D case?

k 2mE / 7#*)Y?
n(k) = —— <> n(g) - ZmE /)
2n/ L 2n /L

1 on(E) (2m)"? _
NE =T7F = 2" « B

(Times 2 to account for the spin)

Square root (van Hove) singularity, typical of 1D problems



Quantum Confinement and Dimensionality

Bulk (3D)
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Quantum Wire (1D)
Quantum Dot (0D)
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The effective mass m*

Copper
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oo Y203 X I X
Na .* Tt i —
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Fig. 2. Experimental band structure of Na obtained by ARPES
along the I'N direction (dots). The solid and dashed curves A ¢ »
represent parabolic dispersion curves obtained for a free-electron
mass (m_) and for an effective mass of m* = 1.28 X m_, respec-
tively [12,13]. W
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Effective mass

@ more general definition of m*

O double differentiate E(k) = 7’k” /2m*)+V, w.r.t. k

= d’E/dk’ =h’/m*
or

) m*=h*/(d’E/dk?)

effective mass given by the curvature of E(k)

@ leads to negative m* near top of a band: holes, rather
than electrons



Instrumentation and recent implementations

electron energy
light source analysis

surface preparation

Laboratory sources:
- rare gas discharge lamps
- X-ray tubes

Synchrotron radiation:

- tunable, hv =10 eV...10 keV
- polarized (linear and circular)
- brilliant

- temporal structure



Surface preparation: good surface quality and UHV
H,
Surface contamination: @/‘3 ‘ H0

lifetime of clean surface limited by

adsorption of residual gas atoms
and molecules |

Time T, for monolayer formation at
given vacuum pressure:

pressure Iy

1000 mbar 6x109s

1 mbar 6 x106s

10-3 mbar 6 x10-3s

105 mbar 6 s

109 mbar 6 x10%s = 1.5 hours

= need ultrahigh vacuum (UHV): p < 102 mbar



Photoelectron detection

hemispherical energy analyzer

Angular acquisition max 35° at the same time

momentum distribution curve (MDC)

energy distribution curve
(EDC)
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CCD Imaging detector
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intensity map momentum x10°




State-of-the-art

Scienta
hemispherical
analyzer Blane
mirror Undulator

Entrance slit

4-jaw

Photoelectrons

Toroidal
Sample mirror Exit slit Scan - N

Parallel multi-angle recording - /N N\

e Improved energy resolution
e Improved momentum resolution
e Improved data-acquisition efficiency

normalized intensities [arb. units]
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Clear and nice representation of the data

NbSe, Damascelli et al. (2000)

Band dispersions

Lt
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Binding Energy (eV)

Fermi surface

Sr,RuO, cleaved at 180 K Local-density-approximation
T=10K hv=28 eV band-structure calculation



Summary: advantages and limitation of ARPES

Advantages

Direct information about the
electronic states!

Straightforward comparison with
theory - little or no modeling.

High-resolution information about
BOTH energy and momentum

— band structure E(k)
— Fermi surface k(E;)

Sensitive to “many-body” effects
— spectral function 45(k E)
(if photohole localized | surface)

Surface-sensitive probe

Limitations S e

~10A { Surface Electrons

©

Bulk Electrons

* Not bulk sensitive

» 3dim k-space information difficult
to obtain

» Requires clean, atomically flat
surfaces in ultra-high vacuum

« Cannot be studied as a function
of pressure (or magnetic field)



One-step model and the non-
interacting electrons
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One-step model: Matrix elements

The process at the heart of photoemission is the interaction of a photon with a
many electron system in the ground state|N,i). The transition probability
from the ground state to a final state |N, f) where the photoelectron is detected
with a kinetic energy E,. 1s given by the Fermi Golden Rule:

1(E,,,) = == SKN £ INOf o) Jo(E) - B - )
f

Negligible in case of small field
strength (but relevant for lasers)

IN,i) and N, f) Eigenstates of the unperturbed Hamiltonian
e 1 . e

H =- —(A -V + =divA ——]
7

This term is small inside the crystal and
changes very slowly in space (i.e. div A can be
neglected apart at the surface where it may
affect the lineshape of photoemission peaks)




We are left with:
H.

int

e AVEA
m m

Dipole approx: A=A exp(qr) ~ A,

Because q 1s negligible compared to BZ size (or photon

wavelength small compared to inter-atomic spacing)

So the transition probability reduces to:

26231 2 N N N
m2h z KNa f |A()p|N9 1>| p(Ef )6(Ef - Ei - h'V)
f

I(Ey;,) =
I(Ekin) = E‘Mﬁ ‘2 F)(E?I)E)(]-:’lf\I - E?I - h\’)
f

Up to now everything is many-body!!!!



Single particle approximation
In the limit of non-interacting electrons the N-electron wave
function can be written as the product of single electron wave
functions. We can assume that before and after the
photoemission process the remaining N-1 electrons are not
affected by the photoelectron excitation, so we can write the
transition probability as:

2e’n ) 2 Kf ki
77 Z Aoka|P|ki>| p(Ekf)é(Ekin -E" - h\’)é(kf// -k, - g)

I( Ekin) =

Interpretation: the photon is adsorbed by a single
electron of initial state [k;) in the solid which make a
transition to a photoelectron state |k, ) (plane wave) in the
vacuum. The conservation of the momentum component
parallel to the surface plane has been included.

The remaining N-1 electrons are just “spectators™!!



The photoelectron spectrum consists of “spikes” at energies E, ;|

Z A ;
Electron
analyzer

hy ,é‘

Eyins 95 @

b /Y
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¥x
Kg k )
j =1 B Energy Conservation
N . S—
// ('k Ekin _hV_¢_|EB’
// =
Momentum Conservation

The intensity is modulated by the matrix element IM.l*=I<k A plk.>I?



Symmetry selection rules

2 2  The sample has mirror-plane symmetries.
‘Mﬁ ‘ = <W/ |A ' p|W,-> « Each part of the matrix element has its own
— A possible symmetry with respect to the sample
. - plane.
-E“a; @ §  Whether a transition is allowed or forbidden
e § g9 depends on a combination of experimental
Lo &3 geometry and the details of the wavefunctions
‘W;) A-p |Wi>

Can be even or odd,
depending on location in
Brillouin Zone

Is a plane wave, always even
w.r.t. sample mirror plane

Even in dir-

ections 1 to Ie
polarization . .
vector Odd in this

direction



(H+[+)

Sample
rotatiin axis

Mirror
plane

PhOtOns '-n E

Detector

(H+[+)
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a) even detection

b) odd detection

FIG. 1. (Color) The meaning of “even” and “odd” detection

geometry in the present ARPES experiments is explained. /Ze points
toward the detector. In the even case, the detector moves in the
plane of incident light (horizontal plane) in which the synchrotron
light is polarized. In the odd case, the detector moves in a perpen-
dicular plane as shown. The sample is kept fixed. For initial states
lying in a mirror plane (e.g., along the I'-M line), the even polar-
ization selects emission only from states symmetric with respect to
the mirror plane, while the odd polarization couples to antisymmet-
ric states as discussed in the text. The detector is rotated along the
vertical and horizontal axis to access states throughout the (4, ,k,)
plane.



Matrix effects on a molecular crystal: C,

A

Even hv =35 eV

Odd hv =35 eV

Even hv =70 eV




Theary Lxperiment Theory

Experiment
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M.C. Asensio et al., PRB (2003)
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Matrix effects on the Fermi surface shape in Bi2212



Cooper Minimum

Cooper (1962) pointed out that the cross-section for
photoemission will have a minimum for emission whenever
the radial wavefunction has a node.
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Resonant photoemission
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These processes (non-resonant and resonant photoemission)
have the same initial and final states.

As quantum mechanics dictates, these independent channels will
interfere when added coherently

| M, P= [ 1H welid+ 71l

enhancement

Photoemission
yield or
absorption

Photon energy

Not all valence electrons are enhanced equally!
Only those with overlap to the core hole are enhanced

This can be very useful to get projections of the valence bands to
the individual atoms.

Two constrains on the
time scale of the process:

1) To have a coherent
interfering process the
time scale of the two
channels must be
comparable.

2) The the excited
electron must remain
localized on the same
atom of the core hole
for a time scale bigger
or comparable to the
core hole lifetime



Gd@Cy, resonant photoemission
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FIG. 3. (Color online) Resonant photoemission valence band

spectra collected at the Gd 4d— 4/ edge.

10

Intensity (arb. units)

— XAS
- Calculations

T T T T T T T T T T T T

— XAS

@® D band intensity
+ A band intensity
X B band intensity
— Fano fit

(b)

Photon energy (eV)



~ 310
= 5
2 305
>
D 300
2
o 295

Intensity (arb units)

25 20 15 10 5 0
Binding Energy (eV)

320 eV

Photon Energy

279 eV

Intensity (arb. units)

(b) ZnTPP/CmIS|
Normal incidence
60
—— Total VB area (NEXAFS C1s edge partial yield)
—— Pure Resonant signal normalized
——— Pure Resonant signal
40 -
20
A
/\/\‘ 1
0 ] A ~A p—
T ——rr—r T T
280 285 290 295

PHhoton Energy (eV)

When excited to these
states, C1s core electrons
delocalize well before the
core hole decay.
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Bulk Fermi Surface mapping: case studies Cu
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F1G. 3. On the left side, experimental photoelectron angular distributions from the Cu(100) Fermi surface at 21, 33, and 55 eV kinetic energies. On the right
side, the results of a tight binding theoretical calculation for the same energies are indicated.





