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Angle Resolved photoemission spectroscopy.



Part III
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• Interacting electrons: many-body physics
• Single particle spectral density function A(k, ω)
• The self-energy
• The “kinky” physics: electron-phonon interactions
• 1D System: Luttinger liquid. Spinon and holon dispersion
• Mott-Hubbard insulator
• Fullerenes



Many body effects are due to the interactions between the electrons
 and each other, or with excitations inside the crystal :

1) A “many-body” problem: intrinsically hard to calculate and understand

2) Responsible for many surprising phenomena:
Superconductivity, Magnetism, Density Waves, ....

Non-Interacting Interacting

Interaction effects between electrons: “Many-body Physics”
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The final state relevant for photoemission must contain a free electron with wave
vector k and energy Ekin.
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Now the sum is over all the possible final excited states x of the (N-1)-electrons
system left behind by the photoelectron. The essential step in simplifying this
expression consists in the factorization of the final state wave function |k, N-1, x as
the product of the photoelectron φk and the φx(N-1) electrons wave functions.
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Interacting Electrons: many-body physics
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This involves two assumptions:

1) Sudden approx.: The photoelectron decuples immediately from the
photohole left behind and carries no information on the relaxation
of the (N-1) system

2) We neglect inelastic losses of the photoelectron on its travel inside
the crystal
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In second quantization

where
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ckj destroys an electron with momentum kj from the initial state |N,i 

|N-1,x is an eigenstate of the (N-1) Hamiltonian,
while the (N-1) wave function ckj|N,i is not

We can write Ei
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Interpretation: The photon absorption suddenly creates an (N-1)-electron state ckj|N,i
that is not an eigenstate of the (N-1) Hamiltonian (frozen state). The spectrum is the
projection of this frozen states over the “fully relaxed” eigenstates |N-1,x of the (N-1)
Hamiltonian. We call “fundamental peak” (or “elastic peak”, or “coherent peak”) the
transition leaving the (N-1)-system in the ground state |N-1,0 that correspond to a
photoelectron with kinetic energy
The spectrum also exhibits peaks at lower kinetic energies by quantities -Δεx when the
system is left in an excited |N-1,x  state.
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Transition probability for interacting electrons



Sudden Adiabatic 
or non-interacting

Kinetic Energy

Interacting electrons

“fundamental”





Interacting electrons ?

Still no information on
the lifetime of the states
(width of the peaks)



It is useful to introduce the one-electron removal Green function formalism:
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η can be infinitesimally small

… and the corresponding spectral density function A(kj,ωj)=(1/π)ImG(kj, ωj)
In the limit η →0:
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Comparing to:

!j = h" # Ekin = Ei
N
# Ex

N#1Where A(kj,ωj) ≠ 0 only when 
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A bit of math and the quasi-particles



Rewriting in terms of the electron binding energy ω, considering the momentum
conservation and including the Fermi-Dirac distribution:

I(k,ω) = Iif(k,A,ν)A(k, ω) fd(ω, T) 

Proportional to
Matrix elements

Spectral function

Fermi-Dirac

This is the most important result: in the sudden approx. the
photoemission spectrum is proportional to the single particle spectral
density function A(k, ω)

This relationship has been obtained in the limit η→0 (η is the peak width), i.e. the
peaks are Dirac’s δ. It can be extended to “real systems” where the width Γ is finite.



G(k,!) =
N "1,x ck N,i

2

! " Ex
N"1

+ Ei
N
" i#x

$

A(k,!) =
1

"
ImG(k,!) =

#

"

N $1, x ck N, i
2

(! $ Ex
N$1

+ Ei
N
)
2
+ #

2

x

%

Quasi-particle: when one hole is added adiabatically forming an (N-1)-electron
system the coulomb interaction is screened by the formation of an electron
cloud around the hole. At equilibrium, the hole+the screening cloud is a quasi-
particle.
An eigenstate |N-1, x of the (N-1)-electron system can be obtained by adding a
quasi-particle to the N-electron system (quasi-particle state).

If instead we suddenly simply add a bare hole of momentum k (or we remove
an electron of momentum k) we obtain the state ck|N,i , that in general is not an
eigenstate of the (N-1)-system, but it will have a finite overlap with the
corresponding quasi-particle state.
The spectral density function A(k, ω) gives the probability that the original
system plus the bare hole will be found in an exact eigenstate of the (N-1)-
system
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Where ε(k) is the quasi-particle energy referred to the Fermi level µ=0 

  

}
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As ε(k) → µ,  Γ ∝ (ε- µ)2→0

The quasi-particle is well-defined only at (or very close to) the Fermi level, where
its lifetime 1/ Γ →∞



Interacting electrons

=1/2ε(k)

=µ

Coherent

Incoherent

non-interacting
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Example: TiTe2



The total width γ (overlapping
region) depends on the slopes,
or group velocities.
γ is dominated by Γf (much
larger than Γi).
Difficult to obtain the true
quasiparticle inverse lifetime.



Normal emission Interesting when vi=vf and vi/vf=0



Grazing emission

When vi/vf=0     γ = C·Γi  

C = 
-1





The self-energy
It is useful to express the effects of the electron interactions in terms
of the “electron self energy” defined as:
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… rewriting G(k,ω) and A(k,ω): 





The “Kinky” physics
• Clear-cut case of a quasiparticle picture
• The quasiparticle mass near EF is renormalized and
the density of state increased
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Electron-phonon coupling

Spectral function: 
excitation spectrum







Coupling to adsorbate vibrations on a surface



Intrinsic electron-phonon coupling on a surface: Debye model









Electron-phonon coupling constant and superconductivity



Coupling to other bosons



Fe(001) surface state: dispersion and lifetime width





1D System: breakdown of the Fermi liquid
Spinon and holon dispersion

t

J

t - hopping integral

J∝t2/U - magnetic exchange

U >> t
strong
coupling



B.J. Kim at al., Nature Physics 2 (2006)









1D System: breakdown of the Fermi liquid
The Tomonaga-Luttinger liquid



H. H. Ishii Ishii et al, Nature, 426, 540 (2003)et al, Nature, 426, 540 (2003)
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SWCNTs: an example of Tomonaga-Luttinger liquid



n(E) ∝ |E-EF|α, where α=(g+g-1-2)/8
depends on the size of the Coulomb
interaction and g is the Luttinger
parameter

α ~ 0.53±0.05  for pristine SWCNTs
in agreement with other estimations

α=0  Fermi liquid

log-log plot Transition from a 
Tomonaga-Luttinger liquid 

to a Fermi liquid
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R. Larciprete, S. Lizzit, L. Petaccia, A. Goldoni, PRB 71, (2005)



Mott-Hubbard insulator



Ca2-xNaxCuO2Cl2: at x=0 Mott-Hubbard insulator





Polaron formation



Ca2-xNaxCuO2Cl2: doping dependence



Ca2-xNaxCuO2Cl2: doping dependence
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HOMO-1
HOMO

LUMO

A. Goldoni, L. Sangaletti, S.L. Friedmann, Z.-X. Shen, M. Peloi,
 F. Parmigiani, G. Comelli and G. Paolucci, J. Chem. Phys. 113, 8266 (2000)

Strongly correlated metal

Mott-Hubbard insulator

Strong correlations U ~ 1 - 1.3 eV
Small band dispersion W ~ 0.5 - 0.6 eV
Orbital degeneracy (HOMO 5 fold, LUMO 3 fold)
Small Fermi energy ~ 0.25 eV
Phonon spectrum up to 0.2 eV
Jahn-Teller distortions in charged C60
EJT~ 0.03-0.18 eV for C60

n-

Fullerenes



Band dispersion of K3C60(111)
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