

The Abdus Salam International Centre for Theoretical Physics

1938-17

Workshop on Nanoscience for Solar Energy Conversion

27 - 29 October 2008

Mesoscopic Donor-Acceptor Multilayer by Ultra-High-Vacuum Deposition of Zn-Tetraphenyl-Porphyrin and C70

Andrea GOLDONI

Area di Ricerca Sincrotrone Trieste S.p.A. Padriciano 99, 34012 Trieste Italy

<u>C. Castellarin-Cudia, P. Vilmercati,</u> <u>G. Zampieri, L. Petaccia, S. Lizzit</u> <u>Sincrotrone Trieste S.C.p.A. (The SuperESCA people)</u>

<u>R. Gebauer, P. Ghosh</u> ICTP (The theoretical people)

<u>C. Cepek, A. Verdini, A. Cossaro, L. Floreano, A. Morgante</u> Lab. Nazionale TASC-INFM-CNR, Trieste (The ALOISA people)

<u>R. Larciprete</u> CNR-IMIP, Roma

<u>L. Sangaletti, S. Pagliara</u> Università Cattolica del Sacro Cuore, Brescia

<u>G. Polzonetti</u> Università Roma Tre, Roma

OUTLINE

Short introduction on organic photovoltaic cells then...

1) Growth and orientation of Zn-TPP/C₇₀ films

* Zn-TPP thick-layers on Si(111)
* Double layer Zn-TPP/C₇₀/Si(111)

* Multilayer co-deposited Zn-TPP/C₇₀

2) Electronic structure via NEXAFS and photoemission
 * Same systems as above
 * Evidence for interaction between C₇₀ and Zn-TPP

3) Charge-transfer time scale with resonant photoemission

*Same systems as above *In mixed systems the excited electrons are delocalized more efficiently

Photovoltaic principles

Reasons for the use of organics in solar cell applications

- 1) Easy processing, e.g. spin coating, sublimation.
- Relatively small amount of organic molecules per device (100 nm of film thickness for 100% light absorption).
- 3) Large scale production easier than for inorganic materials.
- 4) Chemical tuning of band gap, charge transport and electronic properties, as well as structural properties and solubility.
- 5) Self assembled monolayers, layer by layer deposited films, Langmuir Blodgett films can allow the control of molecular order.
- 6) Can sensitize semiconductor for efficient electron-hole extraction.
- 7) Vast variety of materials (fullerenes, polymers, oligomers, dyes, pigments, liquid crystals, ...) and structural combinations.
- 8) Every kind of transparent & conducting substrate (even plastic).

and...

Photovoltaic inspired to natural processes

Bio-mimetic systems

GOOD:

Absorption spectrum of porphyrins covers almost the whole visible range (Donors) Hole-transport (p-type)

BAD:

No triplet state T_1 reachable (long lived excitons) in a short time: S_1 - S_0 luminescence decay dominates

SOLUTION: DONOR-ACCEPTOR complexes

Fullerenes (A) covalently linked to porphyrins (D) shows the formation of relatively long lived charge separated states: promising as photoactive materials for energy conversion

 S_0 and A* should be localized on the D and A molecules, respectively, in order to have charge separation and a low probability of a radiative A* \rightarrow S₀ decay: use linker molecules between D

1/ket=charge transfer time ~ 100-500 fs

N. Armaroli et al., Chem. Eur. J. (2000)

On the other hand....

Fig. 13. Crystal Structure of $Co(II)(tbp) \cdot C_{60}$ viewed along the *a*-axis.

Close proximity between C_{60} and C_{70} and several kinds of porphyrins observed in cocrystals and in solution: the luminescence decay of porphyrin is strongly quenched.

Y.P. Sun et al, J. Org. Chem. 62, 3642 (1997); P.D.W. Boyd et al, J. Am. Chem. Soc. 121, 10487 (1999);

T. Ishii et al, Coordination Chem. Rev. 226, 113 (2002).

M.E. Milanesio et al, J. Phys. Org. Chem. 15, 844 (2002).

ZnTPP/C₆₀ complexes with no linker: orbital calculations

GOOD COMPROMISE: The two molecules are close, good conjungation, but the molecular orbitals are well localized (HOMO on Zn-porphyrin macrocycle and LUMO on fullerene), so the charge transfer should be facilitated.

C₇₀-fullerene

The big brother of the most famous C_{60} . Fullerenes are highly symmetric carbon cages with very good tendency of accepting electrons. Among the few organic materials that may behave as n-type conductors. Small reorganization energy λ and luminescence yield (optically forbidden lowest HOMO-LUMO transition)

Porphyrins

from the Greek *porphura* = "purple"

Basic structure is the porphine macrocycle, which consists of a 16-atoms ring containing four nitrogen atoms, obtained by linking four tetrapyrrolic subunits with four methine bridges.

The macrocycle is an aromatic system containing 22 π -electrons, but only 18 of them are delocalized according to the Hückel's rule of aromaticity (4n+2 delocalized π -electrons, where n=4). The size of the macrocycle is perfect to bind almost all metal ions (e.g. Fe, Zn, Cu, Ni, and Co) which can be inserted in the center forming metal-porphyrins.

OUR GOAL

Deposition of C_{70} and Zn-TPP on substrates by UHV sublimation :

- 1) Formation of ordered compact films
- 2) Thickness control layer-by-layer
- 3) Sandwich structures with different molecular orientations
- 4) Self assembled mixed C_{70}/Zn -TPP thick films

Electronic structure, bonding formation and molecular orientations investigated using photoemission and x-ray absorption

D-A charge transfer time investigated by resonant photoemission

Note: order and molecular packing increase exciton and charges mobility by orders of magnitude (example: typical organic mobility $10^{-4} - 10^{-8} \text{ cm}^2/\text{V} \cdot \text{s}$, while in C₆₀ single crystal ~ 2 cm²/ V·s); Relative molecular orientations influence the charge transfer time and transport.

EXPERIMENTAL

Measurements performed at

SuperESCA: XPS, NEXAFS, UPS, RESPES ALOISA: polariz. dependent NEXAFS, XPS

RESPES probes the charge transfer time of an excited state on the time scale of the core hole lifetime (core hole clock): pump & probe experiment in the energy domain ($\Delta E \cdot \Delta t \ge h/2\pi$)

W. Wurth & D. Menzel, Chem. Phys. 251, 141 (2000);J. Schnadt et al, Nature 418, 620 (2002)

ZnTPP multilayer

Dihedral angle: angle θ between the phenyl plane and the macrocycle

The angle is big due to the steric interactions between the hydrogen atoms: Minimal π -overlap between macrocycle and phenyl-groups Small perturbation of the porphyrin electronic structure

Resonant photoemission across the C1s threshold

LUMO+2(3) feature is reduced. This indicates that when the electron is excited into the LUMO+2(3) states it remains localized on the molecule for a time bigger but comparable (competing) to the core-hole lifetime (\sim 5 fs for the C 1s) and therefore this excited states contribute only partly to the core-hole decay as spectator state. On the contrary, in the LUMO and LUMO+1 states the electron remains localized for a time much bigger than the core-hole lifetime.

1 ML of ZnTPP/1ML C₇₀/Si(111): Double Layer Structure

1 ML ZnTpp/1ML C₇₀/Si(111)

Close packed C_{70} ML are adsorbed on Si with the long axis perpendicular to the surface ZnTpp single layer formed on top by depositing molecules with the substrate @200 °C

The N equivalence is broken by the interaction with C₇₀

The N 1s XPS spectrum of the $ZnTpp/C_{70}$ double layer can be reproduced by the superposition of two N 1s spectra of the ZnTpp multilayer (1:1)

Y.-B. Wang & Z. Lin, JACS 125, 6072 (2003)

Figure S4. Molecular electrostatic potentials of 5,10,15,20-tetraphenylporphyrinatozinc, mapped from -0.02 to +0.10 e/4 π e₀a₀, onto 0.02 e Å⁻³m isosurface of the electron density at the PBE/6-31G(d,p) level

Figure S2. Molecular electrostatic potentials of C₇₀ from difference perspective projections, mapped from -0.0004 to +0.007 e/4 π e₀a₀, onto 0.001 e Å⁻³m isosurface of the electron density at the PBE/6-31G(d,p) level

Full core hole calculations. Contribution of the 5 different atoms to the C_{70} NEXAFS spectrum

Resonant Photoemission

Already from a first sight in comparison with the ZnTPP multilayer there is a general reduction of the intensity enhancement at resonance (a factor of 1.5). This global reduction of the resonant intensity indicates that in the ZnTPP/C₇₀ double layer system the electron excited on a ZnTPP molecule is transferred away on a time scale of ~ 7 fs.

The transition to the LUMO+2(3) is completely quenched: the charge transfer from these states is much faster than the corehole lifetime (5 fs)

Co-deposition of C_{70} and ZnTPP

Small charge transfer from porphyrin to $C_{70} \sim 0.013$ el/molecule

The ground state electronic spectra are a simple summation of ZnTPP and C_{70} properties

Orientation of ZnTPP and C₇₀

Similar molecular arrangements observed in CuTpp-C₇₀, ZnTpp-C₇₀ and H₂TPP-C₇₀ cocrystals precipitated from solutions

D.V. Konarev *et al*, Chem. Eur. J. **7**, 2605 (2001) P.D.W. Boyd et al, JACS **121**, 10487 (1999)

and predicted for $ZnTpp-C_{70}$

Y.-B. Wang & Z. Lin, JACS 125, 6072 (2003)

There are many resonances which, more or less, follow the NEXAFS peaks, but ...

Excited state interactions are present in the contiguous chromophores and this system acts as a *donor/acceptor* junction where the excited charges at the porphyrin macrocycle can fast delocalize to the fullerene. The time scale of the ultra-fast charge transfer is smaller than 1-2 *fs*.

CONCLUSIONS

•The attraction of C_{70} and ZnTPP allows the engineering of supramolecular solids on a mesoscopic scale.

•We were able to grow in ultra-high vacuum molecular complexes of ZnTPP and C_{70} deposited on a semiconductor surface, where the two molecules assume a preferential reciprocal orientation.

•The double-layer system can fast delocalize (5-7 fs) the excited charge and could act as a dye in Gratzel cell.

B. O'Regan, M. Grätzel Nature 1991, 353, 737

•The ground state electronic spectra of our co-deposited material reflect a simple summation of components, so the ground state perturbation is weak.

•However, the excited state interactions are present in the contiguous chromophores and this system acts as a *donor/acceptor* junction where the excited charges at the porphyrin macrocycle can fast delocalize to the fullerene. The time scale of the ultra-fast charge transfer is smaller than 1-2 fs.

