

1938-4

Workshop on Nanoscience for Solar Energy Conversion

27 - 29 October 2008

Materials-related aspects of TiO2-based photocatalysis

Annabella SELLONI

Princeton University, Department of Chemistry Washington Rd & William St.NJ 08544-1009 Princeton USA

Materials-related aspects in TiO_2 -based photocatalysis: insights from first principles simulations

Annabella Selloni

Department of Chemistry, Princeton University

"Surface science" studies of TiO2:

- Structure, energetics & reactivity (mostly anatase)
- Rutile vs Anatase (energies and defects)
- · A model dye/TiO₂ system: catechol/R-TiO₂(110)

TiO₂ -based Photocatalysis: Applications and Promise

- · removal of organic pollutants, purifying of water or air
- · self-cleaning/desinfecting coatings (bacteria, viruses, cancer cells)
- photoelectrochemical cells, solar cells
- photocatalytic splitting of water, production of hydrogen

TiO₂: Anatase and Rutile

- > Rutile is the most stable bulk phase
- > Anatase usually more active for photocatalysis

Electronic structure: DOS (GGA-PBE)

Experimental observation.

Anatase phase is most stable for nanoparticles up to ~ 14 nm.

 Proposed explanation: the smaller the crystal, the larger is the fraction of surface atoms; surface energy makes the anatase phase more favorable

[Zhang & Banfield, J. Mater. Chem. 8 (2073) 1998

Surface energy depends almost linearly on the density of undercoordinated Ti atoms

DFT claculations: PBE functional plane-waves, ultrasoft pseudopots

Quantum ESPRESSO: CP90, PWscf

http://www.democritos.it

Crystal shape: theory vs. experiment

theory

natural anatase

Lazzeri, Vittadini, Selloni, PRB 63 (2001) 155409.

anatase nanocrystals

from: Shklover et al. J. Sol St. Chem. 132 (1997) 60

Crystal surface energy: anatase vs. rutile

• For anatase, the most stable (101) surface constitutes 94% of the crystal surface.

• Average surface energy (LDA): Rutile = 1.09 J/m^2 Anatase = 0.90 J/m^2

[Zhang & Banfield, J. Mater. Chem. 8 (2073) 1998]

Anatase TiO₂

Adsorption of small probe molecules: majority anatase TiO₂(101)

Weak molecular adsorption \Rightarrow low reactivity, in line with the low surface energy of anatase (101)

Water on anatase $TiO_2(101)$

TPD spectrum

250 K: H₂O-Ti_{5c}

190 K: H₂O-O_{2c}

160 K: multilayer H₂O

No dissociated H₂O

CH₃OH: Molecular Adsorption (tiny amount of dissociation)

H_2O on anatase (101)

A. Tilocca, A. Selloni: JCP <u>119</u>, 74445 (2003); JPCB <u>108</u>, 4743 (2004); Langmuir <u>20</u>, 8379 (2004); JPCB <u>108</u>, 19314 (2004)

 $E_{ads} = 0.69 \text{ eV} / \text{molecule}$

3 ML (TL)

(ice-like structure)

Vertical order: layering

Water multilayer: adsorption energies

A.Tilocca & A. Selloni, Langmuir (2004)

Trend in estimated desorption T in agreement with TPD experiments

Adsorption of small probe molecules: minority anatase TiO₂(001)

Dissociative adsorption \Rightarrow high reactivity, in line with the high surface energy of anatase (001)

~50% of dissociated MeOH & H₂O on ~2nm anatase nanoparticles inferred from SFG intensities

SFG: Wang, Groenzin, Shultz JACS 2004, 2005

SFG spectrum of methanol on thin, nanoparticulate film of TiO_2 . Peaks at 2844 & 2953 cm⁻¹ \rightarrow symmetric and antisymmetric vibrational modes of molecular methanol.

Peaks at 2816 & 2919 cm⁻¹ \rightarrow symmetric and antisymmetric modes of adsorbed methoxy CH₃ groups.

Anatase TiO2 single crystals with a large percentage of reactive facets

H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng & G. Q. Lu, Nature 453, 638 (2008)

See also: A. Selloni, Nature Materials 7, 613 (2008)

Anatase (001): (1x4) reconstruction

· Clean anatase (001) is actually reconstructed!

Herman et al. PRL 84, 3354 (2000)

• Most favorable model imply the formation of a polymer of TiO_2 units adsorbed on the surface.

This lowers the surface energy from 0.90 to 0.51 J/m^2 (Lazzeri & Selloni, PRL 87 (2001) 266105)

Water on anatase $TiO_2(001)-1\times4$

On hill

side view

two unit cells

♦ Eads = 1.82 eV

Gong et al., JCPB 110, 2804(2006)

On terrace

◆ Eads = 1.18 eV (molecular, weaker than on 1x1)

Can the surface be functionalized before reconstructing?

Anatase vs Rutile: point defects

...much of the surface chemistry of metal oxide is defectdriven...

V. Henrich, P.A. Cox, "The Surface Science of Metal Oxides" Cambridge University Press 1994

Step edges:

- ·Very common at crystal surfaces.
- ·Key role in roughening, faceting, growth...
- On nanocrystals, a large fraction of atoms are at steps

Color change in TiO₂ samples induced by increasing level of <u>oxygen vacancies</u>

Defects change electronic properties of the material

Structure and STM images

Empty state STM image of anatase (101)

Diebold & co. (2008)

Empty state STM image of rutile (110) (bright rows ≡ Ti atoms)

Besenbacher & co. Surf. Sci. (2005)²²

Much fewer point defects point defects on anatase (101) vs rutile (110) under similar preparation conditions!

Comparing O-vacancy formation energies

Anatase (101)

Vo1	Vo2	Vo3	Vo4	Vo5
4.15	(5.40)	(4.73)	3.69	3.65

Anatase(001)-1x4

Vo1	Vo2	Vo3	Vo4	Vo5
4.57	5.17	4.29	4.78	4.10

Rutile(110)

Vo1	Vo2	Vo3	Vo4	Vo5	Vo6	Vo7	Vo8	Vo9
3.68	4.50	3.99	5.23	4.73	5.28	4.46	4.67	4.38

Prediction

- □ Anatase: O-vacancies prefer subsurface rather than surface sites.
- Rutile: surface O-bridging and sub-bridging sites are favored with respect to subsurface and bulk sites

agrees also with resonant photoemission data (Thomas, Flavell & co, PRB 75, 035105 (2007))

...analyze relaxation at surface & subsurface sites

Relaxed atomic structure before (upper row) and after (lower row) creation of an O-vacancy at surface and subsurface sites of the anatase(101) surface: (a,d) Vo1; (b,e) Vo4; (c,f) Vo5. \Rightarrow Relaxation is more important at subsurface sites, surface is more "rigid"

27

Facile O-vacancy diffusion from surface to subsurface

Summary

Surface vs subsurface distribution of O-vacancies in anatase is different from that in rutile.

O-vacancies are most likely to occur on the surface in rutile.

In anatase, a relatively defect-free surface is predicted, i.e. defects are mainly confined in the subsurface region.

Adsorption of catechol on TiO₂(110)

(collaboration with U. Diebold, Tulane)

1,2 benzenediol

Motivation:

- Model dye/TiO₂ semiconductor system
- Model 'sticky molecule' for photocatalytic cleaning of TiO₂ coatings (on EUV mirrors)

Step1 (expt) – STM measurements show the formation of a well-ordered superstructure with a 4×1 periodicity at saturation coverage

STM images (10 x 10 nm²) of a $TiO_2(110)$ surface covered with a 4 × 1 overlayer of catechol, recorded on the same area with sample bias voltages of (a) +0.9 V and (b) +0.6 V and a tunneling current of ~0.03 nA.

Step 2 (calc) -Adsorption structures of 0.5 ML catechol on $TiO_2(110)$ from DFT (2 mol/(4x1) cell)

D1 = monodentate

D2 = bidentate

Tilted molecules favored b/c of reduced repulsion H-bonding favors tilted D1 structures

Adsorption structures & simulated STM images of 4x1 ML catechol on $TiO_2(110)$ from DFT calcs

Step 3 (expt)

UPS valence band spectra (hv = 40 eV), from a clean TiO₂(110) surface and after exposure to a saturation coverage of catechol at RT. The inset shows the intensity variation of these states with the analyzer take-off angle.

Step 4 (th)

Total DOS of 4×1 ML catechol/TiO₂ (110) + DOS for the clean surface (back curve). Energy zero = theor Fermi energy.

D1-D1

D1-D2

Only bidentate (D2)
molecules introduce
states in the gap
(increased mixing with Ti
conduction band states)

SUMMARY & CONCLUSIONS

Catechol / $TiO_2(110)$ forms two full coverage H-bonded structures, D1-D1 and D1-D2. These two structures can easily convert from one into the other via proton exchange between the surface and the adsorbed catechol.

Strong correlation between electronic structure & adsorption geometry.

Occupied states in the TiO_2 band gap are traps for photo-generated holes \Rightarrow D2 catechol more easily photo-oxidized than D1 catechol.

Many thanks to

Hongzhi Chen

Xue-qing Gong

Michele Lazzeri

Antonio Tilocca

Andrea Vittadini

Jianguo Wang

Ulrike Diebold & collaborators, Tulane University (exptal work)