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Spherical core
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Microscopic origin

Shell model — matrix elements of the effective interaction between identical
nucleons are strongly attractive when the two nucleons are in a J = 0 state and

remain attractive when the two nucleons are in a J = 2 state. They become
repulsive for J > 4.

Nucleons tend to form pairs with angular momentum J =0 or J = 2

e EXPERIMENTAL P-P MATRIX ELEMENT [MeV| —=—




Generalized seniority scheme: generalization of the seniority scheme to several
non-degenerate orbits. The number of active nucleons is counted in respect to
the nearest closed shell (valence nucleons). Contributions from orbitals outside
the valence shell can be neglected since they lie at a too high energy.

A collective J = 0 pair is generated by the operator

St=> a;s!
J

1 , .

J

State with generalized seniority w = 0 and n = 2N particles

n, J =0, w=0)=(SH" |0)



An excited 27 state is generated by the operator that creates a collective state
with J =2 and w = 2

1
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State with generalized seniority w = 2, J = 2 and n = 2N particles

n, J =2, w=2)=D"(SH""" |0)

The structure coeflicients o; and (3 ;;/ can be obtained by diagonalizing the shell
model interaction in the space of all w = 0, 2 states.



Instead of having to use the full shell model space, it is sufficient to consider
the much smaller (S, D) subspace.

Low-lying collective states can be described very well
Non collective states can not be described

The matrix elements of the fermion operators in the (S, D) subspace can
be cumbersome

The space built on S and D fermion pairs is mapped onto a corresponding
space built on s and d boson degrees of freedom

For states containing more than one D fermion pair we have to map the
component of the state which is orthogonal to all the states containing
fewer D fermion pairs

SV, L =0) —s |sN, L=0)
D SNt L=2 — |dsV, L=2)
|Dm SN—m, L> orth — Idm SN—m’ L)



e By equating matrix elements in (S, D) and (s, d) spaces the operators in
the (s, d) space are obtained

e Since the S and D fermion pairs are always pairs of like nucleons (two
protons or two neutrons), one has proton (s,,d,) and neutron (s,,d,)

bosons. The model is called IBM-2.
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e The major part of the interaction between like particles is contained in
the boson energies and a smaller in the V,,, and V., terms.

e The QF-QF interaction is the boson image of the neutron-proton quadrupole-
quadrupole interaction.

e M, (Majorana term) shifts up all states that are not totally symmetric in
the neutron-proton degree of freedom. It is a consequence of the truncation
of the basis to s and d bosons only.

Introducing the concept of F' spin, the IBM-1 Hamiltonian can be obtained by
projecting out the part that acts only on the maximal F' spin subspace (on
states that are totally symmetric in the neutron-proton degree of freedom).
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LIMITS

U(6) UB)D0((5B)D03)D0(2) wibrational limit
Ue) > SU(3) D O(3)D0(2) rotational limit
U6) D 06)DO(B)DO0B)D0O(2) ~—softlimit

U

The Lie algebra U(6) admits:
e Schwinger boson realization in terms of 6 bosons s, d,,

e Holstein-Primakoff boson realization in terms of 5 bosons b,

E T
21 b?,u,

st \/NZb;gﬂbg}u
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e In the IBFM an odd-nucleon operator a; is introduced in addition to the

s and d boson operators.

e The states in the IBFM model space can be related to the shell model
basis by using the generalized seniority scheme.

e The odd-nucleon operator aj should not be regarded as a nucleon creation
operator (in the shell model sense) but as a generalized seniority raising
operator.

af |sN) = js™) = In=2N+1,J=jw=1)
(ald) N1 = |(ja) sV ) e n=2N+1,J,w=3)

e The operator a} operating on an N boson state with ng d -bosons creates
a state which corresponds to a shell model state with n = 2N + 1 and
w=2nq + 1.

e For the shell model single-nucleon operator c;r-

cj- lw=2) =alw=1)+Blw=3)

T

e For the odd-nucleon operator a;

T ot | Py
a; lw=2)=|w=23)



A microscopic theory for a system that includes both fermionic and
bosonic degrees of freedom is complicated.

The dominant interaction in the coupling of the odd-particle to the

bosons is the proton-neutron quadrupole interaction — constructlon
of the IBFM image of the shell model quadrupole operator.

There are several methods for obtaining the IBFM image of the shell model
quadrupole operator. One of them is to introduce the pseudo particle operator
é;r- (Scholten).

Condition:

The matrix elements of é;r- in the IBFM space are equal to the matrix clements

of cj- in the shel model space.



For w <1 (a; are the coefficients which enter in the definition of the S pair

operator):

~ _ E : 2 E : ] R E : 2~
J m J

Qe = Z O:?Qj
J

Here the spherical shell model OCCUPATION PROBABILITIES fu?- are intro-

duced
(uf +v; =1).

v; =n;/(2j +1)

?’Lj = <SN| ﬁj ‘SN> ~ 2Naos—

v? = a?N/Qe



(SNi ef I SN) = —juso = ui(s™5 | af || s™)

(SN Nl ef 1 SV = Juidsy = vids™ |l (sTag)D || sNT15) VN

For w < 3 similar expressions can be obtained. Finally, the IBFM image of the
shell model single-nucleon creation operator is
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The coefficients (5, ; define the microscopic structure of the d-boson.



The matrix elements of the quadrupole operator ij: Q;; (c}:éjf)(z) in the

fermion space are replaced by the matrix elements of the pseudo particle oper-
ator é} acting in the boson space giving the quadrupole operator expressed in

terms of boson and odd-particle operators.

Q¥ = QY +Qf

) = [std+dt3)® + y[dfd]®
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The boson-fermion interaction can be generated by the interaction between
like particles or by the proton-neutron quadrupole interaction. The structure
of the interactions is identical. The product of Qg) and Q?) contributes to the
boson-fermion interaction. By maping the basis from IBM-2 onto IBM-1 and
taking terms up to the second order in d-boson operators the standard form of
the boson-fermion interaction is obtained.



The IBFM-1 Hamiltonian for an odd-even nucleus

H=Hp+ Hpr+ Vpp

Hpg is the boson Hamiltonian of IBM-1 describing a system of N interacting
bosons (correlated S and D pairs) that approximate the valence nucleon pairs:
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Hp is the fermion Hamiltonian containing quasiparticle energies of odd protons
or neutrons. The quasiparticle energies and occupation probabilities contained
in the fermion Hamiltonian, and other terms, are obtained in a BCS calculation
with some standard set of single fermion energies.

HF = ZE@ (,I;r&?,

Vpr is the IBFM-1 boson-fermion interaction containing the dynamical, ex-
change and monopole term.

e The dynamical interaction Vpy n represents the direct component of the
quadrupole interaction between the odd particle and the bosons.

e The exchange interaction Vg x¢ is due to the two-particle nature of the
bosons, bringing the Pauli exclusion principle into play.

e The monopole interaction Vj;on can result from a variety of causes, in

particular from the blocking of certain degrees of freedom by the odd
particle.
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Qg) is the standard boson quadrupole operator
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(a), (b), (c) exchange terms
(d), (e), (f) direct terms



The structure coefficients:

e The coefficients v; are related to the structure coefficients of the fermion S-
pair state, which is the microscopic equivalent of the s boson. In practice,
they are the occupation probabilities of the single-particle orbits, as follows
from a spherical BCS calculation.

e The coefficients 3;,;, = (u;,v5, + vj,uj3,) (Ja || Y2 || jb) are the structure
coefficients of the d boson.



The electromagnetic operators have the form:

M(EQ) = Mp (EQ) + Af[F(EQ)
3 . .
Mp(E2) = — R3eV'” ([ST xd+d x 5@ 4 y[d d}(2>)

R?2 =0.0144 A3 barn

3

Mp(E2) = = R:er Y,

Common notation:

3
ER(Q) VIB — g



M(M1) = Mpg(M1)+ Mp(M1)
Mp(M1) \/ xf 0 gr [df x d|V

; 3 - 3} B
Mp(M1) = \/E[ggl-l-gss'f-gT(YQ X &)1 ]

Common notations:

EQR = UB



IBFM (and its extensions) provide a consistent
description of nuclear structure phenomena in:

cnhnonrvical Nnirelng
D}.JIIC' 1.ail 1iucvici

#¥ deformed nuclei

#¥ transitional nuclei



Procedure

1. Boson Hamiltonian

Place the core nucleus in the Casten triangle

!




Important levels
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2. Fermion Hamiltonian

n valence € quasiparticle energy
fermions
< 5= v2 occupation probability
Es b Js A BCS
v2
€ i £
E, Ljs pairing > , 5Js
strength G V7 :
5 €4 ly)s
E, 3 > v
................................... £ {
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V53
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3. Boson — Fermion Hamiltonian

Important data

Odd - even
nucleus excitation energies ~
: Iy
I, Y branchings A
5, B(E2) AO
I, B(M1) > mm) 0
Q g
ik
J,  spectroscopic factors e, g standard
§ HY=EY¥
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Spherical nuclei



Scholten




Scholten



Deformed nuclei



Jj=9/2 Iachello, PRL 43

\

The levels are arranged
info bands denoted by
the lowest value of the
angular momentum K,
contained in the band.

This quantum number is
only approximately
equivalent to the quantum
number K in the Nilsson
model.

In the inset, the
corresponding situation in
the Nilsson model is
shown.
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The IBFM generates bands that are analogous
to the bands which can be constructed in the
Nilsson model. In addition, it generates bands
that could be called 8 and v bands. While here
they arise automatically, in the Nilsson model
they must be either placed ad hoc or calculated
by use of other methods.




Prolate

Scholten, PRC 37

K™ =9/2-
(mhyy/n)

v =0.62
K™ =1/2-
(T hgp)

V2 = 0.05

IBF A-calculated excitation energies for negative-parity states in the odd-mass Re isotopes compared with experimental
data. States are labeled with 27,




Th Ex Th Ex

IBFA-calculated excitation energies for positive-parity states in the odd-mass Re isolopes compared with experimental
data. States are labeled with 2J.




IBF A-calcnlated excitation energies for positive-parity states in the odd-mass (s 1sotopes compared with experimental
data. The states are labeled with 2J.
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The IBFM states
for odd-A Re
and Os nuclei

are obtained in

multi-j calculations.




The choice of the model space has a strong influence on the model parameters.
Even if there is a large separation between shells, the mixing due to the strong
core-particle quadrupole interaction does not allow for restricting the model
space to a single j shell. For example: Levels based on the g9/ particle. Here
the ds/o particle from the next major shell has to be included due to the large
non-spinflip matrix element (ds/o || Y2 || go/2). The same situation appears in
the case of hy1/2 (f7/2 has to be included in the model space). Restricting the
model space requires a renormalization of the interactions. For unique-parity
states:

e Strengths of boson-fermion interactions obtained in a single j calculation
are effective strengths

e Strengths of boson-fermion interactions obtained in a multi j calculation
are real strengths



Intruder deformed bands in odd Ag isotopes
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FI1G. 3. Intruder positive-parity states of '™/11L131154, 4y
comparison to IBFM calculations. The indicated spin values
are twice the actual values,

Only the monopole fermion-boson interaction strength is slightly changed
from isotope to isotope. All other interaction strengths and occupation
probabilities are the same for all isotopes.



O(6) nuclei
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Transitional nuclei
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BOSON-FERMION SYMMETRIES
SUPERSYMMETRIES

If the Hamiltonian can be expressed in terms of Casimir invariants of the chain
of subgroups, the energy spectrum can be obtained ANALYTICALLY. Other
observables ( B(E2), B(M1), static moments, spectroscopic factors, ...) can be
expressed in analytical form, too.

The symmetry group related to IBM-1 is U(6). The six dimensions are formed
by the s boson and five components of d,, boson. Since the number of bosons is
invariant, the group is unitary. There are three chains of subgroups:

U6) D> U(B)DOB)DOB)DO(2) wvibrational limit
Uue) > SU(3) D O0(3) D0O(2) rotational limit
U6) D 0O6)D>0((B)D0B)DO(2) ~—softlimit



For boson-fermion systems many group chains have been investigated. Example:
A j = 3/2 particle coupled to an O(6) core (j = 3/2 has four different m-states
and therefore forms a representation of the U(4) group).

UP(6) 2 U (4) > OB(6) @ U (4) > Spin(6) D Spin(5) D Spin(3) D Spin(2)

E = —é[crl(crl +4) +o9(o0 +2) + 03] + %[ﬁ(n +3)+ (e +1)]|+CJ(J+1)+DE(X+4)

4

U*(6)
U*(4)
0”(6)

quantum numbers
quantum numbers
quantum numbers
quantum numbers
quantum numbers
quantum numbers

quantum numbers

(V]

{M}

b
(01,09,03)
(TlaT2)

J

M,

OB(6) @ U (4) D Spin(6) — Parameters describing the boson system are in
a unique relation to the parameters describing the boson-fermion system.






Problems:

e The symmetry approach to boson-fermion systems is more phenomeno-
logical in nature

e It can be applyed only in special cases when one or few fermion configu-
rations are coupled to boson cores in one of the symmetry limits of IBM

Advantages:

e This approach was extended to boson-fermion-fermion systems (odd-odd
nuclei)

e The spectra of neighboring even-even, odd-even and odd-odd nuclei can
be described with the same set of parameters

e Analytical expressions are available

e Evidence that collective and single-particle degrees of freedom are closely
related



