|  | The Abdus Salam<br>International Centre for Theoretical Physics |
|--|-----------------------------------------------------------------|
|--|-----------------------------------------------------------------|



1939-15

#### Joint ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Theory and Evaluation

28 April - 9 May, 2008

Data Analyses (Evaluation of 56Co Decay Data)

Desmond MacMahon

National Physical Laboratory

London

U.K.

### Evaluation of <sup>56</sup>Co Decay Data

## Desmond MacMahon Coral Baglin

IAEA Workshop, Trieste, May 2008

## <sup>56</sup>Co Decay Data

- <sup>56</sup>Co decays by positron emission (19.58%) and by electron capture (80.42%) to excited states of <sup>56</sup>Fe.
- 46 gamma rays with energies up to 3.6 MeV de-exciting 15 excited states in <sup>56</sup>Fe have been reported.
- This energy range makes <sup>56</sup>Co useful as a calibration source in gamma ray spectrometry.

## <sup>56</sup>Co Decay Data

- The Q value for the decay is given by Audi et al. as 4566 (20) keV.
- ◆ The half-life of <sup>56</sup>Co has been evaluated by Woods *et al.* as **77.236 (26) days.**
- The main gamma ray energies are taken from the Helmer & van der Leun evaluation (2000).

- Relative gamma ray emission probabilities for the 46 gamma rays reported by 31 authors between 1965 and 2002 were tabulated.
- A problem arose when considering the high energy data.
- In many cases detector efficiency curves used measured data up to about 2.5 MeV and were then extrapolated to 3.6 MeV.

- It was clear from experimentally determined efficiency curves above 3 MeV that the extrapolated curves introduced errors of up to 6%.
- ◆ Therefore, of the 31 papers cited, only 8 which had used experimentally determined efficiency curves up to 3.6 MeV were included in the evaluation of data above 3 MeV.

• The second problem was the significant number of discrepant data.

• Of the 46 gamma rays considered, 18 had data sets with a reduced chi-squared ranging from 2.0 to 7.8, indicating significant discrepancies.

• The following graph shows the data for the 1140.5 keV gamma ray, for which the reduced chi-squared is 5.2.

• The discrepancies are clear from the graph.



• On the previous graph points 1 to 13 are the experimental data.

• Point 14 is the weighted mean 0.1204(21)

• Point 15 is the unweighted mean 0.145(10)

• Point 16 is the LRSW 0.145 (38)

◆ Point 17 is the norm. resid. 0.131(4)

• Point 18 is the Rajeval value 0.132(4)

1140.5 keV gamma ray
Normalised Residuals adjustment (point 14)



1140.5 keV gamma ray Rajeval adjustment (point 14)



#### Normalisation

- Evaluated intensities are relative to the strongest 847 keV transition to the ground state.
- Normalisation is accomplished by requiring that all transitions to the ground state add up to 100.

Intensities: I(y-ce) per 100 parem decays





#### Normalisation

• Assuming zero electron capture/positron feeding from the 4+ <sup>56</sup>Co parent to the 0+ <sup>56</sup>Fe ground state:

$$\Sigma(I(\gamma + ce) \text{ to the ground state}) = 100$$

#### Normalisation

$$V = \frac{100}{[I(847\gamma)(1+\alpha(847\gamma))+I(2657\gamma)+I(3370\gamma)]}$$

$$= \frac{100}{100.0303(9) + 0.0195(20) + 0.0103(8)}$$

$$= 0.999399(23)$$

#### **Evaluated Data**

| Gamma Energy keV | Relative Iγ | Absolute Pγ  |
|------------------|-------------|--------------|
| 846.772          | 100         | 0.999399(23) |
| 1037.840         | 14.04(5)    | 0.1403(5)    |
| 1238.282         | 66.45(16)   | 0.6641(16)   |
| 1360.215         | 4.283(13)   | 0.04280(13)  |
| 1771.351         | 15.46(4)    | 0.1545(4)    |
| 2034.755         | 7.746(13)   | 0.07741(13)  |
| 2598.458         | 16.97(4)    | 0.1696(4)    |
| 3201.962         | 3.205(13)   | 0.03203(13)  |
| 3253.416         | 7.87(3)     | 0.0787(3)    |

### Positron Emission Probabilities

|                               | Energy<br>(keV) | Probability × 100 | Nature                    | $\log ft$ |
|-------------------------------|-----------------|-------------------|---------------------------|-----------|
| β <sup>+</sup> <sub>0,7</sub> | 98.7 (20)       | 0.0080 (7)        | allowed                   | 6.984     |
| β <sup>+</sup> <sub>0,6</sub> | 174.3 (20)      | 6.0 E-5 (20)      | 2 <sup>nd</sup> forbidden | 10.20     |
| β <sup>+</sup> <sub>0,5</sub> | 421.1 (20)      | 1.040 (20)        | allowed                   | 7.581     |
| β <sup>+</sup> <sub>0,4</sub> | 584.1 (20)      | 0.0086 (22)       | 2 <sup>nd</sup> forbidden | 10.26     |
| β <sup>+</sup> <sub>0,2</sub> | 1458.9 (20)     | 18.29 (16)        | allowed                   | 8.621     |
| β <sup>+</sup> <sub>0,1</sub> | 2697.2 (20)     | 0.25 (17)         | 2 <sup>nd</sup> forbidden | 11.6      |

## Electron Capture Probabilities

|                  | Energy (keV) | Probability × 100 | Nature                    | $\log ft$ |
|------------------|--------------|-------------------|---------------------------|-----------|
| ε <sub>0,8</sub> | 709.5(20)    | 16.86(5)          | allowed                   | 6.687(3)  |
| ε <sub>0,7</sub> | 1120.7(20)   | 21.40(5)          | allowed                   | 6.984(2)  |
| ε <sub>0,6</sub> | 1195.9(20)   | 0.015(5)          | 2 <sup>nd</sup> forbidden | 10.20(15) |
| ε <sub>0,5</sub> | 1443.1(20)   | 8.99(6)           | allowed                   | 7.581(4)  |
| ε <sub>0,4</sub> | 1606.1(20)   | 0.023(6)          | 2 <sup>nd</sup> forbidden | 10.26(11) |
| ε <sub>0,2</sub> |              | 2.43(3)           | allowed                   | 8.621(5)  |
| ε <sub>0,1</sub> |              | 0.005(3)          | 2 <sup>nd</sup> forbidden | 11.6(3)   |

## Electron Capture Probabilities

|                   | Energy (keV) | Probability × 100 | Nature  | $\log ft$ |
|-------------------|--------------|-------------------|---------|-----------|
| ε <sub>0,15</sub> | 107.7(20)    | 0.209(7)          | allowed | 6.911(23) |
| ε <sub>0,14</sub> | 118.4(20)    | 0.0167(5)         | unknown | 8.096(21) |
| ε <sub>0,13</sub> | 171.2(20)    | 0.2159(18)        | allowed | 7.320(12) |
| ε <sub>0.12</sub> | 268.0(20)    | 3.688(13)         | allowed | 6.489(7)  |
| ε <sub>0,11</sub> | 446.1(20)    | 9.940(18)         | allowed | 6.509(4)  |
| ε <sub>0,10</sub> | 465.7(20)    | 12.66(4)          | allowed | 6.442(4)  |
| $\epsilon_{0.9}$  | 517.2(20)    | 3.965(15)         | allowed | 7.038(4)  |

## X Ray Emissions

|                   | Energy<br>(keV) | Photons per 100 disintegrations |
|-------------------|-----------------|---------------------------------|
| XL                | 0.615-0.792     | 0.581 (17)                      |
|                   |                 |                                 |
| $XK\alpha_2$      | 6.39091(5)      | 7.53 (10)                       |
| $XK\alpha_1$      | 6.40391(3)      | 14.75 (17)                      |
|                   |                 |                                 |
| $XK\beta_3$       | } 7.05804(7)    | } 3.05 (5)                      |
| $XK\beta_1$       | }               | }                               |
| XKβ" <sub>5</sub> | 7.1083(4)       |                                 |

## Auger Electron Emissions

|                 | Energy<br>(keV) | Electrons per 100 disintegrations |
|-----------------|-----------------|-----------------------------------|
|                 |                 |                                   |
| e <sub>AL</sub> | 0.510 - 0.594   | 111.8 (8)                         |
| e <sub>AK</sub> |                 | 46.04 (30)                        |
| KLL             | 5.370-5.645     | 35.61 (25)                        |
| KLX             | 6.158-6.400     | 9.76 (13)                         |
| KXY             | 6.926-7.105     | 0.666 (15)                        |