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Spectroscopy of 

electronic states 
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Quantum point 

contact as a charge 

detector 
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M. Field et al., Phys. Rev. Lett. 70, 1311 (1993) 



A few electron 

quantum dot 

source 

drain 

pg 

M. Sigrist 



Detection of 

single electron transport 
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Determination of the individual 

tunneling rates 
• Exponential distribution of waiting times 

for independent events 

• S=< in>, D=< out>

N 
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Measuring the current 

by counting electrons 

• Count number n of electrons entering the dot within a 

time t
0
: I = e<n>/t

0 

• Max. current = few fA (bandwidth = 30 kHz) 

• BUT no absolute limitation for low current and noise 

measurements 

– here: I  few aA, S
I
  10-35 A2/Hz 
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Histogram of current fluctuations 

• Poisson distribution for 

asymmetric coupling 

• Sub-Poisson distribution for 

symmetric coupling 

Theory: Hershfield et al., PRB 47, 1967 (1993) 
  Bagrets & Nazarov, PRB 67, 085316 (2003) 

Expt:  Gustavsson et al., PRL 96, 076605 (2006)



Higher order correlations of 

electron transport 

shot noise skewness 

kurtosis 

Gustavsson et al, PRB 75, 075314 (2007) 



IQPC 

Double quantum dot in a ring 

G2 

G1 

see also: electron counting in double dots: Fujisawa et al., Science 312, 1634 (2006) 
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Aharonov-Bohm with cotunneling 

Co-tunneling 

– Electrons are injected 

from the right lead 

– They pass through either 

the upper or lower arm 

– The interference take 

place in the left QD 



Double slit experiment
<-> Aharonov Bohm



huge visibility! >90%

little decoherence - > due to long dwell time in the collecting dot?

requires the couplings of upper and lower arm to be well symmetrized
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Aharonov-Bohm oscillations



AB amplitude stable below T=400mK

Destruction most likely due to thermal broadening

Temperature dependence



IQPC 

Double quantum dot in a ring 

G2 

G1 

characterization of tunnel rates 
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Triangles at zero bias across dot
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VQPC=300 μV 



Different biases across the QPC

The triangles grow with 

increasing bias 
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Microwave emission of a QPC

• Voltage biased tunnel junction  

• Emission spectrum 

– Linear increase with bias 

– Cut-off at f=eVbias/h 

eVbias

  

SI ( ) =
4e2

h
T(1 T)

eV

1 e (eV ) / kBT

spectral noise density for the emission side (  > 0) 

R. Aguado and L. Kouwenhoven, 

PRL 84, 1986 (2000) 



Tunable noise detector 

• The detuning of the quantum 

dots acts as a selective 

frequency filter 

• The detuning is easily 

changed with gate voltages 

IQPC

R. Aguado and L. Kouwenhoven, 

PRL 84, 1986 (2000) 



absorption process 

detector signal 



Double dot detuning vs. QPC 

bias 
• Level 

separation of 

the DQD 
dashed line: 

• No counts in 

the region with 

eVQPC< ! 

t : tunnel coupling 

 : detuning 



Bias dependence of the count rate 

• Linear increase of absorption rate as soon as eVQPC>



Measuring the spectrum 

Clear cut-off at  = eVQPC

  
abs =

4 e2 2t 2Zl
2

h2

SI ( / )
2

absorption rate of the DQD in 

the presence of the QPC: 

: capacitive lever arm of QPC on DQD 

Zl: zero frequency impedance of leads connecting QPC to voltage source 

Gustavsson et al., PRL 99, 206804 (2007)  



Single photon detection by a 

quantum dot 

wave length  

of photon: 

500 nm 

size of atom: 

1 nm 

wave length  

of photon: 

10 mm 

size of  

quantum dot: 

100 nm 

quantum optics 
semiconductor  

nanostructures 



Single-photon, single-electron detection

e- 



Towards THZ photons – InAs nanowire dots 

Strong coupling between 

dot (InAs) and detector 

(GaAs 2DEG) 

up to 50% 

detector signal  



Time-resolved charge detection in 

InAs nanowire dots  
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Plans: 

- time resolution 

- correlation experiments 
- spin blockade 

- graphene  


