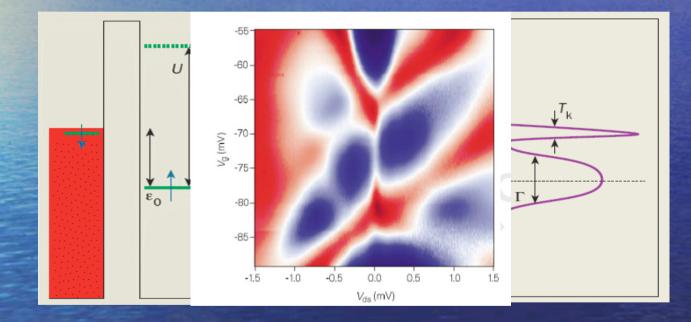
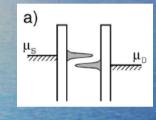
Adiabatic quenches in open quantum critical systems

<u>Alessandro Silva</u>

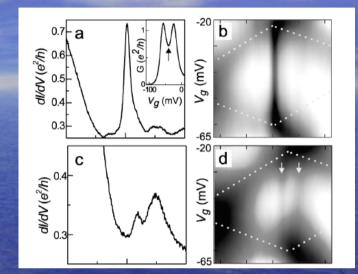

ICTP Trieste

Dario <u>Patane</u>, Luigi Amico (U. of Catania) Rosario Fazio, Giuseppe Santoro (SISSA)

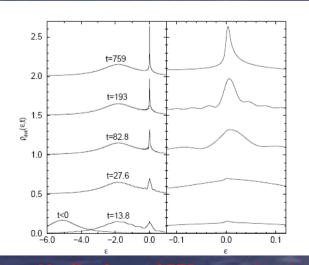
arXiv:0805.0586



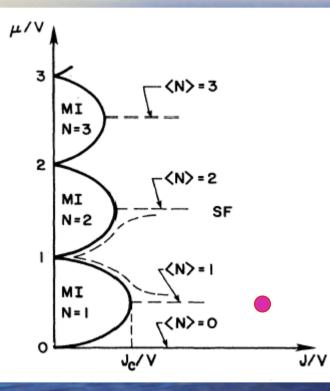
Prototype example: Kondo effect in Quantum Dots

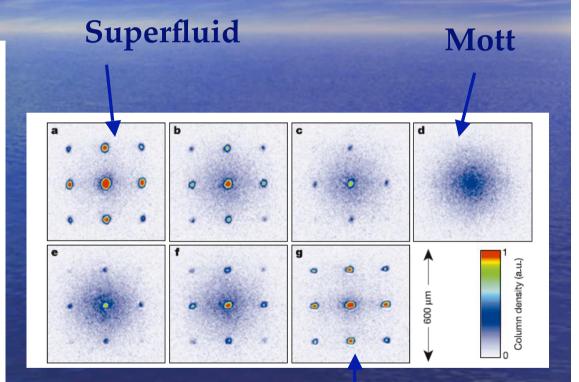

From: L. Kouwenhoven and L. Glazman, Phys. World 14(1), 33 (2001) D. Goldhaber-Gordon, et al., Nature 391, 156 (1998)

Nonequilibrium splitting of the Kondo resonance



Abrupt quench inside the Kondo valley




From: De Franceschi, et al, PRL 89, 156801 (2002)

From: Nordlander, et al PRL 83, 808 (1999)

The nonequilibrium lab: cold atomic gases

Superfluid

From: Greiner et al, Nature 419, 51 (2002)

From: Fisher et al, Phys Rev B 40, 546 (1989) See also Jaksch et al, PRL 81, 3108 (1998). Status of the theory

Artificial many body systems (nanoscience, cold atoms)

nonequilibrium physics

Driven system

Quantum quenches

Quantum quenches

Early works by Baruch, McCoy, Dresden, Mazur, Girardeau ('70)

Thermalization vs. Integrability Nonequilibrium quantum stat. Mech.

Abrupt

Sengupta, Powell, Sachdev ('04) Calabrese and Cardy ('07) Rigol et al, ('06) "Adiabatic"

Zurek, Dorner, Zoller ('05) Polkovnikov ('05) Dziarmaga ('05) Cherng and Levitov ('06) Gritsev, Polkovnikov ('07)

A well posed problem

The quantum Ising model

$$H = -\frac{J}{2} \sum_{j=1}^{N} \sigma_j^x \sigma_{j+1}^x + h\sigma^z$$

How many defects are generated ??

Adiabatic quantum quenches

Kibble Zurek mechanism

$$h - h_c = v t$$

$$\tau(t) = \frac{1}{\Delta} \approx \frac{1}{\mid h - h_c \mid} = \frac{1}{v \mid t \mid}$$

h

Freezing of dynamics

h_c

$$\tau(t_Q) = t_Q$$

$$t_Q \approx \frac{1}{\sqrt{v}}$$

Adiabatic quantum quenches

Density of defects

$$n_{def} \approx \xi^{-1} \approx v t_Q = \sqrt{v}$$

In general

$$n_{def} \simeq \xi^{-d} \simeq v^{\frac{\nu d}{nuz+1}}$$

Zurek, Dorner, Zoller, Phys. Rev. Lett. 95, 105701 Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).

Questions and outline

1)- Defects across a QCP : coherent and universal

Dephasing and dissipation ???

Does **universality** survive ?

2)- Scaling laws in quantum ising model + bath

3)- Scaling laws for a generic QPT

Ising model and Landau Zener dynamics

$$H = -\frac{J}{2} \sum_{j=1}^{N} \sigma_j^x \sigma_{j+1}^x + h\sigma^z$$

$$\hat{\Psi}_k = \begin{pmatrix} c_k \\ c^{\dagger}_{-k} \end{pmatrix}$$

$$b_{i} = \frac{\sigma_{i}^{x} + i\sigma_{i}^{y}}{\mathbf{H}_{k}} = J \begin{pmatrix} h(t) - \cos(\mathbf{B}) \mathbf{ordan-Wigher} \\ i \sin(k) & -(h(t) - \cos(k)) \end{pmatrix}$$

$$c_i = e^{i \left[\pi \sum_{k < j} b_k^{\dagger} b_k \right]} b_j$$

Coherent dynamics: Landau Zener problem

 $\Delta_k = |\sin(k)|^2$

$$P_k = e^{-2\pi \frac{\Delta_k^2}{v}}$$

Cherng and Levitov, PRA 73, 043614 (2006 Dziarmaga, PRL 95, 245701 (2005)

$$n_{def} = \int dk \ P_k \simeq \int dk \ e^{-2\pi k^2/v} \simeq \sqrt{v}$$

Density of defects

Adding the bath

$$H = -\frac{J}{2} \sum_{j}^{N} \left[\sigma_j^x \sigma_{j+1}^x + (h(t) + X_j) \sigma_j^z \right] + H_B$$

$$X_{j} = \sum_{\beta} \lambda_{\beta} (b_{\beta,j}^{\dagger} + b_{\beta,j})$$
$$H_{B} = \sum_{j,\beta} \omega_{\beta} b_{\beta j}^{\dagger} b_{\beta j}$$

$$H = \sum_{k>0} \Psi_k^{\dagger} \hat{\mathcal{H}}_k \Psi_k + \frac{1}{\sqrt{N}} \sum_{k,q} \Psi_k^{\dagger} \hat{\tau}^z \Psi_{k+q} X_q + H_B$$

Mixing of all modes

Ohmic

$$\sum_{\beta} \lambda_{\beta}^2 \delta(\omega - \omega_{\beta}) = 2\alpha \omega \exp(-\omega/\omega_c)$$

Relaxation rate to bosons (escape, interaction): universality class does not change

Adding the bath

Dephasing and dissipation: like a qubit

Master equation: weak coupling + Markov

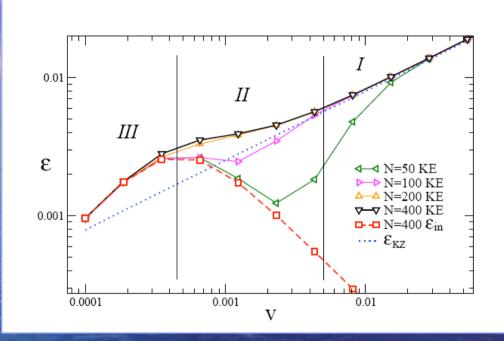
Master equation for density matrix

$$\partial_t \rho = (i[\mathbf{H}, \rho]) + \sum_{i=x,y,z} [\mathcal{D}_i \rho - h.c., \sigma_i].$$

Coherent evolution

Kinetic equations

Analogue of density matrix (for 2LS) or distribution function (for fermions)


$$-i[G_k^{<}(t,t)]_{i,j} \equiv \langle \Psi_{k,j}^{\dagger}(t)\Psi_{k,i}(t)\rangle$$

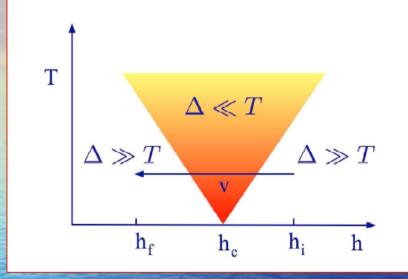
$$\partial_t \hat{G}_k^< \left(+ i \left[\hat{\mathcal{H}}_k, \, \hat{G}_k^< \right] = \right)_N^1 \sum_q \hat{\tau}^z (\hat{1} + i \hat{G}_q^<) \hat{D}_{qk} \hat{G}_k^< + \hat{\tau}^z \hat{G}_q^< \hat{D}_{kq}^\dagger (\hat{1} + i \hat{G}_k^<) + H.c.$$

Coherent evolution

$$\mathcal{E} = \frac{-i}{2N} \sum_{k>0} \operatorname{Tr}\left((\hat{1} + \hat{\tau}^z) \hat{G}_k^< \right)$$

Some numerics

T=0.1 α=0.001 h_f =0


$$\mathcal{E} \simeq \mathcal{E}_{KZ} + \mathcal{E}_{in}$$

$$\mathcal{E}_{KZ} \simeq \sqrt{v}$$

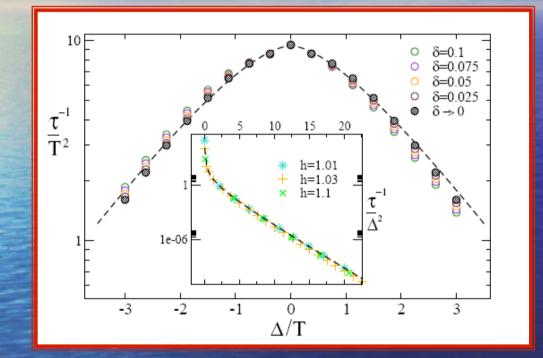
$$\mathcal{E}_{in} = ????$$

General understanding

$$h - h_c = vt$$
$$\Delta = |h - h_c|$$

Time to cross the QC region

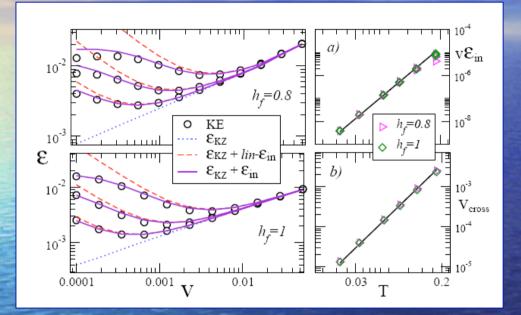
$$t_{QC} \approx 2T/v$$


$$P_{fin}(k) = (1 - e^{-\frac{t_{QC}}{\tau}})P_c(k)$$

$$\tau^{-1} \approx \alpha T^2$$

$$\mathcal{E}_{in} \approx (1 - e^{-\frac{t_Q C}{\tau}}) \int dk (P_c(k)) f T (1 - e^{-2\frac{T}{v\tau}})$$
Function of k1

Understanding the behavior of the system


Relaxation times

$$\tau^{-1} \sim \alpha T^2 f(\Delta/T) \ e^{-\Delta/T}$$

$$\delta = \sqrt{T^2 + (h - h_c)^2}$$

Fit of the numerics

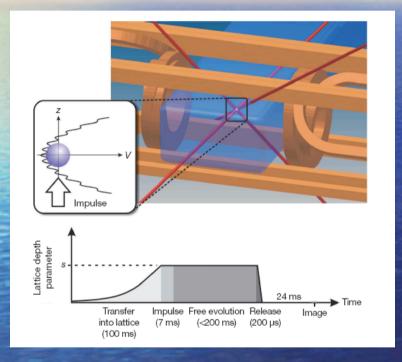
$$\mathcal{E}_{in} \simeq \frac{\log 2}{2\pi} T \left(1 - e^{-2T/(\tau v)} \right)$$

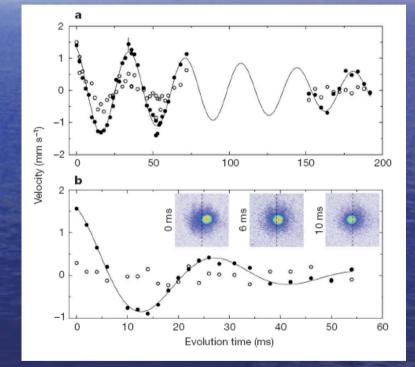
$$\mathcal{E}_{in} \propto \alpha v^{-1} T^4$$

$$v_{cross} \propto \alpha^{2/3} T^{8/3}$$

General scaling formulae

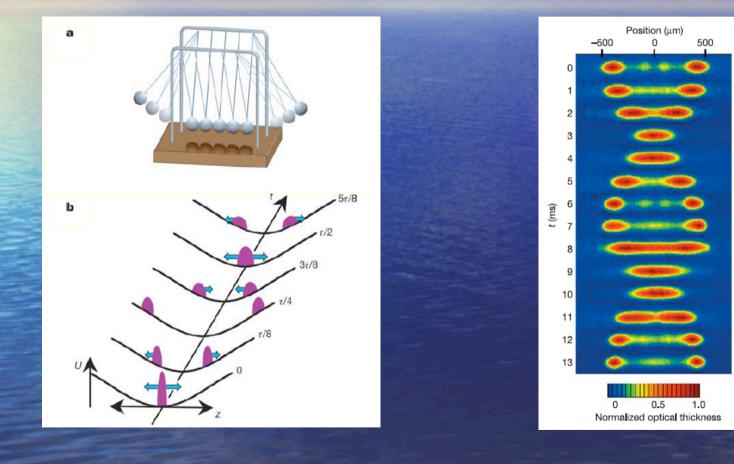
$$\mathcal{E}_{in} \propto \alpha v^{-1} T^{\theta + \frac{d\nu + 1}{\nu z}}$$


$$v_{cross} \propto \alpha^{\frac{\nu z+1}{\nu(z+d)+1}} T^{\left(1+\frac{(\theta-1)\nu z}{\nu(z+d)+1}\right)\left(1+\frac{1}{\nu z}\right)}$$


Conclusions and Outlook

Universal description of incoherent defect production across a QPT.

And if the bath does change the universality class ?
 What about dephasing ? How does it show up ?


From: MacKay et al., Nature 453, 76 (2008)

Saturation of damping rate at low T: quantum phase slip !

From: Kinoshita et al., Nature 440, 900 (2006)

40 periods without thermalization: integrability ??