

FLI

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

Insects and Climate

A short guide to model insect populations dynamics

Motivation

WELT OT.05.2008

Due to global warming tropical insect populations are at risk to extinct. US scientists argue that insect populations inhabiting tropical regions are very well adapted to the temperatures in these regions and slight changes of temperature may lead to extinction.

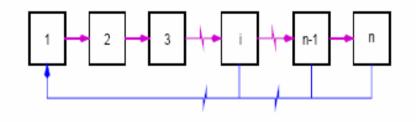
Contents

Insects

D

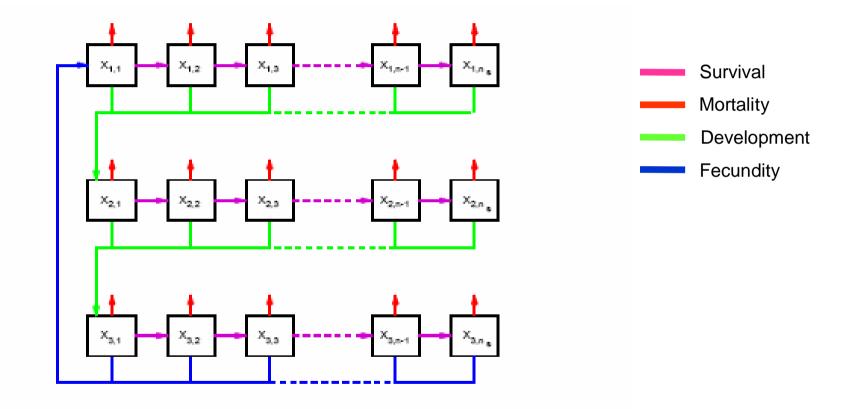
- The model
- Aspects of the lifecycle
 - Development
 - Lifetime
 - Fecundity
- Insect population dynamics and global warming

The Model

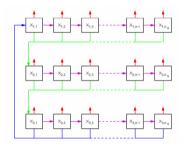

Insects lifecycle

b 6 SE Sh Von VI - VIII 6-8 Generationen 5 La

Insect lifecycle


D

Biological processes are age specific



$$\begin{aligned} x_{i+1}(t+1) &= P(i) \ x_i(t) & i = 1, \dots, n-1, \\ x_1(t+1) &= \sum_{i=1}^n F(i) \ x_i(t), \\ \mathbf{X}(t+1) &= \mathbf{A} \ \mathbf{X}(t). \end{aligned}$$
$$\mathbf{A} = \begin{bmatrix} F(1) \ F(2) \ F(3) \ \dots \ F(n-1) \ F(n) \\ P(1) \ 0 \ 0 \ \dots \ 0 \ 0 \\ 0 \ P(2) \ 0 \ \dots \ 0 \ 0 \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \ \vdots \\ 0 \ 0 \ 0 \ \dots \ 0 \ 0 \\ 0 \ 0 \ 0 \ \dots \ P(n-1) \ 0 \end{aligned}$$

Insects Lifecycle

Insect lifecycle

$$\begin{aligned} x_{s,i+1}(t+1) &= P_s(i) \left(1 - U_s(i)\right) x_{s,i}(t) \\ x_{s+1,1}(t+1) &= \sum_{i=1}^n U_s(i) x_{s,i}(t) \\ x_{1,1}(t+1) &= \sum_{i=1}^n F(i) x_{s,i}(t) \\ \text{mit} & U_s(i) = 0 \text{ für } s = m. \end{aligned}$$

Insect Lifecycle

$$\mathbf{A} \ = \ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & F_3(1) & F_3(2) & F_3(3) \\ \hline P_1(1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & P_1(2) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline U_1(1) & U_1(2) & U_1(3) & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & P_2(1) & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & P_2(2) & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & P_2(2) & U_2(3) & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & P_3(1) & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & P_3(2) & 0 \end{bmatrix},$$
$$\operatorname{mit} \widetilde{P_s(i)} = P_s(i)(1 - U_s(i)) \quad \text{für } s < m.$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{P}_1 & \mathbf{0} & \mathbf{F}_3 \\ \hline \mathbf{U}_1 & \mathbf{P}_2 & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{U}_2 & \mathbf{P}_3 \end{bmatrix}.$$

Insects lifecycle

Matrix characteristics

A is a non-negative quadratic matrix

- Eigenvalues and left and right eigenvectors can be calculated
- Sensitivity and Elasticity analysis can be performed (Caswell, 2001)

Aspects of the insect lifecycles

Aspects are:

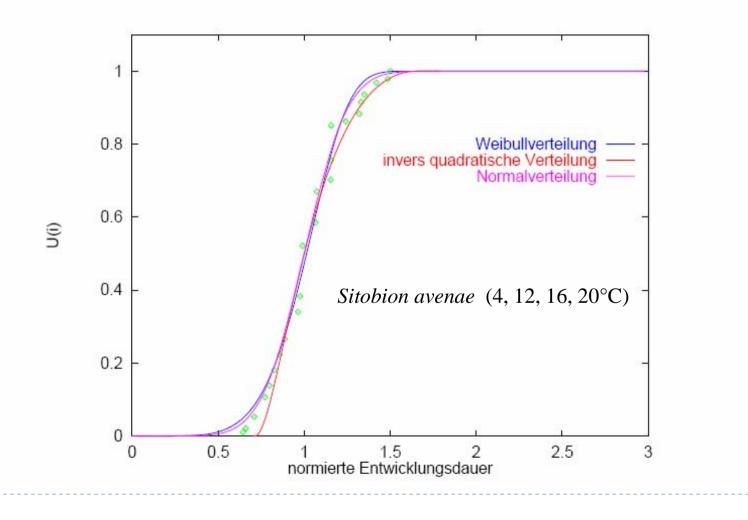
- Development
- Survival

D

- Fecundity
- Depend on temperature (humidity, rainfall, ...)

Aspects of insects' lifecycles

Aspects of insect lifecycles


Development

Development

- Development varies between individual
- Mean development time depends on temperature

Aspects of insect lifecycles Development

Individual variation

Aspects of insect lifecycles Development

Temperature effect on mean development rate The Hilber&Logan model (1982)

$$r(T) = \psi \left(\frac{T^2}{T^2 + D^2} - \exp(-(T_m - T)/\Delta T) \right)$$

$$T = T_o - T_b$$

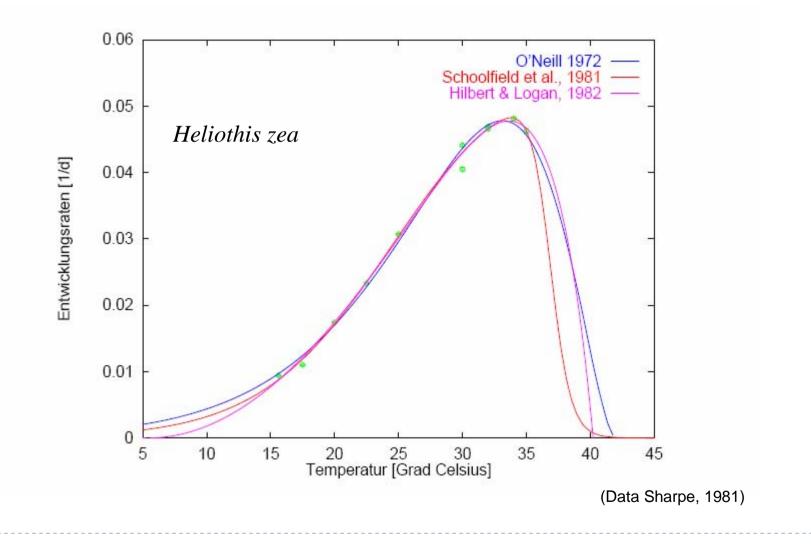
- T_o Lufttemperatur [°C]
- T_b Temperaturschwelle [°C] für die Entwicklung

$$T_m$$
 Letaltemperatur [°C]

- D Formparameter
- ΔT Breite des Temperaturfensters oberhalb der Optimaltemperatur

Aspects of insect lifecycles Development

Temperature effect on mean development rate The O'Neill model (1972)


$$\begin{aligned} r(T) &= R_{max} \left(\frac{T_m - T}{T_m - T_{opt}} \right)^a \exp \left(\frac{a(T - T_{opt})}{T_m - T_{opt}} \right) \\ R_{max} & \text{Entwicklungsrate bei Optimaltemperatur [°C} \\ T_m & \text{Letaltemperatur [°C]} \\ T_{opt} & \text{Optimaltemperatur[°C]} \\ a & \text{Formparameter} \end{aligned}$$

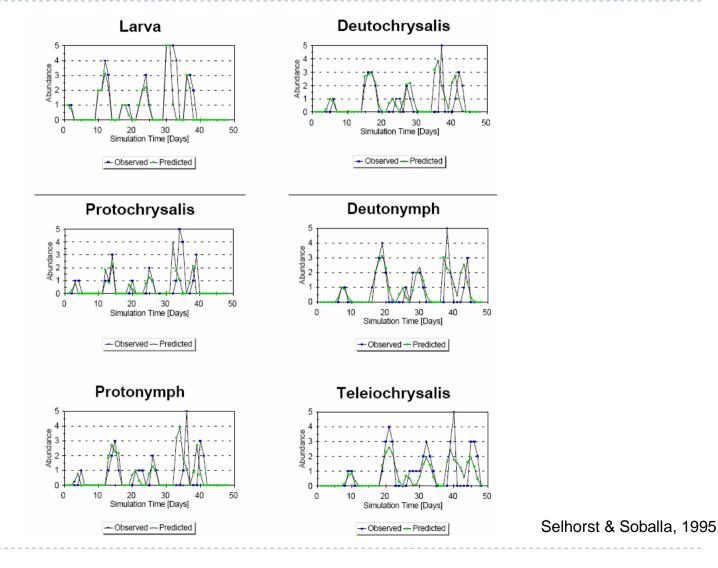
Aspects of insect lifecycles

Temperature effect on mean development rate The Schoolfield model (1981)

r(T) =	$\eta_{25^{\circ}} \frac{T}{298.2^{\circ}} \exp\left(\frac{\Delta H}{R} \left(\frac{1}{298.2^{\circ}} - \frac{1}{T}\right)\right)$						
/(1) -	$1 + \exp\left(\frac{\Delta H_L}{R}\left(\frac{1}{T_{1/2L}} - \frac{1}{T}\right)\right) + \exp\left(\frac{\Delta H_H}{R}\left(\frac{1}{T_{1/2H}} - \frac{1}{T}\right)\right)$						
T	Temperatur [°K]						
R	molare Gaskonstante $[1.9852 \text{ cal}/(\text{mol grd})]$						
298.2°	°K bei 25°C						
η_{25} \circ	Entwicklungsrate bei 25 °C unter der Annahme,						
	${ m da}eta$ keine Enzyminaktivierung eintritt						
ΔH	Aktivierungsenthalpie des Kontrollenzymsystems,						
	das die Entwicklungsraten beeinflußt						
$T_{1/2L}$	Temperatur [°K], bei der das Kontrollenzymsystem						
	zur Hälfte aktiviert und zur Hälfte durch die						
	niedrige Temperatur inaktiviert ist						
ΔH_L	Enthalpieänderung, die mit der Enzyminaktivierung bei						
	niedrigen Temperatur verbunden ist [cal/mol]						
$T_{1/2H}$	Temperatur [°K], bei der das Kontrollenzymsystem						
	zur Hälfte aktiviert und zur Hälfte durch die						
	hohe Temperatur inaktiviert ist						
ΔH_H	Enthalpieänderung, die mit der Enzyminaktivierung bei						
	hoher Temperatur verbunden ist [cal/mol].						

Aspects of insect lifecycles Development

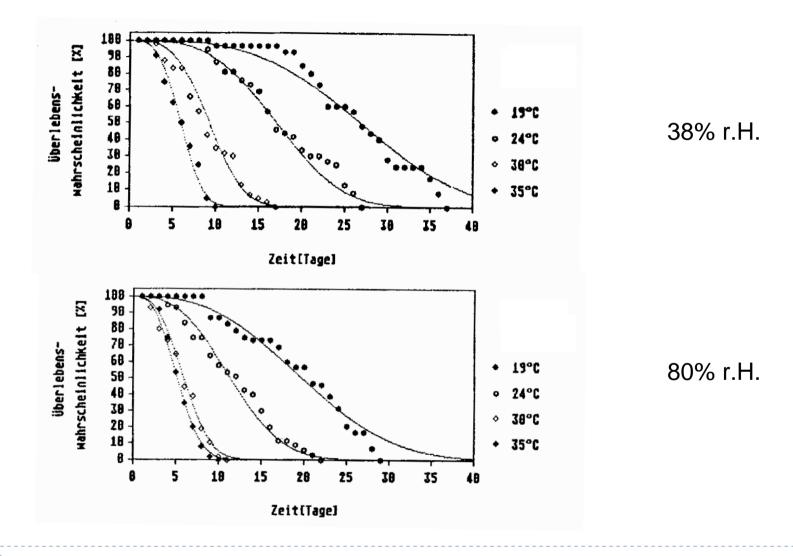
Aspects of insect lifecycles Development

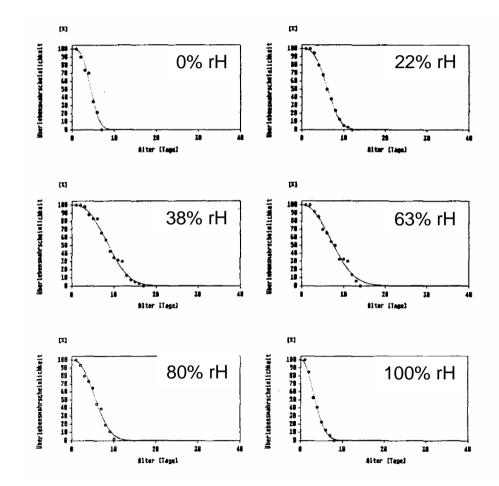

 Constant temperature experiments are not suited to predict insect development under fluctuating temperatures

Aspects of insect lifecycles

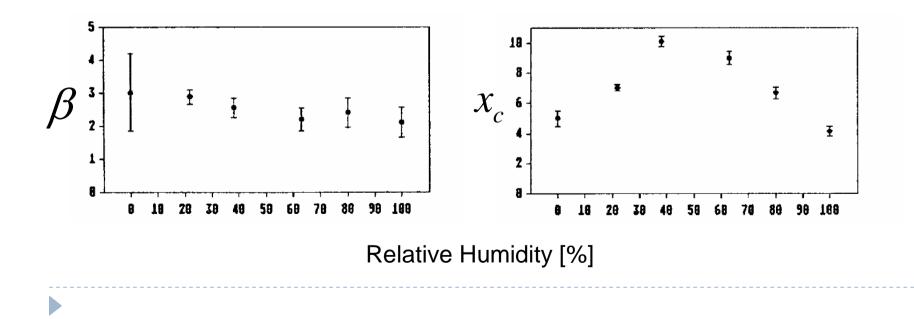
Fluctuating temperature experiments

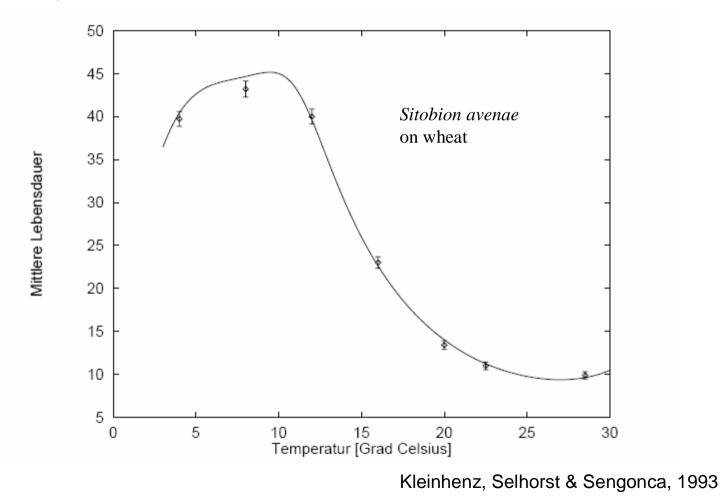
Temp. °C		Beob.	O'Neill		Hilbert & Logan		Schoolfield	
16h	8h		Erwartet	Residuen	Erwartet	Residuen	Erwartet	Residuen
22	27	0.0146	0.0195	-0.0049	0.0193	-0.0047	0.0195	-0.0049
22	32	0.0189	0.0240	-0.0051	0.0236	-0.0047	0.0239	-0.0050
22	37	0.0211	0.0282	-0.0071	0.0278	-0.0067	0.0281	-0.0070
12	27	0.0068	0.0122	-0.0054	0.0102	-0.0034	0.0121	-0.0053
12	32	0.0111	0.0166	-0.0055	0.0145	-0.0034	0.0165	-0.0054
12	37	0.0133	0.0209	-0.0076	0.0187	-0.0054	0.0207	-0.0074
22	22	0.0118	0.0161	-0.0043	0.0156	-0.0038	0.0162	-0.0044
27	27	0.0204	0.0264	-0.0060	0.0267	-0.0063	0.0262	-0.0058
32	32	0.0333	0.0396	-0.0063	0.0396	-0.0063	0.0392	-0.0059
37	37	0.0400	0.0524	-0.0124	0.0521	-0.0121	0.0519	-0.0119


Aspects of insect lifecycles Development


Survival

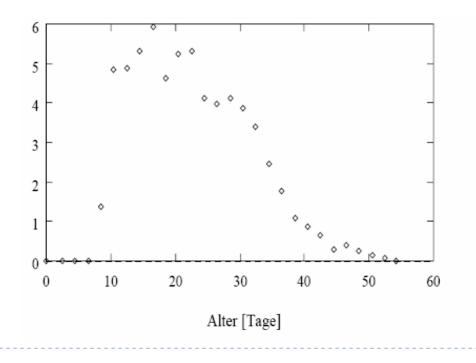
- Lifetime distribution functions to be used
 - Exponential
 - Weibull
 - Gompertz


$$l(x) = 1 - \exp\left(-\left(\frac{x}{E(X)}\right)^{\beta}\right)$$
$$E(X) = x_c \Gamma(1 + 1/\beta)$$
$$\Gamma(\cdot) \qquad Gamma funktion.$$

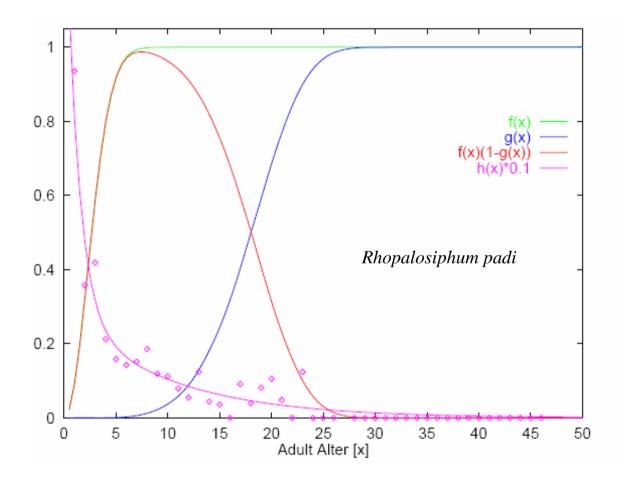

Tetranychus cinnabarinus Boisd. Data: Hazan, 1973

$$l(x) = 1 - \exp\left(-\left(\frac{x}{E(X)}\right)^{\beta}\right)$$
$$E(X) = x_c \Gamma(1 + 1/\beta)$$
$$\Gamma(\cdot) \qquad Gamma funktion.$$

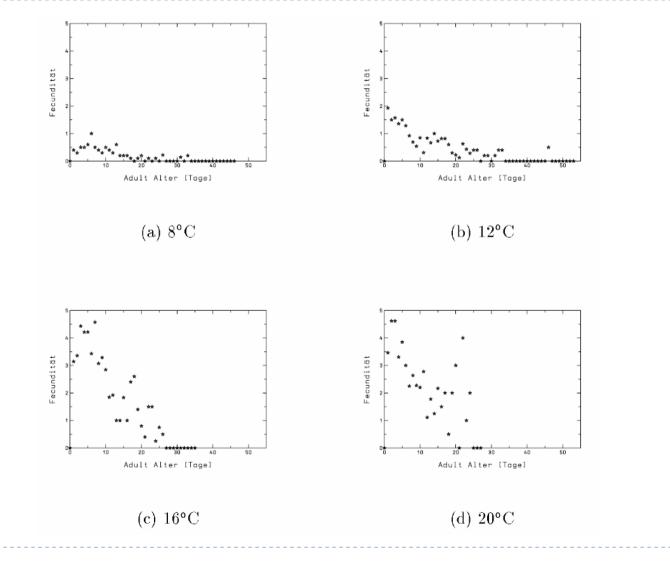
Extreme Temperature effects



Aspects of insect lifecycles


Fecundity

Fecundity obeys 3 processes


- Preovipositon period
- Oviposition period
- Post oviposition period

Aspects of insect lifecycles Fecundity

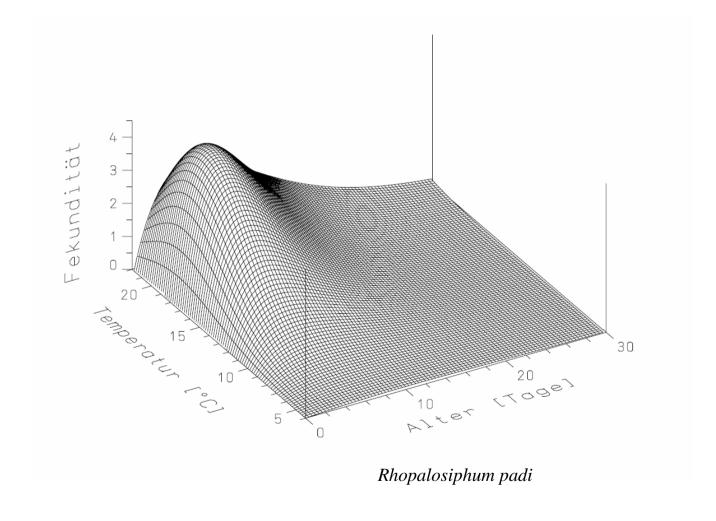
Aspects of insect lifecycles Fecundity

Aspects of insect lifecycles Fecundity

$$y = y^* x \exp\left(\frac{x^* - x}{x^*}\right) \frac{1}{x^*}.$$

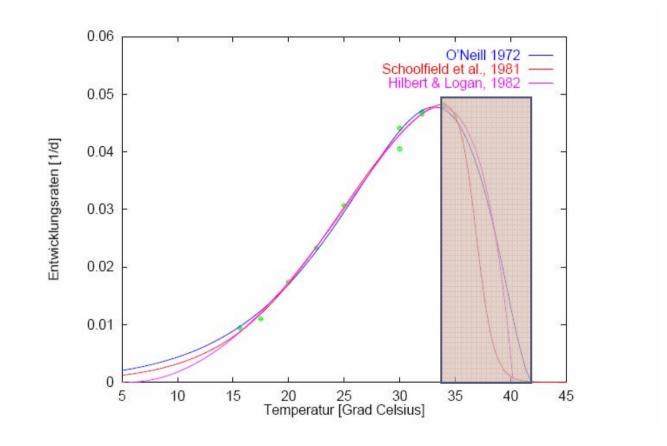
$$x^* = h(T)$$

$$y^* = g(T)$$


$$y = g(T) x \exp\left(\frac{h(T) - x}{h(T)}\right) \frac{1}{h(T)}$$

•

h(T), g(T): O' Neill


Aspects of insect lifecycles Fecundity

D

Conclusion

Insect population dynamics and global warming

D

WELT ONLINE 07.05.2008

Further reading

- HAL CASWELL. Matrix Population Models. Sinauer 2001 ISBN 0-87893-096-5
- THOMAS SELHORST. Modelling, Simulation and optimal Control of insect populations in agroecosystems.
 DHS 2000.
 ISBN 3-8267-1184-X