

1942-6

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

Hadron Physics, a quark-model analysis.

A. Valcarce Universidad de Salamanca Spain

Sixth International Conference on PERSPECTIVES IN HADRONIC PHYSICS

Hadron structure: quark-model analysis

Trieste, May 12th, 2008

Hadron structure: quark model analysis

Outline

- QCD: Hadron physics & constituent quark model
- Heavy hadrons
 - Heavy baryons: New bottom states, doubly heavy states.
- Non-exotic multiquark states • Heavy mesons: New open-charm and hidden charm states.
- •Light hadrons
 - Light mesons: Scalar mesons.
 - Light baryons: Improving its description.
- Multiquarks
 - Exotic states.

Advances (Exp.) \Rightarrow Challenges (Theor.)

• Summary

Trieste, May 12th, 2008

QCD. Hadron physics & quark model

QCD is the correct theory of the strong interaction. It has been tested to very high accuracy in the perturbative regime. The low energy sector ("strong QCD"), i.e. hadron physics, remains challenging

I am convinced that the keys to a qualitative understanding of "strong QCD"¹ are the same as in most other areas of physics: identifying the appropriate degrees of freedom and the effective forces between them.

N. Isgur, Overview talk at N*2000, nucl-th/0007008

All roads lead to valence "constituent quarks" and effective forces inspired in the properties of QCD: asymptotic freedom, confinement and chiral symmetry \Rightarrow Constituent quark models

Constituent quarks (appropriate degrees of freedom) behave in a remarkably simple fashion (CDF)

Effective forces: confining mechanism, a spin-spin force (ρ - π , Δ -N) and a long-range force

The limitations of the quark model are as obvious as its successes. Nevertheless almost all hadrons can be classified as relatively simple configurations of a few confined quarks.

Although quark models differ in their details, the qualitative aspects of their spectra are determined by features that they share in common, these ingredients can be used to project expectations for new sectors.

Almost all known hadrons can be described as bound states of qqq or $q\bar{q}$:

• QCD conserves the number of quarks of each flavor, hadrons can be labeled by their minimun, or VALENCE, quark content: BARYONS and MESONS. QCD can augment this with flavor neutral pairs $\Lambda \Rightarrow$ uds (+ uu + ss +)

• NON-EXOTIC MULTIQUARK states do not in general correspond to stable hadrons or even resonances. Most, perharps even all fall apart into valence mesons and baryons without leaving more than a ripple on the meson-meson or meson-baryon scattering amplitude. If the multiquark state is unsually light or sequestered from the scattering channel, it may be prominent. If not, it is just a silly way of enumerating the states of the continuum.

• Hadrons whose quantum numbers require a valence quark content beyond qqq or q \overline{q} are termed **EXOTICS** (hybrids, q \overline{q} g) $\theta^+ \Rightarrow$ uudd \overline{s} Exotics are very rare in QCD, perhaps entirely absent. The existence of a handful of exotics has to be understood in a framework that also explains their overall rarity

We have the tools to deepen our understanding of "strong QCD"
Powerful numerical techniques imported from few-body physics
Faddeev calculations in momentum space [*Rept. Prog. Phys.* 68, 965(2005)]
Hyperspherical harmonic expansions [*Phys. Rev. D* 73 054004 (2006)]
Stochastic variational methods [*Lect. Not. Phys. M* 54, 1 (1998)]
Increasing number of experimental data

Heavy baryons

1985 Bjorken: "We should strive to study triply charmed baryons because their excitation spectrum should be close to the perturbative QCD regime. For their size scales the quark-gluon coupling constant is small and therefore the leading term in the perturbative expansion may be enough"

- The larger the number of heavy quarks the simpler the system
- nQQ and QQQ \Rightarrow one-gluon exchange and confinement
- $nnQ \Rightarrow$ there is still residual interaction between light quarks
- nnQ and nQQ \Rightarrow the presence of light and heavy quarks may allow to learn about the dynamics of the light diquark subsystem
- Ideal systems to check the assumed flavor independence of confinement

State	JP	O=Strange	O=Charm	O=Bottom	~9 80 • Data \$80 ∎ I
	1/2+	(1116, 1600)	2286, 2765	5625	
	3/2+	1890	2940 ³		
Λ (udQ)	1/2-	1405, 1670	2595		
	3/2-	1520, 1690	$2628, 2880^1$		
	5/2+	1820	2880 ¹		80 - ¹ 8ap 47
	1/2+	1193,1660	2454	5811 ⁵	
Σ (O)	3/2+	1385, 1840	2518, 2940 ³	5833 ⁵	
2 (uuQ)	1/2-	1480 1620	2765 ¹		
	3/2-	1560 , 1670	2800 ²		
	1/2+	1318	2471, 2578	5792 ⁵	$O_{0}^{P} = m(\Lambda_{0}^{0}\pi) - m(\Lambda_{0}^{0}) - m_{0} (MeV/c^{2})$
	3/2+	1530	2646, 3076 ²		CDE Phys Roy Lett 00 202001 (2007)
Ξ (usQ)	1/2-		2792, 2980 ²		CDI, Thys.Rev.Lett.99, 202001 (2007)
	3/2-	1820	2815		$1 \Rightarrow CLEO$
	5/2+		3055 ³ , 3123 ³		$2 \Rightarrow \text{Belle}$ $3 \Rightarrow \text{BaBar}$
$O\left(ggO\right)$	1/2+		2698		$4 \Rightarrow SELEX$
52 (SSQ)	3/2+	1672	2768 ³		$5 \Rightarrow CDF$
Ξ (uQQ)	3/2-		3519 ⁴		
					Regularities $\Rightarrow \Delta L=1 300 \text{ MeV}$

Heavy baryons: I.a. Spin splitting

Heavy baryons: I.a. Spin splitting

ΔM (MeV)	Ex	p.	0	GE(µ)	OGE +OPE
$\Sigma_{\rm c}(3/2^+) - \Lambda_{\rm c}(1/2^+)$	23	52	251		217
$\Sigma_{\rm c}(3/2^+) - \Sigma_{\rm c}(1/2^+)$	64	4	64		67
$\Sigma_{\rm b}(3/2^+) - \Lambda_{\rm b}(1/2^+)$	209			246	205
$\Sigma_{\rm b}(3/2^+) - \Sigma_{\rm b}(1/2^+)$	22	2 25		25	22
M (MeV)		Fu	ıll	OPE=0	ΔΕ
$\Sigma_{\rm b}(1/2^+)$		58	07	5822	- 15
$\Sigma_{\rm b}(3/2^+)$		582	29	5844	- 15
$\Lambda_{\rm b}(1/2^+)$		562	24	5819	- 195
$\Lambda_{\rm b}(3/2^+)$		63	88	6387	< 1
Σ(1/2+)		14	08	1417	- 9
$\Sigma(3/2^{+})$		14	54	1462	- 8

1225

1405

Roberts et al., arXiV:0711₁2492 Valcarce et al., submitted to PRD

ΔM (MeV)	Latt.	OGE (+ OPE)
$\Xi_{\rm cc}(3/2^+) - \Xi_{\rm cc}(1/2^+)$	≅ 75	77 (77)
$\Omega_{\rm cc}(3/2^+) - \Omega_{\rm cc}(1/2^+)$	≅ 60	72 (<mark>61</mark>)

Double charm baryons \Rightarrow no OPE

	$\Xi_{\rm cc}$	$\Omega_{ m cc}$
OGE +OPE	3579	3697 (118)
OGE(µ)	3676	3815 (139)
Latt.	3588	3698 (110)

Trieste, May 12th, 2008

 $\Lambda(1/2^{+})$

-180

Heavy baryons: II. Confinement strength

Stat	0 1 ^P	COC Eve	[18] [10]	1 [Stat	o I ^P	coc	Evn	[18] [10]		COC V	alcarce	et al si	uhmitte	d to			
A	1/9+	5624 562/	5612 5622		Ac	1/2+	2285	2286	2268 2297		[18] Poherts et al. arViV:0711.2402							
m_b	1/2+	2024 3024 e10e	e107 e09e			$1/2^+$	2785	2765	2791 2772	[18] <i>Roberts et al. arXiv:0711.2492</i>								
	1/2	5047	E030 E030			$1/2^{-}$	2627	2595	2625 2598		[19] <i>Eb</i>	ert et al	., Phys.	Lett. E	659	, 618 (2008	8)
	1/2	0947	2929 2920		-	$1/2^{-}$	2880	2880	2816 3017									
	1/2	0245	0180 0328			$3/2^{+}$	3061		2887 2874				$\Lambda_{a}(3/$	2+)				
	3/2*	6388	6181 6189			3/2+	3308		3073 3262					<u> </u>	a.	. . . P	000	[1.0]
	$3/2^{+}$	6637	6401 6540		2	5/21	2888	2880	2887 2883			(1./2.1)		0	Sta	ite J-	CQC	[18]
Σ_b	$1/2^{+}$	5807 5808	5833 5805		\square_c	$1/2^+$	2904	2404	2958 2864	2	$\Sigma(3/2^+) - \Sigma$	$(1/2^{+}) \Rightarrow$	$6_{\rm F} - 6_{\rm F}$	≡ qQ		3/2"	29	27
	$1/2^{+}$	6247	6294 6202			$1/2^{-}$	2772	2765°	2748 2795						_	3/2+*	312	238
	$1/2^{-}$	6103	6099 6108			$1/2^{-}$	2893		3176		$\Sigma(1/2^+) - \Lambda$	$(1/2^+) \Rightarrow$	$6_{\rm F} - 3_{\rm F}$	≡ qq	Ξ	56 1/2 ^{+*}	293	236
	$1/2^{-}$	6241	6401			$3/2^{+}$	2502	2518	2519 2518							1/2-	217	153
	$3/2^{+}$	5829 5829	5858 5834			$3/2^{+}$	2944	2940	2995 2912							1/2-*	423	370
	$3/2^{+}$	6260	6308 6222		<u> </u>	3/2-	2772	2800	2763 2761							3/2+	28	32
Ξ_b	$1/2^{+}$	5801 5793	5844 5812		Ξ_c	$1/2^+$ $1/2^+$	2471	2471	2492 2481							3/2+*	329	267
	$1/2^{+}$	6258	6264			$1/2^{+}$ $1/2'^{+}$	2574	2578	2923 2592 2578			CQC	[18]	[19]	Ω	њ 1/2+*	311	239
	$1/2'^+$	5939	5958 5937			1/2'+	3212	2010	2002 2010 2984					207		$1/2^{-}$	226	162
	$1/2'^+$	6360	6327			$1/2^{-}$	2799	2792	2763 2801		$\Lambda_{c}(3/2^{+})$	3061	2887	287		$1/2^{-*}$	390	309
	$1/2^{-}$	6109	6108 6119			$1/2^{-}$	2902		2859 2928					4		$3/2^{+}$	77	77
	$1/2^{-}$	6223	6192 6238			$1/2^{-}$	3004	2980	3186		$(3/2^{+})^{*}$	3308	3073	326		$3/2^{+*}$	446	366
	$3/2^{+}$	5961	5982 5963			$3/2^+$	2642	2646	2650 2654		r _c (3/2)	2200	2072	2	Ξ	$_{cc} 1/2^{+*}$	397	353
	3/2+	6373	6294 6341			3/2* 5/9+	3071	3076	2984 3030		$(2/2^+)$	6200	6101	618		$1/2^{-}$	301	234
Ω_{L}	1/2+	6056	6081 6065			5/2'+	3132	3123	3123		$\Lambda_{b}(3/2^{+})$	0388	0181	9		$1/2^{-*}$	439	398
	$1/2^+$	6479	6472 6440		Ω_c	$1/2^+$	2699	2698	2718 2698					654		$3/2^{+}$	72	61
	$1/2^{-}$	6340	6301 6352			$1/2^+$	3159		3152 3065		$\Lambda_{\rm b}(3/2^+)^*$	6637	6401	0		$3/2^{+*}$	463	373
	1/2-	6458	6624			$1/2^-$	3035		2977 3020						Ω	$_{\infty}$ 1/2 ^{+*}	415	365
	3/9+	6070	6102 6088			$1/2^{-}$	3125		3371							$1/2^{-}$	312	231
	3/2+	6402	6478 6519			3/2+	2767	2768	2776 2768							$1/2^{-*}$	404	320
	3/21	0493	0478 0518			$3/2^{+}$	3202		3190 3119									

Trieste, May 12th, 2008

Heavy mesons

More than 30 years after the so-called *November revolution*, heavy meson spectrocospy is being again a challenge. The formerly comfortable world of heavy meson spectroscopy is being severely tested by new experiments

• The area that is phenomenologically understood extends to: Heavy-light mesons, states where the quark-antiquark pair is in relative S wave; Heavy-heavy mesons: states below the DD (BB) threshold

• In the positive parity sector (P wave, L=1) a number of states have been discovered with masses and widths much different than expected from quark potential models.

2007 Close: "I have always felt that this is an example of where naive quarks models are too naive"

When a $q\bar{q}$ state occurs in L=1 but can couple to hadron pairs in S waves, the latter will distort the $q\bar{q}$ picture. The $c\bar{s}$ states 0⁺ and 1⁺ predicted above the DK (D*K) thresholds couple to the continuum what mixes DK (D*K) components in the wave function

UNQUENCHING THE NAIVE QUARK MODEL

$$|B = 0\rangle = \Omega_1 |q\overline{q}\rangle + \Omega_2 |q\overline{q}q\overline{q}\rangle + \dots$$

	$q\overline{q}\left[J^{PC}=0^{++}\right] \Rightarrow S=1$	l = L				
• <u>S</u> =0	$E(L=1) - E(L=0) = \begin{cases} h_1(1170) - \eta(550) \\ h_2(1595) - \eta'(958) \end{cases}$	(a) $\approx 0.5 - 0.6 \text{ GeV}$				
	$(h_c(3526) - \eta_c(29))$	980)				
• <u>S</u> =1	S=1 $[I - 0] \int \rho(770) \Rightarrow [I - 1] Y(I^{++}) \approx 1.2 - 1.4 CeV$					
	$ = \bigcup_{i=1}^{n} (i) (782) $					
	$q\overline{q}~(\sim 2m_q)$	$q\bar{q}q\bar{q}$ (~ 4m _q)				
Negative parity	0 ⁻ ,1 ⁻ (L=0)	0 [−] ,1 [−] (ℓ _i ≠0)				
Positive parity	0+,1+,2+ (L=1)	$0^+, 1^+, 2^+ (\ell_i = 0)$				

Trieste, May 12th, 2008

Hadron structure: quark model analysis

D_{sJ} mesons: quark-antiquark pairs ?

Bardeen et al., Phys. Rev. D68, 054024 (2003) Phys. Rev. D73, 034002 (2006)

Trieste, May 12th, 2008

Hadron structure: quark model analysis

Light baryons

The effect of the admixture of hidden flavor components in the baryon sector has also been studied. With a 30% of 5q components a larger decay width of the Roper resonance has been obtained. 10% of 5q components improves the agreement of the quark model predictions for the octet and decuplet baryon magnetic moments. The admixture is for positive parity states and it is postulated. *Riska et al. Nucl. Phys. A791, 406-421 (2007)*

From the spectroscopic point of view one would expect the effect of 5q components being much more important for low energy negative parity states (5q S wave)

Abstract

We argue that selected S wave meson-baryon channels may play a key role to match poor baryon mass predictions from quark models with data. The identification of these channels with effective inelastic channels in data analysis allows to derive a prescription which could improve the extraction and identification of baryon resonances.

analysis

P. González et al., IFIC-USAL submitted to PRC

P. González et al., IFIC-USAL submitted to PRC

P. González et al., IFIC-USAL submitted to PRC

Exotics

Solving the Schrödinger equation for ccnn : HH

$$|\Psi\rangle = |\operatorname{Color}\rangle |\operatorname{Isospin}\rangle [|\operatorname{Spin}\rangle \otimes |\mathbb{R}\rangle]^{\mathrm{IM}}$$

$$|\operatorname{Color}\rangle = \left\{ |\overline{3}_{12}3_{34}\rangle, |6_{12}\overline{6}_{34}\rangle \right\}$$

$$|\operatorname{Spin}\rangle = |((s_{1},s_{2})S_{12},(s_{3},s_{4})S_{34})S\rangle = |(S_{12},S_{34})S\rangle$$

$$|\operatorname{Isospin}\rangle = |(i_{3},i_{4})I_{34}\rangle$$

$$|\operatorname{Isospin}\rangle = |(i_{3},i_{4})I_{34}\rangle$$

$$|\overline{3}_{12}3_{34}\rangle \rightarrow \begin{cases} (-1)^{S_{12}+\ell_{1}} = -1\\ (-1)^{S_{34}+1+\ell_{3}} = +1 \end{cases}$$

$$|6_{12}\overline{6}_{34}\rangle \rightarrow \begin{cases} (-1)^{S_{12}+\ell_{1}} = -1\\ (-1)^{S_{34}+1+\ell_{3}} = +1 \end{cases}$$

$$|6_{12}\overline{6}_{34}\rangle \rightarrow \begin{cases} (-1)^{S_{12}+\ell_{1}} = -1\\ (-1)^{S_{34}+1+\ell_{3}} = -1 \end{cases}$$

ccnn

			CQC	(BCN)	
	$J^{P}(K_{max})$	E _{4q} (MeV)	$\Delta_{ m E}^{ m The}$	R _{4q}	$R_{4q}/(r_{2q^+}^1r_{2q}^2)$
	0+ (28)	4441	+ 15	0.624	> 1
	1+ (24)	3861	- 76	0.367	0.808
I-0	2+ (30)	4526	+ 27	0.987	> 1
1-0	0- (21)	3996	+ 59	0.739	> 1
	1-(21)	3938	+ 66	0.726	> 1
	2- (21)	4052	+ 50	0.817	> 1
	$0^{+}(28)$	3905	+ 33	0.752	> 1
	1+ (24)	3972	+ 35	0.779	> 1
I—1	2+ (30)	4025	+ 22	0.879	> 1
1-1	0- (21)	4004	+ 67	0.814	> 1
	1-(21)	4427	+ 1	0.516	0.876
	2- (21)	4461	- 38	0.465	0.766
Vijan	de et al., in progress		Janc	et al., Few Bod	y Syst. 35, 175 (2004

Solving the Schrödinger equation for cncn : HH

$$\begin{split} |\Psi\rangle &= |\operatorname{Color}\rangle |\operatorname{Isospin}\rangle [|\operatorname{Spin}\rangle \otimes |\mathbb{R}\rangle]^{\operatorname{IM}} \\ |\operatorname{Color}\rangle &= \{|I_{12}I_{34}\rangle, |8_{12}8_{34}\rangle\} \\ \vdots \\ |\operatorname{Color}\rangle &= \{|I_{12}I_{34}\rangle, |8_{12}8_{34}\rangle\} \\ \vdots \\ |\operatorname{C-parity is a good symmetry of the system} \\ |C_{12}^{-\Gamma_{12}}\rangle &= \frac{1}{\sqrt{2}} (|C_{12}\rangle + \Gamma_{12}|C_{21}\rangle) \\ |C_{12}\rangle &= \{I_{12}, 8_{12}\} \text{ and } \Gamma_{12} = +/- S/A \\ |(C_{34}I_{34})^{\Gamma_{34}}\rangle &= \frac{1}{2} (|C_{34}\rangle (|u\bar{u}\rangle \pm |d\bar{d}\rangle) + \Gamma_{34}|C_{43}\rangle (|\bar{u}u\rangle \pm |\bar{d}d\rangle)) \\ |C_{34}\rangle &= \{I_{34}, 8_{34}\}, \ \Gamma_{34} = +/- S/A, \ |I_{34} = 1/0, I_{34}^{-z} = 0\rangle \\ \end{split}$$

Trieste, May 12th, 2008

Hadron structure: quark model analysis

Compact four-quark structure cncn (I=0)

		CQC		BCN			
$J^{PC}(K_{max})$	E _{4q} (MeV)	$\Delta_{\rm E}^{\rm The}$	$\Delta_{\rm E}^{\rm Exp}$	E _{4q} (MeV)	$\Delta_{ m E}^{ m The}$	$\Delta_{\rm E}^{\rm Exp}$	
0++ (24)	3779	+ 34	+ 251	3249	+ 75	- 279	
0+- (22)	4224	+ 64	+ 438	3778	+ 140	+ 81	
1 ⁺⁺ (20)	3786	+ 41	+ 206	3808	+ 153	+ 228	
1+- (22)	3728	+ 45	+ 84	3319	+ 86	- 325	
2++ (26)	3774	+ 29	- 106	3897	+ 23	+ 17	
2+- (28)	4214	+ 54	+ 517	4328	+ 32	+ 631	
1-+ (19)	3829	+ 84	+ 301	3331	+ 157	- 197	
1(19)	3969	+ 97	+ 272	3732	+ 94	+ 35	
0-+ (17)	3839	+ 94	- 32	3760	+ 105	- 111	
0(17)	3791	+ 108	+147	3405	+ 172	- 239	
2-+ (21)	3820	+ 75	- 60	3929	+ 55	+ 49	
2(21)	4054	+ 52	+ 357	4092	+ 52	+ 395	
Total		0	3 !		0	5 !	

Phys. Rev. D76, 094022 (2007)

Trieste, May 12th, 2008

Difference between the two physical systems

Many body forces do not give binding in this case

Phys. Rev. D76, 114013 (2007)

 $V_s = \min(V_f, V_b) \; .$

 V_f stands for the so-called "flip-flop" model

$$V_f = \lambda \min(r_{13} + r_{24}, r_{23} + r_{14}) ,$$

 V_b is the butterfly-like configuration,

$$V_b = \lambda \min_{k,\ell} (r_{1k} + r_{2k} + r_{k\ell} + r_{\ell 3} + r_{\ell 4}) .$$

M/m		E_4		T_4	E'_4	T'_4
	V_f	V_b	V_s		V_f	
1	4.644	5.886	4.639	4.676	4.644	4.676
2	4.211	5.300	4.206	4.248	4.313	4.194
3	4.037	5.031	4.032	4.086	4.193	3.959
4	3.941	4.868	3.936	3.998	4.117	3.811
5	3.880	4.754	3.873	3.942	4.060	3.705

$$E_4 = (1-u)T_4 \; ,$$

Trieste, May 12th, 2008

Hadron structure: quark model analysis

Behavior of the radius (CQC)

Summary

• There is an increasing interest in hadron spectroscopy due to the advent of a large number of experimental data in several cases of difficult explanation.

• These data provide with the best laboratory for studying the predictions of QCD in what has been called the strong limit. We have the methods, so we can learn about the dynamics. There are enough data to learn about the glue holding quarks together inside hadrons.

• Simultaneous study of nnQ and nQQ baryons is a priority to understand lowenergy QCD. The discovery $\Lambda_Q(3/2^+)$ is a challenge.

• Hidden flavor components, unquenching the quark model, seem to be neccessary to tame the bewildering landscape of hadrons, but an amazing folklore is borning around.

• Compact four-quark bound states with non-exotic quantum numbers are hard to justify while "many-body (medium)" effects do not enter the game.

• Exotic many-quark systems should exist if our understanding of the dynamics does not hide some information. I hope experimentalists can answer this question to help in the advance of hadron spectroscopy.

Acknowledgements

Let me thank the people I collaborated with in the different subjects I covered in this talk

- N. Barnea (Hebrew Univ. Jerusalem, Israel)
- F. Fernández (Univ. Salamanca, Spain)
- H. Garcilazo (IPN, Méjico)
- P. González (Univ. Valencia, Spain)

- J.M. Richard (Grenoble, France)
- B. Silvestre-Brac (Grenoble, France)
- J. Vijande (Univ. Valencia, Spain)
- E. Weissman (Hebrew Univ. Jerusalem, Israel)

Thanks!

See you in the 2010 European Few-Body Conference in Salamanca

Trieste, May 12th, 2008

Hadron structure: quark model analysis

Which is the nature of scalar mesons?

A Theory of Scalar Mesons

Phys. Lett. B, in press

G. 't Hooft^a, G. Isidori^b, L. Maiani^{c,d}, A.D. Polosa^d, V. Riquer^d,

from light scalar decays. A coherent picture of scalar mesons as a mixture of tetraquark states (dominating in the lightest mesons) and heavy $q\bar{q}$ states (dominating in the heavier mesons) emerges.

PHYSICAL REVIEW D 72, 034025 (2005)

Nature of the light scalar mesons

J. Vijande,¹ A. Valcarce,¹ F. Fernández,¹ and B. Silvestre-Brac²

Despite the apparent simplicity of meson spectroscopy, light scalar mesons cannot be accommodated in the usual $q\bar{q}$ structure. We study the description of the scalar mesons below 2 GeV in terms of the mixing of a chiral nonet of tetraquarks with conventional $q\bar{q}$ states. A strong diquark-antidiquark component is

$\Gamma_{\gamma\gamma}[a_0(980)] = 0.65 \pm 0.04 \text{ keV};$	(5)	
$\Gamma_{\gamma\gamma}[f_0(980)] = 0.23 \pm 0.02 \text{ keV}$	(3)	
that compares rather well with the experiment [2],		
$\Gamma_{\gamma\gamma}^{\text{Exp}}[a_0(980)] = 0.3 \pm 0.1 \text{ keV};$	(0)	
$\Gamma_{\gamma\gamma}^{\text{Exp}}[f_0(980)] = 0.39^{+0.10}_{-0.13} \text{ keV}.$	(6)	

Trieste, May 12th, 2008

Hadron structure: quark model analysis

Charmonium: playground of new models

Barnes et al., Phys. Rev. D72, 054026 (2005)

Central potential:

$$V(r) = -\frac{4}{3}\frac{\alpha_s(r)}{r} + br$$

Spin-spin interaction:

$$\frac{4\alpha_{s}(r)}{3m_{i}m_{j}} \begin{cases} \frac{8\pi}{3}\vec{S}_{i}\cdot\vec{S}_{j}\,\delta^{3}(\vec{r}_{ij}) + \frac{1}{r_{ij}^{3}} \left[\frac{3\vec{S}_{i}\cdot\vec{r}_{ij}\vec{S}_{j}\cdot\vec{r}_{ij}}{r_{ij}^{2}} - \vec{S}_{i}\cdot\vec{S}_{j} \right] \\ \underbrace{13S_{1}J/\psi}_{11S_{1}} \end{cases}$$

 $^{o}\eta_{c}$

Spin-orbit interaction:

$$H_{ij}^{\text{s.o.}(cm)} = \frac{4\alpha_s(r)}{3r_{ij}^3} \left(\frac{1}{m_i} + \frac{1}{m_j}\right) \left(\frac{\vec{S}_i}{m_i} + \frac{\vec{S}_j}{m_j}\right) \cdot \vec{L}$$
$$H_{ij}^{\text{s.o.}(tp)} = \frac{-1}{2r_{ij}} \frac{\partial V(r)}{\partial r_{ij}} \left(\frac{\vec{S}_i}{m_i^2} + \frac{\vec{S}_j}{m_j^2}\right) \cdot \vec{L}$$
$$\frac{1P}{\chi_1(1^3P_1)} \chi_0(1^3P_0)$$

	Multiplet	State	Expt.	Input (NR)	Theor. NR GI
	18	$\frac{J/\psi(1^3{\rm S}_1)}{\eta_c(1^1{\rm S}_0)}$	3096.87 ± 0.04 2979.2 ± 1.3	3097 2979	3090 3098 2982 2975
	28	$\frac{\psi'(2^3 S_1)}{\eta'_c(2^1 S_0)}$	3685.96 ± 0.09 3637.7 ± 4.4	3686 3638	3672 3676 3630 3623
	38	$\frac{\psi(3^3{\rm S}_1)}{\eta_c(3^1{\rm S}_0)}$	4040 ± 10	4040	4072 4100 4043 4064
	4S	$\begin{array}{l} \psi(4^{3}{\rm S}_{1}) \\ \eta_{c}(4^{1}{\rm S}_{0}) \end{array}$	4415 ± 6	4415	4406 4450 4384 4425
	1P	$\begin{array}{l} \chi_2(1^3 {\rm P}_2) \\ \chi_1(1^3 {\rm P}_1) \\ \chi_0(1^3 {\rm P}_0) \\ h_c(1^1 {\rm P}_1) \end{array}$	$\begin{array}{c} 3556.18 \pm 0.13 \\ 3510.51 \pm 0.12 \\ 3415.3 \pm 0.4 \\ \text{see text} \end{array}$	3556 3511 3415	3556 3550 3505 3510 3424 3445 3516 3517
•	2P	$\begin{array}{c} \chi_2(2^3{\rm P}_2) \\ \chi_1(2^3{\rm P}_1) \\ \chi_0(2^3{\rm P}_0) \\ h_c(2^1{\rm P}_1) \end{array}$			3972 3979 3925 3953 3852 3916 3934 3956
	3P	$\begin{array}{c} \chi_2(3^3{\rm P}_2) \\ \chi_1(3^3{\rm P}_1) \\ \chi_0(3^3{\rm P}_0) \\ h_c(3^1{\rm P}_1) \end{array}$			4317 4337 4271 4317 4202 4292 4279 4318
	1D	$\begin{array}{l} \psi_3(1^3\mathrm{D}_3) \\ \psi_2(1^3\mathrm{D}_2) \\ \psi(1^3\mathrm{D}_1) \\ \eta_{c2}(1^1\mathrm{D}_2) \end{array}$	3769.9 ± 2.5	3770	3806 3849 3800 3838 3785 3819 3799 3837
	2D	$\begin{array}{l} \psi_3(2^3{\rm D}_3) \\ \psi_2(2^3{\rm D}_2) \\ \psi(2^3{\rm D}_1) \\ \eta_{c2}(2^1{\rm D}_2) \end{array}$	4159 ± 20	4159	4167 4217 4158 4208 4142 4194 4158 4208

Trieste, May 12th, 2008

Hadron structure: quark model analysis

Belle, Phys. Rev. Lett. 91, 262001 (2003) $B^+ \rightarrow K^+ X(3872) \rightarrow K^+ \pi^+ \pi^- J/\Psi$ CDF, D0, .. pp PDG, M = 3871.2 ± 0.5 MeV; $\Gamma < 2.3$ MeV $m_D + m_{D^*} = (3870.3 \pm 2.0) MeV \quad \Delta M = (+0.9 \pm 2.0) MeV$ Production properties very similar to $\Psi'(2^3S_1)$ Seen in $\rightarrow \gamma J/\Psi \Rightarrow C = +$ Belle rules out 0⁺⁺ and 0⁻⁺, favors 1⁺⁺ CDF only allows for 1⁺⁺ or 2⁻⁺

2⁻⁺: is a spin-singlet D wave while J/ Ψ is a spin-triplet S wave, so in the NR limit the E1 transition 2⁻⁺ $\rightarrow \gamma J/\Psi$ is forbidden. D and S radial wave functions are orthogonal what prohibits also M1

1⁺⁺: Expected larger mass and width ($\rightarrow \rho J/\Psi$ violates isospin).

Trieste, May 12th, 2008