

1942-41

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

The Role of Constituent Quark Masses in the Standard Model.

S.I. Sukhoruchkin

Petersburg Nuclear Physics Institute
Gatchina
Russia

THE ROLE OF CONSTITUENT QUARK MASS IN THE STANDARD MODEL

- S.I.Sukhoruchkin
- Petersburg Nuclear Physics Institute, Gatchina, Russia

Fig.1. QCD gluon-quark-dressing effect calculated with Dyson-Schwinger Equation [9,13-17], initial masses m=0, 30 and 70 MeV; the constituent-quark mass arises from a cloud of low-momentum gluons attaching themselves to the current-quark; this is dynamical chiral symmetry breacking: an nonperturbative effect that generates a quark mass from nothing even at chiral limit m=0, bottom curve) [9]..

Fig.2. Calculation of nonstrange baryon masses (left) and Λ -hyperon masses as a function of interaction strength within GBECQM – Goldstone Boson Exchange interaction Constituent Quark Model [19]; initial baryon mass 1350 MeV=3×450 MeV=3 M_q is near the bottom "+" on the left vertical axis.

Table 1. Discussed in the literature closeness of masses or mass differences to the integer numbers (k) of the pion mass value m_{π}^{\pm} =139.5 MeV or to $2m_{\pi}^{\pm}+m_{\pi}^{\circ}=\kappa_{T}$ =409 MeV.

Particle	Λ		Ω		(bb)(2S-1S)		(bb)(4S-2S)		ΔI	Ξ_B
Mass or ΔM (MeV)	1115.6	683(6)	1672.45(29)		10023-9460		10579-10023		408	8.9
					=563		=556			
$km_{\pi} \text{ or } 2m_{\pi}^{\pm} + m_{\pi}^{\circ} = \kappa_T$	1116	k=8	1672	k=12	558	k=4	558	k=4	409	κ_T
difference, reference	0, [1,2]	23-26]	0, [1,	25,26]	-5, [1,26]		[1,26] -2, $[1,27]$		0, [28]

Table 2. Discussed in the literature closeness of particle masses or mass differences to the integer numbers (k) of the nucleon Δ -excitation parameter Δ_{Δ} =147 MeV [23].

Particle	(cc) (2S-1S)	(cc) (1S)	Ξ^-	ω_3 – ω	K_3^* - $K^*(892)$	ΔE_B
Mass or	3686.1-3096.9	3096.92(1)	1321.3	1667(4) - 782.7	1776(7)-891.7	441.5 (Fig.4)
$\Delta M \; ({ m MeV})$	=589.2 k=4	3087 k=21	k=9	884(4) k=6	=884(7) k=6	k=4
k ΔM_Δ	588	588	1323	882	882	441
-diff., ref.	1,[1,25,29]	1,[1,25,29]	-2,[??]	2(4),[1,25,29]	2(7),[1,25,29]	0,[28]

Fig.3. Top Mesons of (bb)-structure with radial excitations n=1 and n=1-3 close to $4m_{\pi}$ [1,27]; Bottom Mesons of (cc)-structure with radial excitation (n=1) close to $4\Delta M_{\Delta}=4\times147$ MeV=588 MeV.

Fig.3. Top Mesons of (bb)-structure with radial excitations n=1 and n=1-3 close to $4m_{\pi}$ [1,27]; Bottom Mesons of (cc)-structure with radial excitation (n=1) close to $4\Delta M_{\Delta}=4\times147$ MeV=588 MeV.

Fig. 4, *Top:* Distribution of $\triangle E_B$ in nuclei with $\triangle Z=2$, $\triangle N=4$, Z=50-58, 64-82 and $Z\le28$ [26] *Bottom:* The same in all even-even and nuclei [26], in even-even nuclei with $Z\le58$ [29].

Fig. 4, *Top:* Distribution of $\triangle E_B$ in nuclei with $\triangle Z=2$, $\triangle N=4$, Z=50-58, 64-82 and $Z\le28$ [26] *Bottom:* The same in all even-even and nuclei [26], in even-even nuclei with $Z\le58$ [29].

Fig. 4, *Top:* Distribution of $\triangle E_B$ in nuclei with $\triangle Z=2$, $\triangle N=4$, Z=50-58, 64-82 and $Z\le28$ [26] *Bottom:* The same in all even-even and nuclei [26], in even-even nuclei with $Z\le58$ [29].

Fig. 5, *top*: Distribution of $\triangle EB$ in nuclei with $\triangle Z \le 26$; 4α - 2α -config. and all nuclei [6]); *center*: Distribution of adjacent intervals $\triangle EB$ -AIM in nuclei with $Z \le 26$ for x=147.2 and 73.6 MeV [6]); *bottom*: Distribution of $\triangle EB$ in nuclei with $\triangle Z=8$, $\triangle N=14$ (Z=50-82); Distribution of $\triangle EB$ -AIM in nuclei with $\triangle Z=65-81$ for x=147.1 MeV [6]; Distribution of $\triangle EB$ in all odd-odd nuclei [26].

Fig. 5, *top*: Distribution of $\triangle EB$ in nuclei with $\triangle Z \le 26$; 4α - 2α -config. and all nuclei [6]); *center*: Distribution of adjacent intervals $\triangle EB$ -AIM in nuclei with $Z \le 26$ for x = 147.2 and 73.6 MeV [6]); *bottom*: Distribution of $\triangle EB$ in nuclei with $\triangle Z = 8$, $\triangle N = 14$ (Z = 50 - 82); Distribution of $\triangle EB$ -AIM in nuclei with $\triangle Z = 65 - 81$ for x = 147.1 MeV [6]; Distribution of $\triangle EB$ in all odd-odd nuclei [26].

Fig. 5, *top*: Distribution of $\triangle EB$ in nuclei with $\triangle Z \le 26$; 4α - 2α -config. and all nuclei [6]); *center*: Distribution of adjacent intervals $\triangle EB$ -AIM in nuclei with $Z \le 26$ for x = 147.2 and 73.6 MeV [6]); *bottom*: Distribution of $\triangle EB$ in nuclei with $\triangle Z = 8$, $\triangle N = 14$ (Z = 50 - 82); Distribution of $\triangle EB$ -AIM in nuclei with $\triangle Z = 65 - 81$ for x = 147.1 MeV [6]; Distribution of $\triangle EB$ in all odd-odd nuclei [26].

Fig.6. Momentum transfer evolution of QED effective electron charge squired. The momotonically rising theoretical curve is confronted with precise measurements at the Z mass at CERN LEP collider

Fig.7. Parameters of the residual interaction ε_{np} from differences of S_p in Z-odd nuclei ($\Delta N = 1$). The value $\varepsilon_{\diamond}/3=341$ keV is given by horizontal line

Fig.8. ALEPH results with about 3 standard deviation at mass 115 GeV; observed (solid line) and the expected behaviors of the test statistic (dark region) are presented and discussed in [1].

Table 3. Representation of parameters of tuning effects in particle masses (upper part) and in nuclear data by the expression $(n \times m_e(\alpha/2\pi)^x) \times m$ with $\alpha=137^{-1}$ [5]. Asterisk marks stable intervals observed in low-energy excitations and neutron resonances; $\varepsilon_{np}=340$ keV is discussed in the text, Fig.7

X	m	n=1/8	n=1	n=13	n=16	n=17	n=18
-1	1			$M_Z = 91.188$	M_{H} =115		
${\rm GeV}$	3				$2m_t = 348$		
0	1	$2m_e$	$16m_e$	$m_{\mu} = 105.658$		m_{π} - m_e	$147=\Delta M_{\Delta}$
${ m MeV}$	1	ε_o	δ	$106.4 = \Delta E_B$	$130 = \Delta E_B$	$140=\Delta E_B$	$147 = \Delta E_B$
	3				$M_q^{\prime\prime}{=}m_{\rho}/2 \approx m_{\omega}/2$	$M_q' = 420$	M_q =441= ΔE_B
1	1	1.2*	$9.48 = \delta'^*$	123*	152*	161*	170*
keV	2			246*	303*	321*	ε_{np} =340= $\varepsilon_o/3$
	3			368*	455*	481*	$511=\varepsilon_o/2$
	8	9.5*	76*	984, Fig.8	1212*	$1293 = D_o$	1360, Fig.8
2	1		11*	143*	176*	187*	D in neutron
eV	4	5.5*	44*	572*		750 - 1500*	resonances

Lepton ratio as the distinguished parameter

Earlier, as a realization of Nambu's suggestion to search for empirical mass relations needed for SM-development, it was noticed in [5,6] that

- 1) the well-known lepton ratio L= $m\mu/me$ =206.77 becomes the integer 207=9*23=13*16-1 after a small QED radiative correction applied to me (it becomes $m\mu/me(1-\alpha/2\pi)$ =207.01)
- 2) the same ratio L=207 exists between masses of vector bosons Mz=91.188(2) GeV and Mw=80.40(3) GeV and two above discussed estimates of baryon/meson constituent quark masses Mq=441 MeV= $m\Xi_i/3$ =(3/2)(m_\triangle - m_N) and $M''q = m\rho/2$ =775.5(4) MeV/2=387.8(2) MeV
- [1] (MZ/441 MeV=206.8; $Mw/(m_{\phi}/2)$ =207.3 [5,6]). The origin of these effects should be considered in the complex analysis of tunung effects in particle masses and in nuclear data [5,6].

Conclusions

The QCD-based estimates of the constituent quark masses (M0 q=420 MeV, Mq=441 MeV, M''q) could play important role in the description of Standard Model dynamics if the observed now empirical relations in particle masses (and value MH) would be confirmed in the experiment.

Nuclear data can provide some important additional information on fundamental properties of strong nucleon interactions and nuclear matter as well as general properties of fermion systems.