Sixth International Conference on Perspectives in Hadronic Physics

12-16 May 2008

The Role of Constituent Quark Masses in the Standard Model.

[^0]
THE ROLE OF CONSTITUENT QUARK MASS IN THE STANDARD MODEL

- S.I.Sukhoruchkin
- Petersburg Nuclear Physics Institute, Gatchina, Russia

Fig.1. QCD gluon-quark-dressing effect calculated with Dyson-Schwinger Equation [9,13-17], initial masses $\mathrm{m}=0,30$ and 70 MeV ; the constituent-quark mass arisses from a cloud of low-momentum gluons attaching themselves to the current-quark; this is dynamical chiral symmetry breacking: an nonperturbative effect that generates a quark mass from nothing even at chiral limit $m=0$, bottom curve) [9]..

Fig.2. Calculation of nonstrange baryon masses (left) and Λ-hyperon masses as a function of interaction strength within GBECQM - Goldstone Boson Exchange interaction Constituent Quark Model [19]; initial baryon mass $1350 \mathrm{MeV}=3 \times 450 \mathrm{MeV}=3 M_{q}$ is near the bottom "+" on the left vertical axis.

Table 1. Discussed in the literature closeness of masses or mass differences to the integer numbers (k) of the pion mass value $m_{\pi}^{ \pm}=139.5 \mathrm{MeV}$ or to $2 m_{\pi}^{ \pm}+m_{\pi}^{\circ}=\kappa_{T}=409 \mathrm{MeV}$.

Particle	Λ	Ω	$(\mathrm{bb})(2 \mathrm{~S}-1 \mathrm{~S})$	$(\mathrm{bb})(4 \mathrm{~S}-2 \mathrm{~S})$	ΔE_{B}	
Mass or $\Delta M(\mathrm{MeV})$	$1115.683(6)$	$1672.45(29)$	$10023-9460$	$10579-10023$	408.9	
				$=563$	$=556$	
$\mathrm{k} m_{\pi}$ or $2 m_{\pi}^{ \pm}+m_{\pi}^{\circ}=\kappa_{T}$	1116	$\mathrm{k}=8$	$1672 \quad \mathrm{k}=12$	$558 \quad \mathrm{k}=4$	$558 \quad \mathrm{k}=4$	$409 \quad \kappa_{T}$
difference, reference	$0,[1,23-26]$	$0,[1,25,26]$	$-5,[1,26]$	$-2,[1,27]$	$0,[28]$	

Table 2. Discussed in the literature closeness of particle masses or mass differences to the integer numbers (k) of the nucleon Δ-excitation parameter $\Delta_{\Delta}=147 \mathrm{MeV}$ [23].

Particle	$(\mathrm{cc})(2 \mathrm{~S}-1 \mathrm{~S})$	$(\mathrm{cc})(1 \mathrm{~S})$	Ξ^{-}	$\omega_{3}-\omega$	$K_{3}^{*}-K^{*}(892)$	ΔE_{B}
Mass or	$3686.1-3096.9$	$3096.92(1)$	1321.3	$1667(4)-782.7$	$1776(7)-891.7$	441.5 (Fig.4)
$\Delta M(\mathrm{MeV})$	$=589.2 \mathrm{k}=4$	$3087 \mathrm{k}=21$	$\mathrm{k}=9$	$884(4) \mathrm{k}=6$	$=884(7) \mathrm{k}=6$	$\mathrm{k}=4$
$\mathrm{k} \Delta M_{\Delta}$	588	588	1323	882	882	441
diff., ref.	$1,[1,25,29]$	$1,[1,25,29]$	$-2,[? ?]$	$2(4),[1,25,29]$	$2(7),[1,25,29]$	$0,[28]$

Fig.3. Top Mesons of (bb)-structure with radial excitations $n=1$ and $n=1-3$ close to $4 m_{\pi}[1,27]$; Bottom Mesons of (cc)-structure with radial excitation ($\mathrm{n}=1$) close to $4 \Delta M_{\Delta}=4 \times 147 \mathrm{MeV}=588 \mathrm{MeV}$.

Fig.3. Top Mesons of (bb)-structure with radial excitations $\mathrm{n}=1$ and $\mathrm{n}=1-3$ close to $4 m_{\pi}$ [1,27]; Bottom Mesons of (cc)-structure with radial excitation ($\mathrm{n}=1$) close to $4 \Delta M_{\Delta}=4 \times 147 \mathrm{MeV}=588 \mathrm{MeV}$.

Fig. 4, Top: Distribution of $\triangle \mathrm{E}_{\text {в }}$ in nuclei with $\triangle \mathrm{Z}=2, \Delta \mathrm{~N}=4, \mathrm{Z}=50-58,64-82$ and $\mathrm{Z} \leq 28$ [26] Bottom: The same in all even-even and nuclei [26], in even-even nuclei with $\mathrm{Z} \leq 58$ [29].

Fig. 4, Top: Distribution of $\triangle \mathrm{E}_{\text {в }}$ in nuclei with $\triangle \mathrm{Z}=2, \Delta \mathrm{~N}=4, \mathrm{Z}=50-58,64-82$ and $\mathrm{Z} \leq 28$ [26] Bottom: The same in all even-even and nuclei [26], in even-even nuclei with $\mathrm{Z} \leq 58$ [29].

Fig. 4, Top: Distribution of $\Delta \mathrm{E}_{\mathrm{B}}$ in nuclei with $\Delta \mathrm{Z}=2, \Delta \mathrm{~N}=4, \mathrm{Z}=50-58,64-82$ and $\mathrm{Z} \leq 28$ [26] Bottom: The same in all even-even and nuclei [26], in even-even nuclei with $\mathrm{Z} \leq 58$ [29].

Fig. 5, top: Distribution of $\triangle \mathrm{EB}$ in nuclei with $\Delta \mathrm{Z} \leq 26 ; 4 \alpha-2 \alpha$-config. and all nuclei [6]); center: Distribution of adjacent intervals \triangle Eb-AIM in nuclei with $\mathrm{Z} \leq 26$ for $\mathrm{x}=147.2$ and 73.6 MeV [6]); bottom: Distribution of \triangle EB in nuclei with $\triangle Z=8, \Delta N=14$ ($Z=50-82$); Distribution of \triangle Eb-AIM in nuclei with $\Delta \mathrm{Z}=65-81$ for $\mathrm{x}=147.1 \mathrm{MeV}$ [6]; Distribution of $\Delta \mathrm{EB}$ in all odd-odd nuclei [26].

Fig. 5, top: Distribution of $\Delta \mathrm{EB}$ in nuclei with $\Delta \mathrm{Z} \leq 26 ; 4 \alpha-2 \alpha$-config. and all nuclei [6]); center: Distribution of adjacent intervals \triangle Eb-AIM in nuclei with $\mathrm{Z} \leq 26$ for $\mathrm{x}=147.2$ and 73.6 MeV [6]); bottom: Distribution of $\triangle E B$ in nuclei with $\Delta Z=8, \Delta N=14(Z=50-82)$; Distribution of Δ Eb-AIM in nuclei with $\Delta \mathrm{Z}=65-81$ for $\mathrm{x}=147.1 \mathrm{MeV}$ [6]; Distribution of $\triangle \mathrm{EB}$ in all odd-odd nuclei [26].

Fig. 5, top: Distribution of $\Delta \mathrm{EB}$ in nuclei with $\Delta \mathrm{Z} \leq 26 ; 4 \alpha-2 \alpha$-config. and all nuclei [6]); center: Distribution of adjacent intervals \triangle Eb-AIM in nuclei with $\mathrm{Z} \leq 26$ for $\mathrm{x}=147.2$ and 73.6 MeV [6]); bottom: Distribution of \triangle Eb in nuclei with $\triangle Z=8, \Delta N=14$ ($Z=50-82$); Distribution of \triangle Eb-AIM in nuclei with $\Delta \mathrm{Z}=65-81$ for $\mathrm{x}=147.1 \mathrm{MeV}$ [6]; Distribution of $\Delta \mathrm{EB}$ in all odd-odd nuclei [26].

Fig.6. Momentum transfer evolution of QED effective electron charge squired. The momotonically rising theoretical curve is confronted with precise measurements at the Z mass at CERN LEP collider

Fig.7. Parameters of the residual interaction $\varepsilon_{n p}$ from differences of S_{p} in Z-odd nuclei $(\Delta N=1)$. The value $\varepsilon_{0} / 3=341 \mathrm{keV}$ is given by horizontal line

Fig.8. ALEPH results with about 3 standard deviation at mass 115 GeV ; observed (solid line) and the expected behaviors of the test statistic (dark region) are presented and discussed in [1].

Table 3. Representation of parameters of tuning effects in particle masses (upper part) and in nuclear data by the expression $\left(\mathrm{n} \times m_{\varepsilon}(\alpha / 2 \pi)^{x}\right) \times m$ with $\alpha=137^{-1}[5]$. Asterisk marks stable intervals observed in low-energy excitations and neutron resonances; $\varepsilon_{n p}=340 \mathrm{keV}$ is discussed in the text, Fig. 7

X	m	$\mathrm{n}=1 / 8$	$\mathrm{n}=1$	$\mathrm{n}=13$	$\mathrm{n}=16$	n=17	n=18
-1	1			$M_{Z}=91.188$	$M_{H}=115$		
GeV	3				$2 m_{t}=348$		
0	1	$2 m_{e}$	$16 m_{t}$	$m_{\mu}=105.658$	$\begin{gathered} 130=\Delta E_{B} \\ M_{q}^{\prime \prime}=m_{\rho} / 2 \approx m_{W} / 2 \end{gathered}$	$m_{\pi}-m_{\epsilon}$	$147=\Delta M_{\Delta}$
MeV	1	ε_{0}	δ	$106.4=\Delta E_{B}$		$140=\Delta E_{B}$	$147=\Delta E_{B}$
	3					$M_{4}^{\prime}=420$	$M_{q}=441=\Delta E_{B}$
1	1	1.2^{*}	$9.48=8^{8 *}$	123^{*}	152^{*}	161^{*}	170*
keV	2			246^{*}	303^{*}	$32{ }^{*}$	$\varepsilon_{n p}=340=\varepsilon_{0} / 3$
	3			368^{*}	$45{ }^{*}$	$48{ }^{*}$	$511=\varepsilon_{0} / 2$
	8	$9.5{ }^{*}$	76^{*}	984, Fig. 8	1212^{*}	$1293=D_{0}$	1360, Fig. 8
2	1		11*	143^{*}	176^{*}	$187 *$	D in neutron
eV	4	$5.5{ }^{*}$	44*	572^{*}		750-1500*	resonances

Lepton ratio as the distinguished parameter

Earlier, as a realization of Nambu's suggestion to search for empirical mass relations needed for SM-development, it was noticed in [5,6] that

1) the well-known lepton ratio $\mathrm{L}=m \mu / m_{e}=206.77$ becomes the integer $207=9 * 23=13 * 16-1$ after a small QED radiative correction applied to m_{e} (it becomes $m \mu / m e(1-\alpha / 2 \pi)=207.01)$
2) the same ratio $\mathrm{L}=207$ exists between masses of vector bosons $M z=91.188$ (2) GeV and $M w=80.40(3) \mathrm{GeV}$ and two above discussed estimates of baryon/meson constituent quark masses $M q=441 \mathrm{MeV}=m \Xi ; / 3=(3 / 2)\left(m_{\Delta}-m_{N}\right)$ and
$M^{\prime \prime} q=m \rho / 2=775.5(4) \mathrm{MeV} / 2=387.8(2) \mathrm{MeV}$
[1] $\left(M Z / 441 \mathrm{MeV}=206.8 ; M w /\left(m_{\mathcal{R}} / 2\right)=207.3[5,6]\right)$. The origin of these effects should be considered in the complex analysis of tunung effects in particle masses and in nuclear data $[5,6]$.

Conclusions

The QCD-based estimates of the constituent quark masses ($M 0 q=420 \mathrm{MeV}, \mathrm{Mq}=441$
$\mathrm{MeV}, M^{\prime \prime} q$) could play important role in the description of Standard Model dynamics if the observed now empirical relations in particle masses (and value $M H$) would be confirmed in the experiment.
Nuclear data can provide some important additional information on fundamental properties of strong nucleon interactions and nuclear matter as well as general properties of fermion systems.

[^0]: S.I. Sukhoruchkin

 Petersburg Nuclear Physics Institute Gatchina
 Russia

