

1942-48

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

Deeply virtual Compton scattering and CLAS12.

M. Garcon SPhN/Saclay France

Nucleon structure studies via deeply virtual exclusive reactions at Jefferson Lab (1)

DVCS and **DVMP** are the key reactions

to determine

Generalized Parton Distributions (GPDs)

experimentally.

At JLab

Preliminary rounds 1999-2006

First dedicated experiments 2004-2005

Second generation 2008-2011

Final rounds from 2013 (12 GeV upgrade)

Perspectives in Hadronic Physics, ICTP-Trieste, May 2008

Classification of nucleon (chiral-even) GPDs

For each quark flavor and for gluons:

DVCS/BH interference

DVCS and GPDs : (some) sensitive observables

(The imaginary part of the) DVCS-BH interference generates a **beam spin cross section difference**: $\Delta \sigma_{LU} = (\sigma^+ - \sigma^-)/2 = \Gamma \cdot [A \sin \Phi + ...]$

$$A = \underline{F_1(t)} \cdot \mathbf{H} + \frac{x_B}{2 - x_B} \left[F_1(t) + F_2(t) \right] \cdot \widetilde{\mathbf{H}} - \frac{t}{4M^2} F_2(t) \cdot \mathbf{E}$$

$$(\mathsf{H}, \widetilde{\mathsf{H}}, \mathsf{E}, \widetilde{\mathsf{E}}) = \pi \sum_{q} e_{q}^{2} [GPD^{q}(\xi, \xi, t) \pm GPD^{q}(-\xi, \xi, t)]$$

or an asymmetry: $A_{LU} = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$

And likewise <u>target spin cross section differences or asymmetries</u>: either *longitudinal*

$$A_{UL} \propto F_1 \cdot \widetilde{H} + \frac{x_B}{2 - x_B} [F_1 + F_2] \cdot \left[H + \frac{x_B}{2} E \right] - \frac{x_B}{2 - x_B} \left[\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2 \right] \cdot \widetilde{E}$$

or transverse:

$$A_{UT} \propto \frac{t}{2M^2} \{ F_1 \cdot \mathbf{E} - F_2 \cdot \mathbf{H} \} + x_B^2 \{ \cdots \}$$

The sinusoidal behaviour is characteristic of the interference BH-DVCS

DVCS: an experimental challenge

First dedicated DVCS experiments: JLab

Dedicated, high statistics, DVCS experiments

- \rightarrow Virtual Compton scattering at the quark level
- \rightarrow If scaling laws are observed (up to Q² ~ 5 GeV²), or deviations thereof understood, first significant measurement of GPDs.
- \rightarrow Large kinematical coverage in x_B and t leads to 3D-picture of the nucleon

Hall A results on $\Delta \sigma_{LU}$ (ep \rightarrow epy): an unprecedented precision

CLAS: an unprecedented kinematic coverage

CLAS: beam-spin asymmetry binned in all 4 variables

- Double-distributions are not able to reproduce the new precise JLab data. Is the functional form not adequate ? Are there still higher-twist contributions to the unpolarized cross section ?

- A dual representation is being revived (Polyakov & Vanderhaeghen, arXiv:0803.1271). With simplifying assumptions (dominance of GPD H and truncation of infinite series of t-channel exchanges to first - forward-like - term), it gives an adequate description of the same data. Is this accidental or really giving the main physical picture ? If the latter is true, it gives direct access to H(x,0,t) and to the 2D-imaging of the quarks inside the nucleon.

- A reliable and practical parameterization is needed before performing general fits of world data. This future is within reach...

Deeply virtual meson production: pseudoscalar mesons

See next talk for new results from Hall A and CLAS on π^0 production

... and much more to come

JLab @ 12 GeV: CLAS12

Study of quark dynamics within the nucleon. Measurement of GPDs (+ quark angular momentum)

First beam in 2014

CLAS12 - Detector

CLAS12: Beam-spin asymmetries

CLAS12: Beam-spin asymmetries

CLAS12: Beam-spin asymmetries

CLAS12: Target-spin asymmetries

Longitudinal target spin asymmetry, with uncertainty projected for 11 GeV (approved experiment).

ρ^0/ω production with transverse polarized target

Conclusion & perspectives

JLab, with high luminosity and/or high-acceptance detectors, is well equiped for the studies of (rare) deeply exclusive reactions

At 6 GeV, successful first dedicated experiments and more to come !

The **12 GeV upgrade** will significantly increase the coverage in x_B (both low and high) and Q^2

<u>DVCS</u>: several observables already explored will be « nailed down » with considerable detail

<u>DVMP</u>: the dominance of leading-order diagram (handbag) still to be found/established \rightarrow 12 GeV crucial

In parallel, theoretical progress in

- the physical interpretation of GPDs
- the calculation of GPD moments using lattice QCD
- finding suitable parameterizations of GPDs

to perform global fits to the data

Additional slides

Scale dependence and finite Q^2 corrections (real world ≠ Bjorken limit)

GPD evolution

Dependence on factorization scale μ :

$$\mu \frac{\partial}{\partial \mu} H(x,\xi,t;\mu) = \int \underbrace{K(x,y,\xi;\alpha_s(\mu))}_{} H(y,\xi,t;\mu) dy$$

Kernel known to NLO

Evolution of hard scattering amplitude

O(1/O)

- (Gauge fixing term)
- Twist-3: contribution from γ^*_L may be expressed in terms of derivatives of (twist-2) GPDs.

ğ

- Other contributions such as

$O(1/Q^2)$

- "Trivial" kinematical corrections, of order $\frac{t}{O^2}, \frac{M^2}{O^2}$
- Quark transverse momentum effects (modification of quark propagator)

$$\frac{1}{x+\xi-i\varepsilon} \to \frac{1}{x+\xi+k_{\perp}^2/Q^2-i\varepsilon}$$

- Other twist-4

DVCS on the neutron (JLab/Hall A)

HERMES

Explored several observables which have selective sensitivity to the 4 GPDs:

Beam Spin Asymmetry (A_{LU}) Target Spin Asymmetries $(A_{UL} \text{ and } A_{UT})$

<u>Beam Charge Asymmetry</u> (A_C)

HERMES

How to measure GPDs ? Step 2: how close is leading order to experiment ?

This is where we are

Experiment:

Test scaling laws (test of factorization, of dominance of handbag diagram)

e.g. for DVCS BSA: $\langle \sin \Phi \rangle \sim 1/Q$, $\langle \sin 2\Phi \rangle \sim 1/Q^2$

OK as of ~ 2 GeV²

for DVMP : $d\sigma_L/dt \sim 1/Q^6$

- theoretical expectation: scaling at higher Q²

- may have to await CEBAF@12GeV

 \rightarrow precision experiments, truly exclusive.

JLab (Hall A & CLAS) dedicated DVCS experiments

represent a quantitative and qualitative jump

Theory:

Calculate deviations from leading order, especially in DVMP

May other models (e.g. Regge, color dipole) mimic the handbag contribution? If yes, what do we learn from this duality ?

How to measure GPDs ? Step 3: from DVCS to GPDs - and to J

Except for specific cases (access to imaginary part of DVCS amplitude and/or use of DDVCS), the <u>observables are convolutions of the Generalized Parton Distributions</u>.

In theory, an infinite set of data is needed to deconvolute the observables.

In practice, there are several ways to use a finite set of data (including all finite Q^2 corrections in the formalism)

- Comparison of given GPD model with experiment,
- Fit of parameterized GPDs with constraints:

forward limit, elastic form factors, polynomiality, positivity bounds,

- GPDs given by sums over *t*-channel exchanges, like a partial wave expansion,

- Inverse transformations (see e.g. Teryaev on Radon tomography)
- and more to come

Determining GPDs: DVCS or Lattice QCD ?

Experiment

 \rightarrow extract/check LO/twist-2 contributions (hopefully dominant),

 \rightarrow use several observables to extract different linear combinations of GPDs, including different flavor combinations,

 \rightarrow « deconvolution » or fit with adequate parameterisation(s) of GPDs.

Lattice

 \rightarrow calculate GPD moments n = 0, 1, 2 (and more ??),

 \rightarrow check for fermion discretisation scheme, extrapolations, « elusive » disconnected diagrams,

 \rightarrow parameterise and extrapolate moments for all values of n,

 \rightarrow get GPD from inversion from infinite set of moments.