

1942-1

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

Hadronic light-front wavefunctions from AdS/QCD

S. Brodsky SLAC/IPPP USA

Light-Front Holography: Hadronic Wavefunctions from AdS/QCD

Stan Brodsky, SLAC/IPPP

The Abdus Salam International Center for Theoretical Physics, Trieste

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Theory for Atomic Physics
- Ads/QCD Light-Front Holography
- Hadronic Spectra and Light-Front Wavefunctions

Trieste ICTP May 12, 2008 AdS/QCD

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

Trieste ICTP May 12, 2008 AdS/QCD

May 12, 2008

AdS/QCD

4

May 12, 2008

AdS/QCD 5

May 12, 2008

AdS/QCD

7

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_0 = 1/\Lambda_{QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

We will consider both holographic models

Trieste ICTP May 12, 2008 AdS/QCD 8

Conformal Theories are invariant under the Poincare and conformal transformations with

 $\mathbf{M}^{\mu\nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},$

the generators of SO(4,2)

SO(4,2) has a mathematical representation on AdS5

Trieste ICTP May 12, 2008 AdS/QCD

9

Scale Transformations

• Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2}),$$
 invariant measure

 $x^{\mu} \rightarrow \lambda x^{\mu}, \ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \to \lambda^2 x^2, \quad z \to \lambda z.$$

 $x^2 = x_\mu x^\mu$: invariant separation between quarks

• The AdS boundary at $z \to 0$ correspond to the $Q \to \infty$, UV zero separation limit.

Trieste ICTP May 12, 2008 AdS/QCD

10

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory Maldacena:

Map $AdS_5 \times S_5$ to conformal N=4 SUSY

- QCD is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- **Conformal window:** $\alpha_s(Q^2) \simeq \text{const}$ at small Q^2
- Use mathematical mapping of the conformal group SO(4,2) to AdS5 space

AdS/QCD

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

Deur, Korsch, et al.

IR Conformal Window for QCD?

- Dyson-Schwinger Analysis: QCD Coupling has IR Fixed Point
- Evidence from Lattice Gauge Theory
- Define coupling from observable: indications of IR fixed point for QCD effective charges
- Confined gluons and quarks have maximum wavelength: Decoupling of QCD vacuum polarization at small Q² Serber-Uehling

 $\Pi(Q^2) \to \frac{\alpha}{15\pi} \frac{Q^2}{m^2} \qquad Q^2 << 4m^2$

Trieste ICTP May 12, 2008 AdS/QCD

I4

 ℓ^{-}

Constituent Counting Rules

$$\frac{d\sigma}{dt}(s,t) = \frac{F(\theta_{\rm Cm})}{s^{[n_{\rm tot}-2]}} \quad s = E_{\rm Cm}^2$$

$$F_H(Q^2) \sim [\frac{1}{Q^2}]^{n_H - 1}$$

$$n_{tot} = n_A + n_B + n_C + n_D$$

Fixed t/s or $\cos \theta_{cm}$

Farrar & sjb; Matveev, Muradyan, Tavkhelidze

Conformal symmetry and PQCD predict leading-twist scaling behavior of fixed-CM angle exclusive amplitudes

Characterístic scale of QCD: 300 MeV

Many new J-PARC, GSI, J-Lab, Belle, Babar tests

Trieste ICTP May 12, 2008 AdS/QCD

15

• Phenomenological success of dimensional scaling laws for exclusive processes

$$d\sigma/dt \sim 1/s^{n-2}, \ n = n_A + n_B + n_C + n_D,$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev *et al.* (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	16	SLAC & IPPP

Conformal Invariance:

$$\frac{d\sigma}{dt}(\gamma p \to MB) = \frac{F(\theta_{cm})}{s^7}$$

Trieste ICTP May 12, 2008 AdS/QCD 18

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

Dírac's Amazing Idea: The Front Form

Evolve in ordinary time **Evolve in light-front time!**

Instant Form

Front Form

Trieste ICTP May 12, 2008 AdS/QCD 20

Each element of flash photograph íllumínated at same LF tíme

$$\tau = t + z/c$$

HELEN BRADLEY - PHOTOGRAPHY

Calculation of Form Factors in Equal-Time Theory Instant Form

Need vacuum-induced currents

Calculation of Form Factors in Light-Front Theory

Trieste ICTP May 12, 2008 AdS/QCD

22

Calculation of Hadron Form Factors Instant Form

- Current matrix elements of hadron include interactions with vacuum-induced currents arising from infinitely-complex vacuum
- Pair creation from vacuum occurs at any time before probe acts -acausal
- Knowledge of hadron wavefunction insufficient to compute current matrix elements
- Requires dynamical boost of hadron wavefunction -- unknown except at weak binding
- Complex vacuum even for QED
- None of these complications occur for quantization at fixed LF time (front form)

AdS/QCD

23

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Angular Momentum on the Light-Front

$$J^{Z} = S_{i}^{Z} + J_{j}^{Z}.$$

$$i=1 \qquad j=1$$

Conserved LF Fock state by Fock State

n-1 orbital angular momenta

Nonzero Anomalous Moment -->Nonzero orbítal angular momentum

Trieste ICTP May 12, 2008 AdS/QCD 25

$$\begin{aligned} \frac{F_2(q^2)}{2M} &= \sum_a \int [\mathrm{d}x] [\mathrm{d}^2 \mathbf{k}_{\perp}] \sum_j e_j \; \frac{1}{2} \; \times & \text{Drell, sjb} \\ \left[\; -\frac{1}{q^L} \psi_a^{\uparrow *}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \; \psi_a^{\downarrow}(x_i, \mathbf{k}_{\perp i}, \lambda_i) + \frac{1}{q^R} \psi_a^{\downarrow *}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \; \psi_a^{\uparrow}(x_i, \mathbf{k}_{\perp i}, \lambda_i) \right] \\ \mathbf{k}'_{\perp i} &= \mathbf{k}_{\perp i} - x_i \mathbf{q}_{\perp} & \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_j) \mathbf{q}_{\perp} \end{aligned}$$

Must have
$$\Delta \ell_z = \pm 1$$
 to have nonzero $F_2(q^2)$

Trieste ICTP May 12, 2008 AdS/QCD 26

Anomalous gravitomagnetic moment B(0)

Okun, Kobzarev, Teryaev: B(O) Must vanish because of Equivalence Theorem

Holography: Unique mapping derived from equality of LF and Ads formula for current matrix elements: **em and gravitational!**

Trieste ICTP May 12, 2008 AdS/QCD 28

Prediction from AdS/CFT: Meson LFWF

Prediction from AdS/CFT: Meson LFWF

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2 x(1-x)}} \qquad \phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

Trieste ICTP May 12, 2008 AdS/QCD

31

• Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for mesons, baryons

Lepage, sjb

- Evolution Equations from PQCD, Frishman, Lepage, Sachrajda, sjb OPE, Conformal Invariance Peskin Braun Efremov, Radyushkin Chernyak etal
- Compute from valence light-front wavefunction in light-cone gauge $\phi_M(x,Q) = \int^Q d^2 \vec{k} \ \psi_{q\bar{q}}(x,\vec{k}_{\perp})$

Trieste ICTP May 12, 2008 AdS/QCD

32

Trieste ICTP May 12, 2008

AdS/QCD

33

 $|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks

Mueller: BFKL DYNAMICS

$$\overline{s}(x) \neq s(x)$$

 $\bar{u}(x) \neq \bar{d}(x)$

Trieste ICTP May 12, 2008 AdS/QCD

34

Fixed LF time

Heisenberg Matrix Formulation

$$L^{QCD} \to H^{QCD}_{LF}$$

$$H_{LF}^{QCD} = \sum_{i} \left[\frac{m^2 + k_{\perp}^2}{x}\right]_i + H_{LF}^{int}$$

 H_{LF}^{int} : Matrix in Fock Space

$$H_{LF}^{QCD}|\Psi_h>=\mathcal{M}_h^2|\Psi_h>$$

p,s

k,σ

(c)

p,s′

k.σ΄

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

DLCQ: Periodic BC in x^- . Discrete k^+ ; frame-independent truncation
Light-Front QCD

 $H_{LF}^{QCD}|\Psi_h > = \mathcal{M}_h^2|\Psi_h >$

DLCQ Discretized Light-Cone Quantization

Heisenberg Matrix Formulation

		n	Sector	1 qq	2 gg	3 qq g	4 qā qā	5 gg g	6 qq gg	7 qq qq g	8 qq qq qq	88 88 8	10 qq gg g	11 qq qq gg	12 qq qq qq g	13 qq qq qq qq
	ζ κ,λ	1	qq			-	₩.Y	•		•	•	٠	•	•	•	•
	22	2	<u>g</u> g		X	~	•	~~~(•	•		•	•	•	•
	p,s′ p,s (a)	3	qq g	>-	>		~~<		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 A	•	•	Ť.	•	•	•
		4	qq qq	X	•	>		•		-	X	٠	•		•	•
	¯p,s' k,λ	5	gg g	•	~~~		•	X	~~<	•	•	~~~{~		•	•	•
		6	qā gg		*	<u>ک</u>		>		~~<	•			Y H	•	•
	κ,λ΄ p,s (b)	7	ସସି ସସି g	•	•	*	>-	•	>		~~<	٠		-<	H.V.	•
		8	qq qq qq	•	•	•	X	•	•	>		٠	•		-<	The second secon
	p,s p,s	9	<u>gg gg</u>	•		•	•	<u></u>		•	•	X	~	•	•	•
		10	qq gg g	•	•		•	*	>-		•	>		~	•	•
		11	qā qā gg	•	•	•		•	X	>-		•	>		~~<	•
	κ,σ κ,σ	12	ସସି ସସି ସସି ପ୍ର	•	•	•	•	•	•	>	>-	•	•	>		~
	(0)	13 (ag ag ag ag	•	•	•	•	•	•	•	X	•	•	•	>	

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

H.C. Pauli & sjb

DLCQ: Frame-independent, No fermion doubling; Minkowski Space

LIGHT-FRONT SCHRODINGER EQUATION

$$\begin{pmatrix} M_{\pi}^{2} - \sum_{i} \frac{\vec{k}_{\perp i}^{2} + m_{i}^{2}}{x_{i}} \end{pmatrix} \begin{bmatrix} \psi_{q\bar{q}}/\pi \\ \psi_{q\bar{q}g}/\pi \\ \vdots \end{bmatrix} = \begin{bmatrix} \langle q\bar{q} | V | q\bar{q} \rangle & \langle q\bar{q} | V | q\bar{q}g \rangle & \cdots \\ \langle q\bar{q}g | V | q\bar{q}g \rangle & \langle q\bar{q}g | V | q\bar{q}g \rangle & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}}/\pi \\ \psi_{q\bar{q}g}/\pi \\ \vdots \end{bmatrix}$$

 $A^{+} = 0$

Trieste ICTP May 12, 2008 AdS/QCD

G.P. Lepage, sjb

Use AdS/CFT orthonormal LFWFs as a basis for diagonalizing the QCD LF Hamiltonian

- Good initial approximant
- Better than plane wave basis Pauli, Hornbostel, Hiller,
- DLCQ discretization -- highly successful 1+1
- Use independent HO LFWFs, remove CM motion
 Vary, Harinandrath, Maris, sjb
- Similar to Shell Model calculations

Trieste ICTP May 12, 2008 AdS/QCD

38

Stan Brodsky SLAC & IPPP

McCartor, sjb

Light-Front QCD Heisenberg Equation

 $H_{LC}^{QCD} |\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$

	n Sector	1 qq	2 gg	3 qq g	4 qā qā	5 gg g	6 qq gg	7 qq qq g	8 qq qq qq	aa aa 8	10 qq gg g	11 qq qq gg	12 qq qq qq g	13 qq qq qq qq
ζ _k ,λ	1 q q	•••••		-	T-X	•		•	•	•	•	•	•	•
	2 gg		X	~	•	~~~<~		•	•		•	•	•	•
p,s′ p,s	3 qq g	>-	>		~~<		~~~{	THE REAL	•	•	Ť.	•	•	•
(a)	4 qq qq	X	•	>		•		-	X	•	•		•	•
$\overline{p},s' \xrightarrow{k,\lambda}$	5 gg g	•	<u>`</u>		•	X	~~<	•	•	~~~{		•	•	•
wit	6 qq gg		, , , ,	<u>}</u> ~		>		~~<	•		-<	The second secon	•	•
k,λ΄ p,s	7 qq qq g	•	•	**	>-	•	>		~~<	•		-~~	H.V.	•
(-)	8 qq qq qq	•	•	•	>	•	٠	>		٠	•		-<	X
p,s′p,s	9 gg gg	•		•	•	<u>}</u>		•	•	X	~~<	•	•	•
NNN NNN	10 qq gg g	•	•		•	,	>-		•	>		~	•	•
	11 qq qq gg	•	•	•		•	N N	>-		٠	>		~~<	•
(c)	12 qq qq qq g	•	•	•	•	•	•	>	>-	•	•	>		~
	13 qq qq qq qq	•	•	•	•	•	•	•	K	•	•	•	>	

Use AdS/QCD basis functions

Trieste ICTP May 12, 2008 AdS/QCD 39

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes, distribution amplitudes, direct subprocesses, hadronization.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs--Sivers effect

Trieste ICTP May 12, 2008 AdS/QCD

4I

- Polchinski & Strassler: AdS/CFT builds in conformal symmetry at short distances; counting rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide an approximate model of hadron structure with confinement at large distances, conformal behavior at short distances
- de Teramond, sjb: AdS/QCD Holographic Model: Initial "semiclassical" approximation to QCD. Predict light-quark hadron spectroscopy, form factors.
- Karch, Katz, Son, Stephanov: Linear Confinement
- Mapping of AdS amplitudes to 3+ 1 Light-Front equations, wavefunctions
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing H^{LF}_{QCD}; variational methods

Trieste ICTP May 12, 2008 AdS/QCD

AdS/CFT

- Use mapping of conformal group SO(4,2) to AdS5
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $x_{\mu}^2 \rightarrow \lambda^2 x_{\mu}^2$ $z \rightarrow \lambda z$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances ψ(z) ~ z^Δ at z → 0
- Hard wall model: Confinement at large distances and conformal symmetry in interior
- Truncated space simulates "bag" boundary conditions $0 < z < z_0$ $\psi(z_0) = 0$ $z_0 = \frac{1}{\Lambda_{QCD}}$

Trieste ICTP May 12, 2008 AdS/QCD

- Physical AdS modes $\Phi_P(x, z) \sim e^{-iP \cdot x} \Phi(z)$ are plane waves along the Poincaré coordinates with four-momentum P^{μ} and hadronic invariant mass states $P_{\mu}P^{\mu} = \mathcal{M}^2$.
- For small- $z \Phi(z) \sim z^{\Delta}$. The scaling dimension Δ of a normalizable string mode, is the same dimension of the interpolating operator \mathcal{O} which creates a hadron out of the vacuum: $\langle P|\mathcal{O}|0\rangle \neq 0$.

Identify hadron by its interpolating operator at $z \rightarrow o$

Trieste ICTP May 12, 2008 AdS/QCD

45

Bosonic Solutions: Hard Wall Model

• Conformal metric:
$$ds^2 = g_{\ell m} dx^\ell dx^m$$
. $x^\ell = (x^\mu, z), \ g_{\ell m} \to \left(R^2/z^2\right) \eta_{\ell m}$

• Action for massive scalar modes on AdS_{d+1} :

$$S[\Phi] = \frac{1}{2} \int d^{d+1}x \sqrt{g} \, \frac{1}{2} \left[g^{\ell m} \partial_{\ell} \Phi \partial_m \Phi - \mu^2 \Phi^2 \right], \quad \sqrt{g} \to (R/z)^{d+1}.$$

• Equation of motion

$$\frac{1}{\sqrt{g}}\frac{\partial}{\partial x^{\ell}}\left(\sqrt{g}\ g^{\ell m}\frac{\partial}{\partial x^m}\Phi\right) + \mu^2\Phi = 0.$$

• Factor out dependence along x^{μ} -coordinates , $\Phi_P(x,z) = e^{-iP\cdot x} \Phi(z), \ P_{\mu}P^{\mu} = \mathcal{M}^2$:

$$\left[z^2 \partial_z^2 - (d-1)z \,\partial_z + z^2 \mathcal{M}^2 - (\mu R)^2\right] \Phi(z) = 0.$$

• Solution:
$$\Phi(z) \to z^{\Delta}$$
 as $z \to 0$,

$$\Phi(z) = C z^{d/2} J_{\Delta - d/2}(z\mathcal{M}) \qquad \Delta = \frac{1}{2} \left(d + \sqrt{d^2 + 4\mu^2 R^2} \right).$$

 $\Delta = 2 + L$ d = 4 $(\mu R)^2 = L^2 - 4$

Trieste ICTP May 12, 2008 AdS/QCD

46

Let $\Phi(z) = z^{3/2}\phi(z)$

Ads Schrodinger Equation for bound state of two scalar constituents:

$$\left[-\frac{\mathrm{d}^2}{\mathrm{d}z^2} + \mathrm{V}(z)\right]\phi(z) = \mathrm{M}^2\phi(z)$$

$\mathbf{V}(\mathbf{z})$	 $-1-4L^2$
v (Z)	 $-4z^2$

Interpret L as orbital angular momentum

Derived from variation of Action in AdS_5

Hard wall model: truncated space

$$\phi(\mathbf{z} = \mathbf{z}_0 = \frac{1}{\Lambda_c}) = 0.$$

Trieste ICTP May 12, 2008

AdS/QCD

47

Match fall-off at small z to conformal twist-dimension_ at short distances twist.

• Pseudoscalar mesons: $\mathcal{O}_{2+L} = \overline{\psi} \gamma_5 D_{\{\ell_1} \dots D_{\ell_m\}} \psi$ ($\Phi_\mu = 0$ gauge). $\Delta = 2 + L$

- 4-*d* mass spectrum from boundary conditions on the normalizable string modes at $z = z_0$, $\Phi(x, z_o) = 0$, given by the zeros of Bessel functions $\beta_{\alpha,k}$: $\mathcal{M}_{\alpha,k} = \beta_{\alpha,k} \Lambda_{QCD}$
- Normalizable AdS modes $\Phi(z)$

S=0 Meson orbital and radial AdS modes for $\Lambda_{QCD}=0.32$ GeV.

Trieste ICTP May 12, 2008 AdS/QCD 48

Fig: Orbital and radial AdS modes in the hard wall model for Λ_{QCD} = 0.32 GeV .

Fig: Light meson and vector meson orbital spectrum $\Lambda_{QCD}=0.32~GeV$

Trieste ICTP May 12, 2008 AdS/QCD

49

Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6$ GeV.

Trieste ICTP May 12, 2008 AdS/QCD

50

Higher Spin Bosonic Modes SW

Soft-wall model

• Effective LF Schrödinger wave equation

$$\begin{bmatrix} -\frac{d^2}{dz^2} - \frac{1-4L^2}{4z^2} + \kappa^4 z^2 + 2\kappa^2 (L+S-1) \end{bmatrix} \phi_S(z) = \mathcal{M}^2 \phi_S(z)$$

with eigenvalues $\mathcal{M}^2 = 2\kappa^2 (2n+2L+S)$. Same slope in n and L

• Compare with Nambu string result (rotating flux tube): $M_n^2(L) = 2\pi\sigma \left(n + L + 1/2\right)$.

 Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo, De Facio, Jugeau and Nicotri(2007).

Trieste ICTPAdS/QCDStan BrodskyMay 12, 200851SLAC & IPPP

AdS/QCD Soft Wall Model -- Reproduces Linear Regge Trajectories

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

$$J(Q,z) = zQK_1(zQ)$$

$$F(Q^2)_{I \to F} = \int \frac{dz}{z^3} \Phi_F(z) J(Q, z) \Phi_I(z)$$

Polchinski, Strassler de Teramond, sjb

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, $\Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_n}$. Thus:

$$F(Q^2) \rightarrow \begin{bmatrix} 1 \\ Q^2 \end{bmatrix}^{\tau-1}, \begin{array}{c} \text{Dimensional Quark Counting Rule} \\ , \begin{array}{c} \text{General result from} \\ \text{AdS/CFT} \end{array}$$

where $\tau = \Delta_n - \sigma_n$, $\sigma_n = \sum_{i=1}^n \sigma_i$. The twist is equal to the number of partons, $\tau = n$.

Trieste ICTP	AdS/OCD	Stan Brodsky		
May 12, 2008	53	SLAC & IPPP		

Current Matrix Elements in AdS Space (HW)

• Hadronic matrix element for EM coupling with string mode $\Phi(x^{\ell})$, $x^{\ell} = (x^{\mu}, z)$

$$ig_5 \int d^4x \, dz \, \sqrt{g} \, A^\ell(x,z) \Phi_{P'}^*(x,z) \overleftrightarrow{\partial}_\ell \Phi_P(x,z).$$

• Electromagnetic probe polarized along Minkowski coordinates $(Q^2 = -q^2 > 0)$

$$A(x,z)_{\mu} = \epsilon_{\mu} e^{-iQ \cdot x} J(Q,z), \quad A_z = 0.$$

• Propagation of external current inside AdS space described by the AdS wave equation

$$\left[z^2\partial_z^2 - z\,\partial_z - z^2Q^2\right]J(Q,z) = 0$$

subject to boundary conditions J(Q=0,z) = J(Q,z=0) = 1.

Solution

$$J(Q,z) = zQK_1(zQ).$$

• Substitute hadronic modes $\Phi(x,z)$ in the AdS EM matrix element

$$\Phi_P(x,z) = e^{-iP \cdot x} \Phi(z), \quad \Phi(z) \to z^{\Delta}, \quad z \to 0.$$

Trieste ICTP May 12, 2008 AdS/QCD

54

Current Matrix Elements in AdS Space (SW)

sjb and GdT Grigoryan and Radyushkin

• Propagation of external current inside AdS space described by the AdS wave equation

$$\left[z^2\partial_z^2 - z\left(1 + 2\kappa^2 z^2\right)\partial_z - Q^2 z^2\right]J_{\kappa}(Q, z) = 0.$$

• Solution bulk-to-boundary propagator

$$J_{\kappa}(Q,z) = \Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right) U\left(\frac{Q^2}{4\kappa^2}, 0, \kappa^2 z^2\right),$$

where U(a, b, c) is the confluent hypergeometric function

$$\Gamma(a)U(a,b,z) = \int_0^\infty e^{-zt} t^{a-1} (1+t)^{b-a-1} dt.$$

- Form factor in presence of the dilaton background $\varphi = \kappa^2 z^2$

$$F(Q^2) = R^3 \int \frac{dz}{z^3} e^{-\kappa^2 z^2} \Phi(z) J_{\kappa}(Q, z) \Phi(z).$$

• For large $Q^2 \gg 4\kappa^2$

$$J_{\kappa}(Q,z) \to zQK_1(zQ) = J(Q,z),$$

the external current decouples from the dilaton field.

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	55	SLAC & IPPP

Space and Time-Like Pion Form Factor

• Hadronic string modes $\Phi_{\pi}(z)
ightarrow z^2$ as z
ightarrow 0 (twist au=2)

$$\Phi_{\pi}^{HW}(z) = \frac{\sqrt{2}\Lambda_{QCD}}{R^{3/2}J_1(\beta_{0,1})} z^2 J_0(z\beta_{0,1}\Lambda_{QCD}),$$

$$\Phi_{\pi}^{SW}(z) = \frac{\sqrt{2}\kappa}{R^{3/2}} z^2.$$

• F_{π} has analytical solution in the SW model $F_{\pi}(Q^2) = \frac{4\kappa^2}{4\kappa^2 + Q^2}$.

Fig: $F_{\pi}(q^2)$ for $\kappa = 0.375$ GeV and $\Lambda_{QCD} = 0.22$ GeV. Continuous line: SW, dashed line: HW.

Trieste ICTP May 12, 2008 AdS/QCD 56

Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

• Form factor for a string mode with scaling dimension au, $\Phi_{ au}$ in the SW model

$$F(Q^2) = \Gamma(\tau) \frac{\Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right)}{\Gamma\left(\tau + \frac{Q^2}{4\kappa^2}\right)}.$$

- For $\tau = N$, $\Gamma(N+z) = (N-1+z)(N-2+z)\dots(1+z)\Gamma(1+z)$.
- Form factor expressed as N-1 product of poles

$$F(Q^{2}) = \frac{1}{1 + \frac{Q^{2}}{4\kappa^{2}}}, \quad N = 2,$$

$$F(Q^{2}) = \frac{2}{\left(1 + \frac{Q^{2}}{4\kappa^{2}}\right)\left(2 + \frac{Q^{2}}{4\kappa^{2}}\right)}, \quad N = 3,$$

...

$$F(Q^{2}) = \frac{(N-1)!}{\left(1 + \frac{Q^{2}}{4\kappa^{2}}\right)\left(2 + \frac{Q^{2}}{4\kappa^{2}}\right) \cdots \left(N - 1 + \frac{Q^{2}}{4\kappa^{2}}\right)}, \quad N.$$

• For large Q^2 :

$$F(Q^2) \to (N-1)! \left[\frac{4\kappa^2}{Q^2}\right]^{(N-1)}$$

Trieste ICTP May 12, 2008 AdS/QCD

57

• Analytical continuation to time-like region $q^2
ightarrow -q^2$

$$M_{\rho} = 2\kappa = 750 \text{ MeV}$$

• Strongly coupled semiclassical gauge/gravity limit hadrons have zero widths (stable).

Space and time-like pion form factor for $\kappa = 0.375$ GeV in the SW model.

 Vector Mesons: Hong, Yoon and Strassler (2004); Grigoryan and Radyushkin (2007). Trieste ICTP May 12, 2008

 May 12, 2008

Light-Front Representation of Two-Body Meson Form Factor

• Drell-Yan-West form factor

$$F(q^2) = \sum_{q} e_q \int_0^1 dx \int \frac{d^2 \vec{k}_\perp}{16\pi^3} \psi_{P'}^*(x, \vec{k}_\perp - x\vec{q}_\perp) \psi_P(x, \vec{k}_\perp).$$

• Fourrier transform to impact parameter space $ec{b}_\perp$

$$\psi(x,\vec{k}_{\perp}) = \sqrt{4\pi} \int d^2 \vec{b}_{\perp} \; e^{i\vec{b}_{\perp}\cdot\vec{k}_{\perp}} \, \widetilde{\psi}(x,\vec{b}_{\perp})$$

• Find ($b=|ec{b}_{\perp}|$) :

$$F(q^2) = \int_0^1 dx \int d^2 \vec{b}_\perp e^{ix\vec{b}_\perp \cdot \vec{q}_\perp} |\widetilde{\psi}(x,b)|^2 \qquad \text{Soper}$$
$$= 2\pi \int_0^1 dx \int_0^\infty b \, db \, J_0 \left(bqx\right) \, |\widetilde{\psi}(x,b)|^2,$$

Trieste ICTP May 12, 2008 AdS/QCD

Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

$$F(q^2) = 2\pi \int_0^1 dx \, \frac{(1-x)}{x} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x,\zeta),$$

with $\widetilde{\rho}(x,\zeta)$ QCD effective transverse charge density.

• Transversality variable

$$\zeta = \sqrt{\frac{x}{1-x}} \Big| \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j} \Big|.$$

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$\int_0^1 dx J_0\left(\zeta Q\sqrt{\frac{1-x}{x}}\right) = \zeta Q K_1(\zeta Q),$$

the solution for $J(Q,\zeta) = \zeta Q K_1(\zeta Q)$!

Trieste ICTP May 12, 2008 AdS/QCD 60

• Electromagnetic form-factor in AdS space:

$$F_{\pi^+}(Q^2) = R^3 \int \frac{dz}{z^3} J(Q^2, z) |\Phi_{\pi^+}(z)|^2,$$

where $J(Q^2, z) = zQK_1(zQ)$.

 $\bullet\,$ Use integral representation for $J(Q^2,z)$

$$J(Q^2, z) = \int_0^1 dx \, J_0\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)$$

• Write the AdS electromagnetic form-factor as

$$F_{\pi^+}(Q^2) = R^3 \int_0^1 dx \int \frac{dz}{z^3} J_0\left(zQ\sqrt{\frac{1-x}{x}}\right) |\Phi_{\pi^+}(z)|^2$$

• Compare with electromagnetic form-factor in light-front QCD for arbitrary Q

$$\left|\tilde{\psi}_{q\overline{q}/\pi}(x,\zeta)\right|^2 = \frac{R^3}{2\pi} x(1-x) \frac{\left|\Phi_{\pi}(\zeta)\right|^2}{\zeta^4}$$

with
$$\zeta = z, \ 0 \le \zeta \le \Lambda_{\rm QCD}$$

Trieste ICTP
May 12, 2008

AdS/QCD 61

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

Trieste ICTP May 12, 2008 AdS/QCD

62

Gravitational Form Factor of Composite Hadrons

• Gravitational FF defined by matrix elements of the energy momentum tensor $\Theta^{++}(x)$

$$\left\langle P' \left| \Theta^{++}(0) \right| P \right\rangle = 2 \left(P^{+} \right)^{2} A(Q^{2})$$

• $\Theta^{\mu\nu}$ is computed for each constituent in the hadron from the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} G^{a}_{\mu\nu} G^{a\,\mu\nu}$$

• Symmetric and gauge invariant $\Theta^{\mu\nu}$ from variation of $S_{\rm QCD} = \int d^4x \sqrt{g} \mathcal{L}_{\rm QCD}$ with respect to four-dim Minkowski metric $g_{\mu\nu}$, $\Theta^{\mu\nu}(x) = -\frac{2}{\sqrt{g}} \frac{\delta S_{\rm QCD}}{\delta g_{\mu\nu}(x)}$:

$$\Theta^{\mu\nu} = \frac{1}{2}\overline{\psi}i(\gamma^{\mu}D^{\nu} + \gamma^{\nu}D^{\mu})\psi - g^{\mu\nu}\overline{\psi}(iD - m)\psi - G^{a\,\mu\lambda}G^{a\,\nu}{}_{\lambda} + \frac{1}{4}g^{\mu\nu}G^{a\,\mu\nu}_{\mu\nu}G^{a\,\mu\nu}$$

• Quark contribution in light front gauge ($A^+ = 0, g^{++} = 0$)

$$\Theta^{++}(x) = \frac{i}{2} \sum_{f} \overline{\psi}^{f}(x) \gamma^{+} \overleftrightarrow{\partial}^{+} \psi^{f}(x)$$

Trieste ICTP May 12, 2008 AdS/QCD 63

Gravitational Form Factor on the LF

$$A_{\mathbf{f}}(q^2) = \int_0^1 \mathbf{x} dx \int d^2 \vec{\eta}_{\perp} e^{i\vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \tilde{\rho}(x, \vec{\eta}_{\perp}),$$

where

$$\begin{split} \tilde{\rho}(x,\vec{\eta}_{\perp}) &= \int \frac{d^2 \vec{q}_{\perp}}{(2\pi)^2} e^{-i\vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \rho(x,\vec{q}_{\perp}) \\ &= \sum_n \prod_{j=1}^{n-1} \int dx_j \, d^2 \vec{b}_{\perp j} \, \delta \Big(1 - x - \sum_{j=1}^{n-1} x_j \Big) \\ &\times \delta^{(2)} \Big(\sum_{j=1}^{n-1} x_j \vec{b}_{\perp j} - \vec{\eta}_{\perp} \Big) \left| \tilde{\psi}_n(x_j,\vec{b}_{\perp j}) \right|^2. \end{split}$$

Extra factor of x relative to charge form factor

For each quark and

Integrate over angle $\begin{aligned} A(q^2) &= 2\pi \int_0^1 dx \left(1-x\right) \int \zeta d\zeta J_0 \left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x,\zeta) \\ \zeta &= \sqrt{\frac{x}{1-x}} \left|\sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j}\right| \end{aligned}$

j=1

Trieste ICTP May 12, 2008 AdS/QCD 64

Gravitational Form Factor in Ads space

• Hadronic gravitational form-factor in AdS space

$$A_{\pi}(Q^2) = R^3 \int \frac{dz}{z^3} H(Q^2, z) |\Phi_{\pi}(z)|^2,$$

Abidin & Carlson

where $H(Q^2,z)=\frac{1}{2}Q^2z^2K_2(zQ)$

• Use integral representation for ${\cal H}(Q^2,z)$

$$H(Q^2, z) = 2 \int_0^1 x \, dx \, J_0\left(zQ\sqrt{\frac{1-x}{x}}\right)$$

• Write the AdS gravitational form-factor as

$$A_{\pi}(Q^2) = 2R^3 \int_0^1 x \, dx \int \frac{dz}{z^3} \, J_0\left(zQ\sqrt{\frac{1-x}{x}}\right) |\Phi_{\pi}(z)|^2$$

 $\bullet\,$ Compare with gravitational form-factor in light-front QCD for arbitrary Q

$$\left| \tilde{\psi}_{q\bar{q}/\pi}(x,\zeta) \right|^2 = \frac{R^3}{2\pi} x(1-x) \frac{|\Phi_{\pi}(\zeta)|^2}{\zeta^4},$$

Identical to LF Holography obtained from electromagnetic current

Trieste ICTP	AdS/OCD	Stan Brodsky		
May 12, 2008	65	SLAC & IPPP		

$$H(Q^{2}, z) = 2 \int_{0}^{1} x \, dx \, J_{0}\left(zQ\sqrt{\frac{1-x}{x}}\right).$$
$$A(Q^{2}) = 2R^{3} \int x \, dx \int \frac{dz}{z^{3}} J_{0}\left(zQ\sqrt{\frac{1-x}{x}}\right) |\Phi(z)|^{2}.$$
 AdS

Compare with gravitational form factor from LF

$$A(Q^2) = 2\pi \int_0^1 dx \, (1-x) \int \zeta d\zeta \, J_0\left(\zeta Q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x,\zeta) \quad \mathbf{LF}$$

Holography: identify AdS and LF density for all ${\mathcal Q}$

$$\tilde{\rho}(x,\zeta) = 2 \frac{R^3}{2\pi} \frac{x}{1-x} \frac{|\Phi(\zeta)|^2}{\zeta^4}$$

with

$$\zeta \equiv z$$
 $\zeta = \sqrt{\frac{x}{1-x}} \left| \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j} \right|$

Trieste ICTP May 12, 2008 AdS/QCD 66

Holographic result for LFWF identical for electroweak and gravity couplings! Highly nontrivial consistency test

Ads/QCD can predict

- Momentum fractions for each quark flavor and the gluons $A_f(0) = \langle x_f \rangle, \sum A_f(0) = A(0) = 1$
- Orbital Angular Momentum^{*f*} for each quark flavor and the gluons $B_f(0) = \langle L_f^3 \rangle, \sum B_f(0) = B(0) = 0$
- Vanishing Anomalous Gravitomagnetic Moment
- Shape and Asymptotic Behavior of $A_f(Q^2), B_f(Q^2)$

Trieste ICTP May 12, 2008 AdS/QCD

67

Consider the AdS_5 metric:

$$ds^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2).$$

 ds^2 invariant if $x^{\mu} \to \lambda x^{\mu}, \ z \to \lambda z,$

Maps scale transformations to scale changes of the the holographic coordinate z.

We define light-front coordinates $x^{\pm} = x^0 \pm x^3$.

Then
$$\eta^{\mu\nu} dx_{\mu} dx_{\nu} = dx_0^2 - dx_3^2 - dx_{\perp}^2 = dx^+ dx^- - dx_{\perp}^2$$

and

$$ds^2 = -\frac{R^2}{z^2}(dx_{\perp}^2 + dz^2)$$
 for $x^+ = 0$. Light-Front AdS₅ Duality

- ds^2 is invariant if $dx_{\perp}^2 \rightarrow \lambda^2 dx_{\perp}^2$, and $z \rightarrow \lambda z$, at equal LF time.
- Maps scale transformations in transverse LF space to scale changes of the holographic coordinate z.
- Holographic connection of AdS_5 to the light-front.
- The effective wave equation in the two-dim transverse LF plane has the Casimir representation L^2 corresponding to the SO(2) rotation group [The Casimir for $SO(N) \sim S^{N-1}$ is L(L + N 2)].

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	68	SLAC & IPPP

Prediction from AdS/CFT: Meson LFWF

"Soft Wall" model

de Teramond, sjb

 $\kappa = 0.375 \text{ GeV}$

massless quarks

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2 x(1-x)}} \quad \phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

Trieste ICTP May 12, 2008 AdS/QCD 69

Example: Pion LFWF

• Two parton LFWF bound state:

$$\widetilde{\psi}_{\overline{q}q/\pi}^{HW}(x,\mathbf{b}_{\perp}) = \frac{\Lambda_{\rm QCD}\sqrt{x(1-x)}}{\sqrt{\pi}J_{1+L}(\beta_{L,k})} J_L\left(\sqrt{x(1-x)} \,|\,\mathbf{b}_{\perp}|\beta_{L,k}\Lambda_{\rm QCD}\right) \theta\left(\mathbf{b}_{\perp}^2 \le \frac{\Lambda_{\rm QCD}^{-2}}{x(1-x)}\right),$$

$$\widetilde{\psi}_{\overline{q}q/\pi}^{SW}(x,\mathbf{b}_{\perp}) = \kappa^{L+1} \sqrt{\frac{2n!}{(n+L)!}} \left[x(1-x) \right]^{\frac{1}{2}+L} |\mathbf{b}_{\perp}|^{L} e^{-\frac{1}{2}\kappa^{2}x(1-x)\mathbf{b}_{\perp}^{2}} L_{n}^{L} \left(\kappa^{2}x(1-x)\mathbf{b}_{\perp}^{2}\right).$$

Fig: Ground state pion LFWF in impact space. (a) HW model $\Lambda_{
m QCD}=0.32$ GeV, (b) SW model $\kappa=0.375$ GeV.

Trieste ICTP May 12, 2008

AdS/QCD

70

Example: Evaluation of QCD Matrix Elements

• Pion decay constant f_{π} defined by the matrix element of EW current J_W^+ :

$$\left\langle 0 \left| \overline{\psi}_u \gamma^+ \frac{1}{2} (1 - \gamma_5) \psi_d \right| \pi^- \right\rangle = i \frac{P^+ f_\pi}{\sqrt{2}}$$

with

$$\left|\pi^{-}\right\rangle = \left|d\overline{u}\right\rangle = \frac{1}{\sqrt{N_{C}}} \frac{1}{\sqrt{2}} \sum_{c=1}^{N_{C}} \left(b_{c\ d\downarrow}^{\dagger} d_{c\ u\uparrow}^{\dagger} - b_{c\ d\uparrow}^{\dagger} d_{c\ u\downarrow}^{\dagger}\right) \left|0\right\rangle.$$

• Find light-front expression (Lepage and Brodsky '80):

$$f_{\pi} = 2\sqrt{N_C} \int_0^1 dx \int \frac{d^2 \vec{k_\perp}}{16\pi^3} \psi_{\overline{q}q/\pi}(x,k_\perp).$$

- Using relation between AdS modes and QCD LFWF in the $\zeta \rightarrow 0$ limit

$$f_{\pi} = \frac{1}{8} \sqrt{\frac{3}{2}} R^{3/2} \lim_{\zeta \to 0} \frac{\Phi(\zeta)}{\zeta^2}$$

• Holographic result ($\Lambda_{\rm QCD}$ = 0.22 GeV and κ = 0.375 GeV from pion FF data): Exp: f_{π} = 92.4 MeV

$$f_{\pi}^{HW} = \frac{\sqrt{3}}{8J_1(\beta_{0,k})} \Lambda_{\text{QCD}} = 91.7 \text{ MeV}, \ f_{\pi}^{SW} = \frac{\sqrt{3}}{8} \kappa = 81.2 \text{ MeV},$$

Trieste ICTP May 12, 2008 AdS/QCD

7I
Second Moment of Píon Dístribution Amplitude

$$<\xi^2>=\int_{-1}^1 d\xi \ \xi^2\phi(\xi)$$

$$\xi = 1 - 2x$$

$$\begin{array}{ll} <\xi^2>_{\pi}=1/5=0.20 & \phi_{asympt}\propto x(1-x) \\ <\xi^2>_{\pi}=1/4=0.25 & \phi_{AdS/QCD}\propto \sqrt{x(1-x)} \\ \\ \mbox{Lattice (I)} <\xi^2>_{\pi}=0.28\pm0.03 & \mbox{Donnellan et al.} \\ \\ \mbox{Lattice (II)} <\xi^2>_{\pi}=0.269\pm0.039 & \mbox{Braun et al.} \\ \\ \mbox{Trieste ICTP} & \mbox{AdS/QCD} & \mbox{Stan Brodsky} \\ & \mbox{SLAC & IPPP} \end{array}$$

Spacelike pion form factor from AdS/CFT

Data Compilation from Baldini, Kloe and Volmer

- SW: Harmonic Oscillator Confinement

HW: Truncated Space Confinement

One parameter - set by pion decay constant.

de Teramond, sjb

Trieste ICTP May 12, 2008 AdS/QCD

73

Note: Contributions to Mesons Form Factors at Large Q in AdS/QCD

• Write form factor in terms of an effective partonic transverse density in impact space ${f b}_\perp$

$$F_{\pi}(q^2) = \int_0^1 dx \int db^2 \,\widetilde{\rho}(x, b, Q),$$

with $\widetilde{\rho}(x, b, Q) = \pi J_0 \left[b Q(1-x) \right] |\widetilde{\psi}(x, b)|^2$ and $b = |\mathbf{b}_{\perp}|$.

• Contribution from $\rho(x, b, Q)$ is shifted towards small $|\mathbf{b}_{\perp}|$ and large $x \to 1$ as Q increases.

Fig: LF partonic density $\rho(x, b, Q)$: (a) Q = 1 GeV/c, (b) very large Q.

Trieste ICTP May 12, 2008 AdS/QCD

74

• Light-front Hamiltonian equation

$$H_{LF}|\phi\rangle = \mathcal{M}^2|\phi\rangle,$$

leads to effective LF Schrödinger wave equation (KKSS)

$$\left[-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \kappa^4 \zeta^2 + 2\kappa^2 (L-1)\right]\phi(\zeta) = \mathcal{M}^2\phi(\zeta)$$

with eigenvalues $\mathcal{M}^2 = 4\kappa^2(n+L)$ and eigenfunctions

$$\phi_L(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L \left(\kappa^2 \zeta^2\right).$$

- Transverse oscillator in the LF plane with SO(2) rotation subgroup has Casimir L^2 representing rotations for the transverse coordinates \mathbf{b}_{\perp} in the LF.
- SW model is a remarkable example of integrability to a non-conformal extension of AdS/CFT [Chim and Zamolodchikov (1992) Potts Model.]

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	76	SLAC & IPPP

$$\begin{bmatrix} -\frac{d^2}{d\zeta^2} + V(\zeta) \end{bmatrix} \phi(\zeta) = \mathcal{M}^2 \phi(\zeta)$$

de Teramond, sjb
 \vec{b}_\perp
 m_2 $(1-x)$

$$\zeta = \sqrt{x(1-x)\vec{b}_{\perp}^2}$$

$$-\frac{d}{d\zeta^2} \equiv \frac{k_{\perp}^2}{x(1-x)}$$

Holographic Variable

LF Kinetic Energy in momentum space

Assume LFWF is a dynamical function of the quark-antiquark invariant mass squared

$$-\frac{d}{d\zeta^2} \to -\frac{d}{d\zeta^2} + \frac{m_1^2}{x} + \frac{m_2^2}{1-x} \equiv \frac{k_\perp^2 + m_1^2}{x} + \frac{k_\perp^2 + m_2^2}{1-x}$$

Trieste ICTP May 12, 2008 AdS/QCD 77

Result: Soft-Wall LFWF for massive constituents

$$\psi(x, \mathbf{k}_{\perp}) = \frac{4\pi c}{\kappa \sqrt{x(1-x)}} e^{-\frac{1}{2\kappa^2} \left(\frac{\mathbf{k}_{\perp}^2}{x(1-x)} + \frac{m_1^2}{x} + \frac{m_2^2}{1-x}\right)}$$

LFWF in impact space: soft-wall model with massive quarks

$$\psi(x, \mathbf{b}_{\perp}) = \frac{c \kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{1}{2}\kappa^2 x(1-x)\mathbf{b}_{\perp}^2 - \frac{1}{2\kappa^2} \left[\frac{m_1^2}{x} + \frac{m_2^2}{1-x}\right]}$$

$$z \to \zeta \to \chi$$

$$\chi^2 = b^2 x (1 - x) + \frac{1}{\kappa^4} \left[\frac{m_1^2}{x} + \frac{m_2^2}{1 - x}\right]$$

Trieste ICTP May 12, 2008 AdS/QCD

78

 J/ψ

LFWF peaks at

$$x_{i} = \frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}$$

where
$$m_{\perp i} = \sqrt{m^{2} + k_{\perp}^{2}}$$

mínímum of LF energy denomínator

 $\kappa = 0.375 \text{ GeV}$

Trieste ICTP May 12, 2008 AdS/QCD 79

First Moment of Kaon Distribution Amplitude

M	$\langle \xi angle_M$	$\langle \xi^2 angle_M$
π		0.25
K	$0.04 \pm 0.02^{\ a}$	0.235 ± 0.005^{a}
D	0.71 Ads/QCD	0.54
η_c		0.02
B	0.96	0.91
η_b		0.002
π		0.28 ± 0.03^b
K	$0.029 \pm 0.002^{\ b}$	$0.27 \pm 0.02^{\ b}$
π	Lattice	0.269 ± 0.039^{c}
K	$0.0272 \pm 0.0005^{\ c}$	$0.260 \pm 0.006^{\ c}$

AdS/QCD $m_s = 65 \pm 25$ MeV (PDG)

M. A. Donnellan *et al.*, "Lattice Results for Vector Meson Couplings and Parton Distribution Amplitudes," arXiv:0710.0869 [hep-lat].

b: Lattice

Trieste ICTP May 12, 2008 V. M. Braun *et al.*, "Moments of pseudoscalar meson distribution amplitudes from the lattice," Phys. Rev. D **74**, 074501 (2006) [arXiv:hep-lat/0606012].

Stan Brodsky

SLAC & IPPP

AdS/QCD 82

c: Lattice

82

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Trieste ICTP May 12, 2008 AdS/QCD

83

Light-Front Wavefunctions

Invariant under boosts! Independent of P^{μ}

Trieste ICTP May 12, 2008 AdS/QCD 84

Hadronization at the Amplitude Level

• Baryons Spectrum in "bottom-up" holographic QCD GdT and Brodsky: hep-th/0409074, hep-th/0501022.

Baryons ín Ads/CFT

• Action for massive fermionic modes on AdS_{d+1} :

$$S[\overline{\Psi}, \Psi] = \int d^{d+1}x \sqrt{g} \,\overline{\Psi}(x, z) \left(i\Gamma^{\ell} D_{\ell} - \mu\right) \Psi(x, z).$$

• Equation of motion: $(i\Gamma^{\ell}D_{\ell}-\mu)\Psi(x,z)=0$

$$\left[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_m + \frac{d}{2}\Gamma_z\right) + \mu R\right]\Psi(x^{\ell}) = 0.$$

Trieste ICTP May 12, 2008 AdS/QCD 86

Baryons

Holographic Light-Front Integrable Form and Spectrum

• In the conformal limit fermionic spin- $\frac{1}{2}$ modes $\psi(\zeta)$ and spin- $\frac{3}{2}$ modes $\psi_{\mu}(\zeta)$ are two-component spinor solutions of the Dirac light-front equation

$$\alpha \Pi(\zeta) \psi(\zeta) = \mathcal{M} \psi(\zeta),$$

where $H_{LF} = \alpha \Pi$ and the operator

$$\Pi_L(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta}\gamma_5\right),\,$$

and its adjoint $\Pi^{\dagger}_{L}(\zeta)$ satisfy the commutation relations

$$\left[\Pi_L(\zeta), \Pi_L^{\dagger}(\zeta)\right] = \frac{2L+1}{\zeta^2} \gamma_5.$$

• Supersymmetric QM between bosonic and fermionic modes in AdS?

Trieste ICTPAdS/QCDStan BrodskyMay 12, 200887SLAC & IPPP

• Note: in the Weyl representation ($i\alpha = \gamma_5\beta$)

$$i\alpha = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \qquad \gamma_5 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}.$$

• Baryon: twist-dimension 3 + L ($\nu = L + 1$)

$$\mathcal{O}_{3+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m\}} \psi, \quad L = \sum_{i=1}^m \ell_i.$$

• Solution to Dirac eigenvalue equation with UV matching boundary conditions

$$\psi(\zeta) = C\sqrt{\zeta} \left[J_{L+1}(\zeta \mathcal{M})u_+ + J_{L+2}(\zeta \mathcal{M})u_- \right].$$

Baryonic modes propagating in AdS space have two components: orbital L and L + 1.

• Hadronic mass spectrum determined from IR boundary conditions

$$\psi_{\pm} \left(\zeta = 1 / \Lambda_{\rm QCD} \right) = 0,$$

given by

$$\mathcal{M}_{\nu,k}^{+} = \beta_{\nu,k} \Lambda_{\text{QCD}}, \quad \mathcal{M}_{\nu,k}^{-} = \beta_{\nu+1,k} \Lambda_{\text{QCD}},$$

with a scale independent mass ratio.

Trieste ICTP May 12, 2008 AdS/QCD 88

Fig: Light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV in the HW model. The **56** trajectory corresponds to L even P = + states, and the **70** to L odd P = - states.

Trieste ICTP May 12, 2008 AdS/QCD 89

SU(6)	S	L	Baryon State		
56	$\frac{1}{2}$	0	$N\frac{1}{2}^{+}(939)$		
	$\frac{3}{2}$	0	$\Delta \frac{3}{2}^{+}(1232)$		
70	$\frac{1}{2}$	1	$N\frac{1}{2}^{-}(1535) N\frac{3}{2}^{-}(1520)$		
	$\frac{3}{2}$	1	$N\frac{1}{2}^{-}(1650) N\frac{3}{2}^{-}(1700) N\frac{5}{2}^{-}(1675)$		
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \ \Delta \frac{3}{2}^{-}(1700)$		
56	$\frac{1}{2}$	2	$N\frac{3}{2}^+(1720) N\frac{5}{2}^+(1680)$		
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}^{+}(1910) \ \Delta \frac{3}{2}^{+}(1920) \ \Delta \frac{5}{2}^{+}(1905) \ \Delta \frac{7}{2}^{+}(1950)$		
70	$\frac{1}{2}$	3	$Nrac{5}{2}^{-}$ $Nrac{7}{2}^{-}$		
	$\frac{3}{2}$	3	$N\frac{3}{2}^{-}$ $N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}(2190)$ $N\frac{9}{2}^{-}(2250)$		
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}^{-}(1930) \ \Delta \frac{7}{2}^{-}$		
56	$\frac{1}{2}$	4	$N\frac{7}{2}^+ \qquad N\frac{9}{2}^+(2220)$		
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}^+ \qquad \Delta \frac{7}{2}^+ \qquad \Delta \frac{9}{2}^+ \qquad \Delta \frac{11}{2}^+ (2420)$		
70	$\frac{1}{2}$	5	$N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}(2600)$		
	$\frac{3}{2}$	5	$N\frac{7}{2}^{-}$ $N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}$ $N\frac{13}{2}^{-}$		

Trieste ICTP May 12, 2008 AdS/QCD

90

Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

$$(\alpha \Pi(\zeta) - \mathcal{M}) \psi(\zeta) = 0,$$

in terms of the matrix-valued operator $\boldsymbol{\Pi}$

$$\Pi_{\nu}(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{\nu + \frac{1}{2}}{\zeta}\gamma_5 - \kappa^2\zeta\gamma_5\right),\,$$

and its adjoint $\Pi^\dagger,$ with commutation relations

$$\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right] = \left(\frac{2\nu+1}{\zeta^2} - 2\kappa^2\right)\gamma_5.$$

• Solutions to the Dirac equation

$$\psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu}(\kappa^{2}\zeta^{2}),$$

$$\psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu+1}(\kappa^{2}\zeta^{2}).$$

• Eigenvalues

$$\mathcal{M}^2 = 4\kappa^2(n+\nu+1)$$

Trieste ICTP May 12, 2008 AdS/QCD

91

• Baryon: twist-dimension 3 + L ($\nu = L + 1$)

$$\mathcal{O}_{3+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m}\} \psi, \quad L = \sum_{i=1}^m \ell_i.$$

• Define the zero point energy (identical as in the meson case) $\mathcal{M}^2 \to \mathcal{M}^2 - 4\kappa^2$:

$$\mathcal{M}^2 = 4\kappa^2(n+L+1).$$

Proton Regge Trajectory $\kappa = 0.49 {\rm GeV}$

Trieste ICTP May 12, 2008 AdS/QCD

Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

$$F_{+}(Q^{2}) = g_{+} \int d\zeta J(Q,\zeta) |\psi_{+}(\zeta)|^{2},$$

$$F_{-}(Q^{2}) = g_{-} \int d\zeta J(Q,\zeta) |\psi_{-}(\zeta)|^{2},$$

where the effective charges g_+ and g_- are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^z = +1/2$. The two AdS solutions $\psi_+(\zeta)$ and $\psi_-(\zeta)$ correspond to nucleons with $J^z = +1/2$ and -1/2.
- For SU(6) spin-flavor symmetry

$$F_1^p(Q^2) = \int d\zeta J(Q,\zeta) |\psi_+(\zeta)|^2,$$

$$F_1^n(Q^2) = -\frac{1}{3} \int d\zeta J(Q,\zeta) \left[|\psi_+(\zeta)|^2 - |\psi_-(\zeta)|^2 \right],$$

where $F_1^p(0) = 1$, $F_1^n(0) = 0$.

Trieste ICTP May 12, 2008 AdS/QCD

93

• Scaling behavior for large Q^2 : $Q^4 F_1^p(Q^2) \rightarrow \text{constant}$ Proton $\tau = 3$

SW model predictions for $\kappa = 0.424$ GeV. Data analysis from: M. Diehl *et al.* Eur. Phys. J. C **39**, 1 (2005).

Trieste ICTPAdS/QCDStan BrodskyMay 12, 200894SLAC & IPPP

Dirac Neutron Form Factor

Truncated Space Confinement

(Valence Approximation)

 $Q^4F_1^n(Q^2)$ [GeV⁴] 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 5 1 2 3 6 4 Q^2 [GeV²]

Prediction for $Q^4 F_1^n(Q^2)$ for $\Lambda_{\rm QCD} = 0.21$ GeV in the hard wall approximation. Data analysis from Diehl (2005).

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	95	SLAC & IPPP

• Scaling behavior for large Q^2 : $Q^4 F_1^n(Q^2) \rightarrow \text{constant}$

SW model predictions for $\kappa = 0.424$ GeV. Data analysis from M. Diehl *et al.* Eur. Phys. J. C **39**, 1 (2005).

Trieste ICTP May 12, 2008 AdS/QCD 96 Stan Brodsky SLAC & IPPP

Neutron $\tau = 3$

Ads/CFT and Integrability

- L. Infeld, "On a new treatment of some eigenvalue problems", Phys. Rev. 59, 737 (1941).
- Generate eigenvalues and eigenfunctions using Ladder Operators
- Apply to Covariant Light-Front Radial Dirac and Schrodinger Equations

Trieste ICTP May 12, 2008 AdS/QCD

98

Algebraic Structure, Integrability and Stability Conditions (HW Model)

• If $L^2 > 0$ the LF Hamiltonian, H_{LF} , can be written as a bilinear form

$$H_{LF}^{L}(\zeta) = \Pi_{L}^{\dagger}(\zeta)\Pi_{L}(\zeta)$$

in terms of the operator

$$\Pi_L(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta}\right),\,$$

and its adjoint

$$\Pi_L^{\dagger}(\zeta) = -i\left(\frac{d}{d\zeta} + \frac{L + \frac{1}{2}}{\zeta}\right),$$

with commutation relations

$$\left[\Pi_L(\zeta), \Pi_L^{\dagger}(\zeta)\right] = \frac{2L+1}{\zeta^2}.$$

 $\bullet\,\,{\rm For}\,\,L^2\geq 0$ the Hamiltonian is positive definite

$$\langle \phi \left| H_{LF}^L \right| \phi \rangle = \int d\zeta \left| \Pi_L \phi(z) \right|^2 \ge 0$$

and thus $\mathcal{M}^2 \geq 0$.

Trieste ICTP May 12, 2008 AdS/QCD 99

Ladder Construction of Orbital States

• Orbital excitations constructed by the *L*-th application of the raising operator

$$a_L^{\dagger} = -i\Pi_L$$

on the ground state:

$$a^{\dagger}|L\rangle = c_L|L+1\rangle.$$

• In the light-front ζ -representation

$$\phi_L(\zeta) = \langle \zeta | L \rangle = C_L \sqrt{\zeta} (-\zeta)^L \left(\frac{1}{\zeta} \frac{d}{d\zeta} \right)^L J_0(\zeta \mathcal{M})$$
$$= C_L \sqrt{\zeta} J_L (\zeta \mathcal{M}).$$

• The solutions ϕ_L are solutions of the light-front equation $(L=0,\pm 1,\pm 2,\cdots)$

$$\left[-\frac{d^2}{d\zeta^2} - \frac{1-L^2}{4\zeta^2}\right]\phi(\zeta) = \mathcal{M}^2\phi(\zeta),$$

• Mode spectrum from boundary conditions : $\phi \left(\zeta = 1 / \Lambda_{\rm QCD} \right) = 0.$

Trieste ICTP May 12, 2008 AdS/QCD 100

Non-Conformal Extension of Algebraic Integrability (SW Model)

- Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce smooth cutoff which depends on the profile of a dilaton background field $\varphi(z)$.
- Consider the generator (short-distance Coulombic and long-distance linear potential)

$$\Pi_L(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta} - \kappa^2\zeta\right),\,$$

and its adjoint

$$\Pi_L^{\dagger}(\zeta) = -i\left(\frac{d}{d\zeta} + \frac{L + \frac{1}{2}}{\zeta} + \kappa^2 \zeta\right),\,$$

with commutation relations

$$\left[\Pi_L(\zeta), \Pi_L^{\dagger}(\zeta)\right] = \frac{2L+1}{\zeta^2} - 2\kappa^2.$$

• The LF Hamiltonian

$$H_{LF} = \Pi_L^{\dagger} \Pi_L + C$$

Integrable!

is positive definite $\langle \phi | H_{LF} | \phi \rangle \geq 0$ for $L^2 \geq 0$, and $C \geq -4\kappa^2$.

• Orbital and radial excited states are constructed from the ladder operators from the L = 0 state.

Trieste ICTP May 12, 2008

AdS/QCD

Holographic Connection between LF and AdS/CFT

- Predictions for hadronic spectra, light-front wavefunctions, interactions
- Deduce meson and baryon wavefunctions, distribution amplitude, structure function from holographic constraint
- Identification of Orbital Angular Momentum Casimir for SO(2): LF Rotations
- Extension to massive quarks

Trieste ICTP May 12, 2008 AdS/QCD

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support 0 < x < 1.
- Quark Interchange dominant force at short distances

Trieste ICTP May 12, 2008 AdS/QCD

103

CIM: Blankenbecler, Gunion, sjb

Quark Interchange (Spin exchange in atomatom scattering)

$$\frac{d\sigma}{dt} = \frac{|M(s,t)|^2}{s^2}$$

 $M(t, u)_{\text{interchange}} \propto \frac{1}{ut^2}$

M(s,t)gluonexchange $\propto sF(t)$

MIT Bag Model (de Tar), large N_C, ('t Hooft), AdS/CFT all predict dominance of quark interchange:

Frieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	104	SLAC & IPPP

Why is quark-interchange dominant over gluon exchange?

Example:
$$M(K^+p \to K^+p) \propto \frac{1}{ut^2}$$

Exchange of common u quark

 $M_{QIM} = \int d^2k_{\perp} dx \ \psi_C^{\dagger} \psi_D^{\dagger} \Delta \psi_A \psi_B$

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS_5

Quarks travel freely within cavity as long as separation $z < z_0 = \frac{1}{\Lambda_{QCD}}$

LFWFs obey conformal symmetry producing quark counting rules.

Trieste ICTP May 12, 2008 AdS/QCD 106

Comparison of Exclusive Reactions at Large t

B. R. Baller, ^(a) G. C. Blazey, ^(b) H. Courant, K. J. Heller, S. Heppelmann, ^(c) M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl^(d) University of Minnesota, Minneapolis, Minnesota 55455

> D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi Brookhaven National Laboratory, Upton, New York 11973

> > and

S. Gushue^(e) and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747 (Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of 9.9 GeV/c, near 90° c.m.: $\pi^{\pm}p \rightarrow p\pi^{\pm}, p\rho^{\pm}, \pi^{+}\Delta^{\pm}, K^{+}\Sigma^{\pm}, (\Lambda^{0}/\Sigma^{0})K^{0};$ $K^{\pm}p \rightarrow pK^{\pm}; p^{\pm}p \rightarrow pp^{\pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$\pi^{\pm} p \rightarrow p \pi^{\pm},$$

$$K^{\pm} p \rightarrow p K^{\pm},$$

$$\pi^{\pm} p \rightarrow p \rho^{\pm},$$

$$\pi^{\pm} p \rightarrow K^{+} \Sigma^{\pm},$$

$$\pi^{\pm} p \rightarrow K^{+} \Sigma^{\pm},$$

$$\pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0},$$

$$p^{\pm} p \rightarrow p p^{\pm}.$$

$$K^{+} \overline{s}$$

107
New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

Trieste ICTP May 12, 2008 AdS/QCD

то8

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$\Psi(x, k_{\perp})$$
 $x_i = \frac{k_i^+}{P^+}$

Invariant under boosts. Independent of \mathcal{P}^{μ} $\mathrm{H}^{QCD}_{LF}|\psi>=M^{2}|\psi>$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Trieste ICTP May 12, 2008

AdS/QCD

Some Applications of Light-Front Wavefunctions

- Exact formulae for form factors, quark and gluon distributions; vanishing anomalous gravitational moment; edm connection to anm
- Deeply Virtual Compton Scattering, generalized parton distributions, angular momentum sum rules
- Exclusive weak decay amplitudes
- Single spin asymmetries: Role of ISI and FSI
- Factorization theorems, DGLAP, BFKL, ERBL Evolution
- Quark interchange amplitude
- Relation of spin, momentum, and other distributions to physics of the hadron itself.

Trieste ICTP May 12, 2008 AdS/QCD

110

Space-time picture of DVCS

The position of the struck quark differs by x^- in the two wave functions

Measure x- distribution from DVCS: Take Fourier transform of skewness, $\xi = \frac{Q^2}{2p.q}$ the longitudinal momentum transfer

S. J. Brodsky^a, D. Chakrabarti^b, A. Harindranath^c, A. Mukherjee^d, J. P. Vary^{e,a,f}

Trieste ICTPAdS/QCDStan BrodskyMay 12, 2008IIISLAC & IPPP

P. Hoyer

S. J. Brodsky^a, D. Chakrabarti^b, A. Harindranath^c, A. Mukherjee^d, J. P. Vary^{e,a,f}

II2

May 12, 2008

SLAC & IPPP

Diffractive Dissociation of Pion into Quark Jets

E791 Ashery et al.

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus Nucleus left Intact!

Trieste ICTP May 12, 2008 AdS/QCD

113

E791 FNAL Diffractive Difet

Gunion, Frankfurt, Mueller, Strikman, sjb Frankfurt, Miller, Strikman

Two-gluon exchange measures the second derivative of the pion light-front wavefunction

SLAC & IPPP

Key Ingredients in E791 Experiment

Brodsky Mueller Frankfurt Miller Strikman

Small color-dípole moment píon not absorbed; ínteracts with <u>each</u> nucleon coherently <u>QCD COLOR Transparency</u>

Color Transparency

Bertsch, Gunion, Goldhaber, sjb A. H. Mueller, sjb

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets

Trieste ICTP May 12, 2008 AdS/QCD

- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.

Trieste ICTP May 12, 2008

AdS/QCD

117

Stan Brodsky SLAC & IPPP

Mueller, sjb; Bertsch et al; Frankfurt, Miller, Strikman

Measure pion LFWF in diffractive dijet production Confirmation of color transparency

A -D ependence results:	A		
k_t range (G eV /c)		(C T)	
1.25 < k _t < 1.5	1.64 + 0.06 -0.12	1.25	
$1.5 < k_t < 2.0$	1.52 ± 0.12	1.45	Ashery E791
$2.0 < k_t < 2.5$	1.55 ± 0.16	1.60	

 $(Incoh.) = 0.70 \pm 0.1$

Conventional Glauber Theory Ruled		Factor of 7
Out!		
Trieste ICTP May 12, 2008	AdS/QCD 118	Stan Brodsky SLAC & IPPP

E791 Diffractive Di-Jet transverse momentum distribution

Two Components

High Transverse momentum dependence $k_T^{-6.5}$ consistent with PQCD, ERBL Evolution

Gaussian component similar to AdS/CFT HO LFWF

Trieste ICTP May 12, 2008 AdS/QCD 119

Narrowing of x distribution at higher jet transverse momentum

 \mathbf{x} distribution of diffractive dijets from the platinum target for 1.25 k_t 1.5 GeV/c (left) and for 1.5 k_t 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

Possibly two components:
Nonperturbative (AdS/CFT) and
Perturbative (ERBL) $\phi(x) \propto \sqrt{x(1-x)}$ Evolution to asymptotic distribution
AdS/QCDTrieste ICTP
May 12, 2008AdS/QCD
120SLAC & IPPP

120

Lepage, sjb C. Ji, A. Pang, D. Robertson, sjb Choi, Ji $F_{\pi}(Q^{2}) = \int_{0}^{1} dx \phi_{\pi}(x) \int_{0}^{1} dy \phi_{\pi}(y) \frac{16\pi C_{F} \alpha_{V}(Q_{V})}{(1-x)(1-y)Q^{2}}$ 0.60.50.4 $Q^2 F_{\pi}(Q^2)$ 0.3 (GeV^2) $\phi(x,Q_0) \propto \sqrt{x(1-x)}$ $\phi_{asymptotic} \propto x(1-x)$ 重 0.2Ŧ ₹ 0.1 Normalized to f_{π} 0 $\mathbf{2}$ 4 6 8 10 0 $Q^2~({
m GeV}^2)$

AdS/CFT:

Increases PQCD leading twist prediction for $F_{\pi}(Q^2)$ by factor 16/9

Trieste ICTP May 12, 2008

AdS/QCD 122

S. S. Adler et al. PHENIX Collaboration Phys. Rev. Lett. 91, 172301 (2003).

Particle ratio changes with centrality!

Open (filled) points are for π^{\pm} (π^{\cup}), respectively.

Baryon can be made directly within hard subprocess

Power-law exponent $n(x_T)$ for π^0 and h spectra in central and peripheral Au+Au collisions at $\overline{s_{NN}} = 130$ and 200 GeV

S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. C 69, 034910 (2004) [nucl-ex/0308006].

Proton production dominated by color-transparent direct high n_{eff} subprocesses

Trieste ICTP May 12, 2008 AdS/QCD 126

May 12, 2008

127

SLAC & IPPP

$$\pi^- N \rightarrow \mu^+ \mu^- X$$
 at 80 GeV/c

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2\theta + \rho \sin^2\theta \cos\phi + \omega \sin^2\theta \cos^2\phi.$$

$$\frac{d^2\sigma}{dx_{\pi}d\cos\theta} \propto x_{\pi} \left[(1-x_{\pi})^2 (1+\cos^2\theta) + \frac{4}{9} \frac{\langle k_T^2 \rangle}{M^2} \sin^2\theta \right]$$

 $\langle k_T^2 \rangle = 0.62 \pm 0.16 \text{ GeV}^2/c^2$

Dramatic change in angular distribution at large x_F

Example of a higher-twist direct subprocess

Trieste ICTP May 12, 2008 AdS/QCD 128

Chicago-Princeton Collaboration

Phys.Rev.Lett.55:2649,1985

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes, distribution amplitudes, direct subprocesses, hadronization.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs--Sivers effect

Trieste ICTP May 12, 2008 AdS/QCD

129

May 12, 2008

AdS/QCD

130

SLAC & IPPP

Final-State Interactions Produce T-Odd (Sivers Effect) $\mathbf{i} \ \vec{S} \cdot \vec{p}_{jet} \times \vec{q}$

- Bjorken Scaling!
- Arises from Interference of Final-State Coulomb Phases in S and P waves
- Relate to the quark contribution to the target proton anomalous magnetic moment

Hwang, Schmidt. sjb; Burkardt

Trieste ICTP May 12, 2008

AdS/QCD

131

Final-State Interactions Produce Pseudo T-Odd (Sivers Effect)

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark!

$$\vec{S} \cdot \vec{p}_{jet} imes \vec{q}$$

e-

current

final state

interaction

spectator

system

quark jet

e-

Sc

proton

quark

- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; Wilson line effect; gauge independent
- Unexpected QCD Effect -- thought to be zero!
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD Coulomb phase at soft scale
- Measure in jet trigger or leading hadron
- Sum of Sivers Functions for all quarks and gluons vanishes.
 (Zero gravito-anomalous magnetic moment: B(o)= o)

Trieste ICTP May 12, 2008 AdS/QCD 132

AdS/QCD

133

Hermes collA, Airapetianetal.Phys.Rev.Lett.94 (2005) 012002.

Sivers asymmetry from HERMES

Trieste ICTP

May 12, 2008

- First evidence for non-zero Sivers function!
- ⇒ presence of non-zero quark
 orbital angular momentum!
- Positive for **π**⁺...
 Consistent with zero for **π**⁻...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous

moment Stan Brodsky SLAC & IPPP

Predict Opposite Sign SSA in DY!

Collins; Hwang, Schmidt. sjb

Single Spin Asymmetry In the Drell Yan Process $\vec{S}_p \cdot \vec{\vec{p}} \times \vec{q}_{\gamma^*}$

Quarks Interact in the Initial State

Interference of Coulomb Phases for *S* and *P* states

Produce Single Spin Asymmetry [Siver's Effect]Proportional

to the Proton Anomalous Moment and α_s .

Opposite Sign to DIS! No Factorization

Trieste ICTP May 12, 2008 AdS/QCD 134

DYcos 2 **correlation at leading twist from double ISI**

Trieste ICTP May 12, 2008 AdS/QCD 135

DYcos 2 **correlation at leading twist from double ISI**

Trieste ICTP May 12, 2008 AdS/QCD 136

Anomalous effect from Double ISI in Massive Lepton Production Boer, Hwang, sjb

 $\cos 2\phi$ correlation

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!
- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semiinclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

Trieste ICTP May 12, 2008 AdS/QCD

137

Double Initial-State Interactions generate anomalous cos 2 Boer, Hwang, sjb **Drell-Yan planar correlations** 1 d $1 + \cos^2 + \mu \sin 2 \cos + -\frac{1}{2} \sin^2 \cos 2$ d PQCD Factorization (Lam Tung): 1 - 2= 0 h_1 () h_1 (N) 2 $\pi N \rightarrow \mu^+ \mu^- X \text{ NA10}$ P₂ P_2 0.4 0.35 $u(Q_T)_{0.25}^{0.3}$ lard gluon radiation. 0.2 0.15 0.1 Q = 8 GeVDouble ISI 0.05 P_1 P₁ 4 5 2 3 6 7 8 Qт **Violates Lam-Tung relation!** Model: Boer, **Stan Brodsky Trieste ICTP** AdS/QCD **SLAC & IPPP** May 12, 2008 138

Problem for factorization when both ISI and FSI occur

Trieste ICTP May 12, 2008 AdS/QCD 139

Factorization is violated in production of high-transverse-m om entum particles in hadron-hadron collisions

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.

Trieste ICTP May 12, 2008

AdS/QCD

I40

Remarkable observation at HERA

10% to 15% of DIS events are díffractíve !

Fraction r of events with a large rapidity gap, $\eta_{\text{max}} < 1.5$, as a function of Q_{DA}^2 for two ranges of x_{DA} . No acceptance corrections have been applied.

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	141	SLAC & IPPP

DDIS

- In a large fraction (~ 10–15%) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- The t-channel exchange must be color singlet → a pomeron??

Diffractive Deep Inelastic Lepton-Proton Scattering

Trieste ICTP May 12, 2008 AdS/QCD

de Roeck

Diffractive Structure Function F₂^D

Diffractive inclusive cross section

$$\begin{split} \frac{\mathrm{d}^{3}\sigma_{NC}^{diff}}{\mathrm{d}x_{I\!\!P}\,\mathrm{d}\beta\,\mathrm{d}Q^{2}} &\propto & \frac{2\pi\alpha^{2}}{xQ^{4}}F_{2}^{D(3)}(x_{I\!\!P},\beta,Q^{2})\\ F_{2}^{D}(x_{I\!\!P},\beta,Q^{2}) &= & f(x_{I\!\!P})\cdot F_{2}^{I\!\!P}(\beta,Q^{2}) \end{split}$$

extract DPDF and xg(x) from scaling violation Large kinematic domain $3 < Q^2 < 1600 \, {
m GeV}^2$ Precise measurements sys 5%, stat 5–20%

Final-State Interaction Produces Diffractive DIS

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHM

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron

Trieste ICTP May 12, 2008 AdS/QCD

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

Trieste ICTP May 12, 2008 AdS/QCD

145

Final State Interactions in QCD

Feynman GaugeLight-Cone GaugeResult is Gauge Independent

Trieste ICTP May 12, 2008 AdS/QCD 146

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Trieste ICTP May 12, 2008 AdS/QCD 147

Physics of Rescattering

- Sivers Asymmetry and Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

Trieste ICTP May 12, 2008

AdS/QCD

148

Physics of Rescattering

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing- Not in Target WF
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY cos 2 distribution at leading twist from double ISI-- not given by PQCD factorization -- breakdown of factorization!
- Wilson Line Effects not 1 even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments
- Corrections to Handbag Approximation in DVCS!

Hoyer, Marchal, Peigne, Sannino, sjb

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	149	SLAC & IPPP

"Dangling Gluons"

• Diffractive DIS

Bodwin, Lepage, sjb Hoyer, Marchal, Peigne, Sannino, sjb

- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY cos 2 correlation at leading twist from double ISI-not given by standard PQCD factorization
- Wilson Line Effects persist even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments -- Ji gauge link, Kovchegov gauge

Trieste ICTP May 12, 2008 AdS/QCD

150

Light-Front QCD Phenomenology

- Hidden color, Intrinsic glue, sea, Color Transparency
- Near Conformal Behavior of LFWFs at Short Distances; PQCD constraints
- Vanishing anomalous gravitomagnetic moment
- Relation between edm and anomalous magnetic moment
- Cluster Decomposition Theorem for relativistic systems
- OPE: DGLAP, ERBL evolution; invariant mass scheme

Trieste ICTP May 12, 2008 AdS/QCD

151

 $|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$c_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks

Mueller: BFKL DYNAMICS

$$\overline{s}(x) \neq s(x)$$

 $\bar{u}(x) \neq \bar{d}(x)$

Trieste ICTP May 12, 2008 AdS/QCD

152

Fixed LF time

Light Antiquark Flavor Asymmetry

 Naïve Assumption from gluon splitting:

$$\bar{d}(x) = \bar{u}(x)$$

E866/NuSea (Drell-Yan)

 $|uudc\bar{c} >$ Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{QCD}^2}{M_Q^2}$

 $|e^+e^-\ell^+\ell^->$ Fluctuation in Positronium QED: Probability $\frac{\sim (m_e \alpha)^4}{M_\ell^4}$

OPE derivation - M.Polyakov et al.

 $c\bar{c}$ in Color Octet

Distribution peaks at equal rapidity (velocity) Therefore heavy particles carry the largest momentum fractions

$$\hat{x}_i = \frac{m_{\perp i}}{\sum_j^n m_{\perp j}}$$

Hoyer, Peterson, Sakai, sjb

Trieste ICTP May 12, 2008 AdS/QCD 154

Intrínsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color Octet + Color Octet Fock State!

- Probability $P_{Q\bar{Q}} \propto \frac{1}{M_Q^2}$ $P_{Q\bar{Q}Q\bar{Q}} \sim \alpha_s^2 P_{Q\bar{Q}}$ $P_{c\bar{c}/p} \simeq 1\%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests

Trieste ICTP May 12, 2008 AdS/QCD 155

Measure c(x) ín Deep Inelastíc Lepton-Proton Scattering

DGLAP / Photon-Gluon Fusion: factor of 30 too small

Trieste ICTP May 12, 2008 AdS/QCD 157

• EMC data:
$$c(x,Q^2) > 30 \times DGLAP$$

 $Q^2 = 75 \text{ GeV}^2$, $x = 0.42$

• High $x_F \ pp \to J/\psi X$

- High $x_F \ pp \rightarrow J/\psi J/\psi X$
- High $x_F \ pp \to \Lambda_c X$
- High $x_F \ pp \to \Lambda_b X$

• High $x_F pp \rightarrow \equiv (ccd)X$ (SELEX)

Trieste ICTP May 12, 2008 AdS/QCD 158

Novel Heavy Flavor Physics

- LFWFS -- remarkable model from AdS/CFT
- AdS/CFT: Hadron Spectra and Dynamics, Counting Rules
- Intrinsic Charm and Bottom: rigorous prediction of QCD
- B decays: Many Novel QCD Effects
- Exclusive Channels: QCD at Amplitude Level
- Test B-analyses in other hard exclusive reactions, such as twophoton reactions
- Initial and Final State QCD Interactions -- Breakdown of QCD Factorization in Heavy Quark Hadroproduction!
- Renormalization scale not arbitrary

Trieste ICTP May 12, 2008 AdS/QCD

159

Quark and Gluon condensates reside within hadrons, not vacuum Shrock, sjb

- Bound-State Dyson-Schwinger Equations
- LF vacuum trivial up to k⁺ =0 zero modes
- Analogous to finite size superconductor
- Implications for cosmological constant -reduction by 55 orders of magnitude!

AdS/QCD

New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

Trieste ICTP May 12, 2008 AdS/QCD

162

Outlook

- Only one scale Λ_{QCD} determines hadronic spectrum (slightly different for mesons and baryons).
- Ratio of Nucleon to Delta trajectories determined by zeroes of Bessel functions.
- String modes dual to baryons extrapolate to three fermion fields at zero separation in the AdS boundary.
- Only dimension $3, \frac{9}{2}$ and 4 states $\overline{q}q$, qqq, and gg appear in the duality at the classical level!
- Non-zero orbital angular momentum and higher Fock-states require introduction of quantum fluctuations.
- Simple description of space and time-like structure of hadronic form factors.
- Dominance of quark-interchange in hard exclusive processes emerges naturally from the classical duality of the holographic model. Modified by gluonic quantum fluctuations.
- Covariant version of the bag model with confinement and conformal symmetry.

Frieste ICTP	AdS/QCD 163	Stan Brodsky
May 12, 2008		SLAC & IPPP

Light-Front Holography and AdS/QCD Correspondence.

Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-13220, Apr 2008. 14pp. e-Print: arXiv:0804.3562 [hep-ph]

Light-Front Dynamics and AdS/QCD Correspondence: Gravitational Form Factors of Composite Hadrons.

Stanley J. Brodsky (SLAC), Guy F. de Teramond (Ecole Polytechnique, CPHT & Costa Rica U.). SLAC-PUB-13192, Apr 2008. 12pp. e-Print: arXiv:0804.0452 [hep-ph]

AdS/CFT and Light-Front QCD.

Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-13107, Feb 2008. 38pp. Invited talk at International School of Subnuclear Physics: 45th Course: Searching for the "Totally Unexpected" in the LHC Era, Erice, Sicily, Italy, 29 Aug - 7 Sep 2007. e-Print: **arXiv:0802.0514** [hep-ph]

AdS/CFT and Exclusive Processes in QCD.

Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-12804, Sep 2007. 29pp. Temporary entry e-Print: arXiv:0709.2072 [hep-ph]

Light-Front Dynamics and AdS/QCD Correspondence: The Pion Form Factor in the Space- and Time-Like Regions.

<u>Stanley J. Brodsky</u> (<u>SLAC</u>), <u>Guy F. de Teramond</u> (<u>Costa Rica U.</u> & <u>SLAC</u>). SLAC-PUB-12554, SLAC-PUB-12544, Jul 2007. 20pp. Published in **Phys.Rev.D77:056007,2008**. e-Print: **arXiv:0707.3859** [hep-ph]

> Trieste ICTP May 12, 2008

AdS/QCD 164

1. "Light-Front Dynamics and AdS/QCD: The Pion Form Factor in the Space- and Time-Like Regions"

S. J. Brodsky and G. F. de Teramond arXiv:0707.3859 [hep-ph] SLAC-PUB-12554(2007) (Submitted to Phys.Rev.D)

2. "AdS/CFT and QCD"

S. J. Brodsky and G. F. de Teramond arXiv:hep-th/0702205
SLAC-PUB-12361(2007)
Invited talk at 2006 International Workshop on the Origin of Mass and Strong Coupling Gauge Theories (SCGT 06), Nagoya, Japan, 21-24 Nov 2006

- "Hadronic spectra and light-front wavefunctions in holographic QCD"
 S. J. Brodsky and G. F. de Teramond
 Phys. Rev. Lett. 96, 201601 (2006) [arXiv:hep-ph/0602252]
- 4. "Advances in light-front quantization and new perspectives for QCD from AdS/CFT"
 S. J. Brodsky and G. F. de Teramond
 Nucl. Phys. Proc. Suppl. 161, 34 (2006)
 Invited talk at Workshop on Light-Cone QCD and Nonperturbative Hadron Physics 2005 (LC 2005), Cairns, Queensland, Australia, 7-15 Jul 2005
- "Hadron spectroscopy and wavefunctions in QCD and the AdS/CFT correspondence"
 S. J. Brodsky and G. F. de Teramond
 AIP Conf. Proc. 814, 108 (2006) [arXiv:hep-ph/0510240]
 Invited talk at 11th International Conference on Hadron Spectroscopy (Hadron05), Rio de Janeiro, Brazil, 21-26 Aug 2005

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	165	SLAC & IPPP

6. "Applications of AdS/CFT duality to QCD"

S. J. Brodsky and G. F. de Teramond Int. J. Mod. Phys. A **21**, 762 (2006) [arXiv:hep-ph/0509269] Invited talk at International Conference on QCD and Hadronic Physics, Beijing, China, 16-20 Jun 2005

7. "Nearly conformal QCD and AdS/CFT"

G. F. de Teramond and S. J. Brodsky arXiv:hep-ph/0507273
SLAC-PUB-11375(2005)
Presented at 1st Workshop on Quark-Hadron Duality and the Transition to pQCD, Frascati, Rome, Italy, 6-8 Jun 2005

"The hadronic spectrum of a holographic dual of QCD" G. F. de Teramond and S. J. Brodsky Phys. Rev. Lett. 94, 201601 (2005) [arXiv:hep-th/0501022]

9. "Baryonic states in QCD from gauge / string duality at large N(c)" G. F. de Teramond and S. J. Brodsky arXiv:hep-th/0409074 SLAC-PUB-10693(2004) Presented at ECT* Workshop on Large Nc QCD 2004, Trento, Italy, 5-9 Jul 2004

10. "Light-front hadron dynamics and AdS/CFT correspondence" S. J. Brodsky and G. F. de Teramond Phys. Lett. B 582, 211 (2004) [arXiv:hep-th/0310227]

Trieste ICTP May 12, 2008 AdS/QCD 166

A Few References: Bottom-up-Approach

- Derivation of dimensional counting rules of hard exclusive glueball scattering in AdS/CFT: Polchinski and Strassler, hep-th/0109174.
- Deep inelastic scattering in AdS/CFT:

Polchinski and Strassler, hep-th/0209211.

- Unified description of the soft and hard pomeron in AdS/CFT: Brower, Polchinski, Strassler and Tan, hep-th/0603115.
- Hadron couplings and form factors in AdS/CFT: Hong, Yoon and Strassler, hep-th/0409118.
- Low lying meson spectra, chiral symmetry breaking and hadron couplings in AdS/QCD (Emphasis on axial and vector currents)

Erlich, Katz, Son and Stephanov, hep-ph/0501128,

Da Rold and Pomarol, hep-ph/0501218, hep-ph/0510268.

Trieste ICTP May 12, 2008 AdS/QCD 167

• Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez, hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower, Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

• D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos, Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erdmenger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201; Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnenschein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera, hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219; Casero, Paredes and Sonnenschein, hep-th/0510110.

• Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma ($\eta/s = 1/4\pi$):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 ...

Trieste ICTP	AdS/OCD	Stan Brodsky
May 12, 2008	168	SLAC & IPPP

Counting rules, low lying meson and baryon spectra and form factors in AdS/CFT, holographic light front representation and mapping of string amplitudes to light-front wavefunctions, integrability and stability of AdS/CFT equations (Emphasis on hadronic quark constituents)
 Brodsky and GdT, hep-th/0310227, hep-th/0409074, hep-th/0501022, hep-ph/0602252, 0707.3859 [hep-ph], 0709.2072 [hep-ph].

Trieste ICTP May 12, 2008 AdS/QCD 169