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The FHNC/QMC strategy
A sketch of the AFDMC method
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Nuclear Matter is a strongly correlated
fermion system which, N first

approximation, can be described by a non
relativistic model




Solve the non relativistic nuclear many-body
problem without approximations

Test non relativistic models over the whole
range of nuclear physics from light nuclei to the
nuclear matter in the interior of compact stars
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Nuclear Hamiltonian

Let us describe our N nucleons system with the
following Hamiltonian:

r; Is the distance between the nucleons and the
O®) are operators including spin, isospin, and
spin-orbit operators. M Is the maximum number
of operators (M=18 for the Argonne v,g two-body
potential). vy, IS the three-body potential (for
Instance, Urbana 1X)




Nuclear Hamiltonian

The first six operators of the

Other components include spin-orbit, quadratic spin-orbit,
L2 , charge symmetry violating terms.

Models: vg, Vg, Vg and v,




Nuclear Hamiltonian
Urbana |IX three-body force




DMC for central potentials

Basic observation:

where R represent the coordinates of the
nucleons, and t = it Is the imaginary time.




DMC for central potentials

The formal solution

converges to the lowest energy eigenstate




DMC for central potentials

We can write explicitly the propagator only for
short times:




DMC for central potentials

The G(R,R’,47) samples a population of
“walkers” in configuration space.

Expectation value of the energy iIs the average

local energy computed over a chosen trial
function Y5




DMC for central potentials
additional terms

In order to decrease variance
on the estimators sample from

Ur (R

!
@T(R’)G(R’R AT

and solve for ()W R} AT)

The projection from an
antisymmetric function either gives exponentially decaying
signhal or exponentially increasing noise. Use either fixed
node approximation or transient estimation.




DMC and Nuclear Hamiltonians

The standard QMC techniques are easy to apply
whenever the interaction is purely central, or
whenever the wavefunction can be written as a
product of eigenfunctions of S,.

For realistic potentials the
Imposes the summation over all
the possible good S, and T, states.

The huge number
of states limits
present calculations
to A<14

<




Auxiliary Fields

The use of auxiliary fields and constrained paths is originally

due to S. Zhang for condensed matter problems (S.zhang, J.
Carlson, and J.Gubernatis, PRL74, 3653 (1995), Phys. Rev. B55. 7464
(1997))

Application to the Nuclear Hamiltonian is due to S.Fantoni

and K.E. Schmidt (K.E. Schmidt and S. Fantoni, Phys. Lett. 445, 99
)

The method consists of using the Hubbard-
Stratonovich transformation in order to reduce
the spin operators appearing in the Green’s
function from to




Auxiliary Fields

For N nucleons the NN interaction can be re-written as

where the 3Nx3N matrix A Is a combination of the various
v(p) appearing in the interaction. The s include both spin
and isospin operators, and act on 4-component spinors:

THE INCLUSION OF TENSOR-ISOSPIN TERMS HAS BEEN THE
MOST RELEVANT DIFFICULTY IN THE APPLICATION OF AFDMC
SO FAR




Auxiliary Fields

Both eigenvectors and eigenvalues are real. This leads to
the definition of a new set of operators:

then the spin-isospin dependent part of the interaction can be
expressed as




Auxiliary Fields

We can apply the Hubbard-Startonovich transformation to
the Green’s function for the spin-dependent part of the
potential:

Commutators
neglected

—

The x,, are auxiliary variables to be sampled. The effect of
the O, is a of each particle.




Auxiliary fields

Additional remarks

e Spin-orbit and three body terms can be treated in a
similar way (with some extra care)

e Fermion sign problem still in place, with the additional
difficulty of dealing with wave functions which are complex.

e using or ?:

- has been found to be much more effective
than constrained-path in dealing with tensor-tau and spin-
orbit potentials.




Auxiliary fields

Technical remark




Pure Neutron Matter
constrained path results

N=14

NEKTS

N=66

N=114

14.96(6)

13.76(9)

14.93(4)

15.62(8)

25.29(6)

24 4(1)

26.51(6)

27.6(1)

69.9(1)

74.5(2)

79.4(2)

82.2(2)

14.80(9)

13.96(5)

15.26(5)

25.23(8)

24.7(1)

27.1(1)

70.3(2)

76.3(2)

81.4(3)

A.Sarsa, SF, K.E.Schmidt, F.Pederiva, PRC 68,024308 (2003)
SF, K.E.Schmidt, Nucl.Phys A690, 456 (2001) [




Pure neutron Matter (66 neutrons)
fixed phase versus constrained path

e—s AFDMC-FP, v.'+UIX
s AFDMC-FP, v’

AFDMC-CP, v "+UIX
= — AFDMC-CP, v’

A.Sarsa, SF, K.E.Schmidt, F.Pederiva, PRC 68,024308 (2003)

S.Gandolfi et al., private communication




Pure neutron matter (66 neutrons)
AFDMC versus FHNC-SOC

— AFDMC, v.*

— — Akmal, v .

— AFDMC, v "+UIX
— = Akmal, VIB+UIX




Pure Neutron Matter
1S, superfluid phase (AU8’ interaction)

Ke = 0.6 fm -

E/N GAP
2.6356(17

With constrained path

2.7593(17
2.5536(15

)

) |2.182(37)

)
2.8036(17) |2.855(44)

)

)

)

FHNC/BCS versus AFDMC
with Pfaffians

2.6654(18
2.8075(15
2 6746(17

2.333(49)

2.457(76)

A.Fabrocini, SF, A.Y.lllarionov, K.E.Schmidt, PRL, 95, 192501 (2005)




BCS versus Normal Phase

S. Gandolfi, A.lllarionov et al., 2008




GAP

S.Gandolfi, A.lllarionov et al., 2008
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Nuclel

The AFDMC has been first tested on light
nuclei (*He, 8He) to check the consistency
with other available results (few-body and

GFMC calculations)

Results for 1°0 and “°Ca are also
available and are lower than VMC and
CBF by 10%.




Nuclel

Wave Function

The many-nucleon wave function is written as the product
of a Jastrow factor and an antisymmetric mean field
wave function:

The functions ¢, in the Jastrow factor are taken as the
scalar components of the FHNC/SOC correlation operator
which minimizes the energy per particle of SNM at
saturation density ry,=0.16 fmi.




Nuclel

The antisymmetric part of the wavefunction is built starting
from single-particle orbitals computed with a HF

calculation with Skyrme forces fitted to light nuclei. (x. Bai
and J.Hu, Phys. Rev. C 56, 1410 (1997))

For open shell nuclei (such as 8He) a wave function which is
an eigenstate of the total angular momentum J cannot be
represented in terms of a single Slater determinant — linear
combinations of determinants are needed.




Nuclel

AFDMC* BINDING ENERGIES OF NUCLEI (AV6’)

Nucleus E.romc (MeV) Ecrve (MeV)
“He -27.13(10) -26.93(1)
8He -23.6(5)
=0 -100.7(4)**
Wz -272(2)

** VMC calculations (S. Pieper et al.) with AV14, give a binding energy of
-83.2 MeV excluding contributions of terms beyond AV6. FHNC
estimates (A. Fabrocini et al.), corrected in the same way, give a binding
energy of -84.0 MeV. AFDMC with AV14 truncated to AV6 gives -90.8(1)
MeV.

* S. Gandolfi, F. Pederiva, SF, K.E. Schmidt, PRL, iIn press.




Nuclear matter

Wave Function

The many-nucleon wave function for nuclear matter has a
structure similar to that used for nuclei.

The functions ¢, in the Jastrow factor are taken as the
scalar components of the FHNC/SOC correlation operator
which minimizes the energy per particle of SNM at a
given density. The antisymmetric product A is a Slater
determinant of plane waves.




Nuclear matter

Most were performed in a periodic box
containing 28 nucleons (14 p and 14 n). The density
was changed varying the size of the simulation box.

Particular attention must be paid to finite size effects.

At all densities we performed a summation over the first
shell of periodic replicas of the simulation cell.

e Some checks against simulations with a larger number
of nucleons (N=76, ) were performed at the extrema
of the density interval considered.




Nuclear matter

Finite size effects

olp, | E/A28)[MeV] | E/A (76)[MeV] | E/A (108)[MeV]

0.5 -7.64(3) 7.7(1) -7.45(2)

3.0 -10.6(1) -10.8(1)




Nuclear matter
No three-body ferces

—— AFDMCit
o AFDMC

We computed the energy s S R

of 28 nucleons interacting
with Argonne AVg’ cut to
SixX operators for several
densities*, and we
compare our results with
those given by FHNC/SOC
and BHF calculations™™*:

* S. Gandolfi, F. Pederiva, S. Fantoni, K.E.

**|, Bombaci, A. Fabrocini, A. Polls, I. Vidana, Phys. Lett. B 609, 232 (2005). Wrong prediction

of p, (as expected)




Nuclear matter

*FHNC gives a larger binding energy at high density.

FHNC/SOC contains two intrinsic : .+ APOMC
approximations violating the bt aliss 2
variational principle:

1) the absence of contributions
from the elementary diagrams,
the absence of contributions due
to the non-commutativity of
correlation operators entering in
the variational wavefunction

(SOC aproximation).




Nuclear matter

eLeading order corrections to FHNC/SOC

S. Fantoni et al. computed the

~—— AFDMC fit

, showing that they are _ - AFDMC

= -« FHNC/SOC
A FHNC/SOC + elem.

and give an important
contribution to the energy:
With the addition of this class of
diagrams,

However the effect of higher order
diagrams and of the SOC
approximation is unknown.




Nuclear matter

BHF EOS gives a shallower binding energy

It has been shown that for Argonne

AV,g and AV, interactions, the : B

contribution from —
In the BHF calculations add

|

, and

(Song et al., PRL 81, 1584
(1998)).

Maybe for this interaction such
corrections would be similar.




EOS asymmetric matter

A.Gandolfi et al., 2008
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Gap In Asymmetric matter

S.Gandolfi, A.lllarionov, et al.., 2008
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Conclusions

e AFDMC can be successfully applied to the study of
nuclear matter.

e The algorithm has been successfully applied to nuclei up
to 4°Ca (when using fixed phase approximation).

e The estimates of the EOS computed with the same
potential and other methods are quite different and seem
to ask for many-body interaction.

e Leading order corrections both to FHNC/SOC and BHF
seem to improve the agreement.




Add three-body forces for nuclei and
nuclear matter

Perform calculations with the full v 4

potential

Systematic study of nuclei (ab-initio mass
formula, etc.)

Asymmetric nuclear matter (need of
twisted boundary conditions)




Three-body force

The form of 3-body interaction is

from the Delta resonance (Fujita-Miyazawa)

Urbana 3-body force is obtained by integrating

out the pions and the Delta assuming

infinite masses of nucleons and Delta

The anticommutator part is easy

(2-body spin-isospin operators)

TThe commutator part leads to 3-body spin-isospin operators. It
requires double HS' integrations which give large variance

Use a fictitious Delta with K=p?/2m +Am and same spin-isopsin of
the nucleon. In the limit Dm going to infinity we get back Urbana |IX
(use of a real delta, namely 16 additional nucleon states is doable !)






