Sixth International Conference on Perspectives in Hadronic Physics

12-16 May 2008

Recent results from the Graal beam

C. Schaerf

University of Rome "Tor Vergata" INFN - Rome "Tor Vergata

Recent Results from the Graal Beam

Carlo Schaerf
Dipartimento di Fisica
Università degli Studi di Roma "Tor Vergata"
INFN - Sezione di Roma "Tor Vergata"
for the Graal collaboration

Sixth International Conference
 on
 Perspectives in Hadronic Physics

ICTP - Trieste, May 12-16, 2008

Graal Apparatus

Table. Ladon beams worldwide

Project name	Ladon	Taladon	ROKK-1M	LEGS	LEGS-2	Graal	LEPS	HIGS
Location	Frascati, Italy		Novosibirsk, Russia	Brookhaven, US		Grenoble, France	Harima, Japan	Durham, UK
Storage ring	Adone	Adone	VEPP-4M	NSLS	NSLS	ESRF	SPring-8	TUNL-FEL
Energy defining method	Collimation	Internal tagging	Tagging	External tagging	External tagging	Internal tagging	Internal tagging	Collimation
Electron energy (GeV)	1.5	1.5	1.4-5.3	2.5	2.8	6.04	8	1.0
Laser photon energy (eV)	2.45	2.45	1.17-3.51	3.53	4.71	3.53	3.53	8.2
Gamma-ray energy (MeV)	5-80	35-80	100-1200	180-320	285-470	550-1470	1500-2400	5-225
Energy resolution (\%)	1.4-10	5	-	1.6	1.1	1.1	1.25	1
Energy spread (FWHM, MeV)	0.07-8	4-2	-	5	5	16	30	-
Electron current	0.1	0.1	0.1	0.2	0.2	0.2	0.1	100
Gamma intensity s^{-1}	10^{5}	5×10^{5}	2×10^{6}	4×10^{6}	2×10^{6}	2×10^{6}	2×10^{6}	$10^{6}-10^{8}$
First year of operation	1978	1989	1993	1987	1999	1996	1999	1996

Ladon Beams in the World

-Graal:

- $E_{\gamma}=.6-1.5 \mathrm{GeV} / \mathrm{W}=1.4-1.9 \mathrm{GeV}$
- Region of the second and third baryon resonances
- $\eta, K, \omega, \eta^{\prime}$ thresholds
- Complementary of HIGS, LEGS, Graal and LEPS

Polarization of the Graal beam

At maximum gamma-ray energy the polarization is very close to that of the laser. Changing the laser line changes the polarization of the gamma-ray beam at a given energy.

Graal Experimental Program

$$
\begin{aligned}
& \vec{\gamma}+\mathrm{p} \rightarrow \pi^{0}+\mathrm{p} \\
& \vec{\gamma}+\mathrm{p} \rightarrow \eta+\mathrm{p} \\
& \vec{\gamma}+\mathrm{p} \rightarrow \pi^{+}+\mathrm{n} \\
& \vec{\gamma}+\mathrm{p} \rightarrow \pi^{0}+\pi^{0}+\mathrm{p} \\
& \vec{\gamma}+\mathrm{p} \rightarrow \pi^{0}+\eta+\mathrm{p} \\
& \vec{\gamma}+\mathrm{p} \rightarrow k^{+}+\Lambda \\
& \vec{\gamma}+\mathrm{p} \rightarrow k^{+}+\Sigma^{0} \\
& \vec{\gamma}+\mathrm{n} \rightarrow \eta+\mathrm{n}
\end{aligned}
$$

Work in progress

$$
\begin{aligned}
& \vec{\gamma}+\mathrm{n} \rightarrow \pi^{0}+\mathrm{n} \\
& \vec{\gamma}+\mathrm{p} \rightarrow \omega+\mathrm{p} \\
& \vec{\gamma}+\mathrm{d} \rightarrow p+\mathrm{n}
\end{aligned}
$$

Gamma-ray Energy Spectrum of Ladon Beams

Graal beam with 3 UV laser lines

Asimmetry $\quad \Sigma$

$\gamma+p \rightarrow p+\pi^{0}$

Comparison of asymmetry results obtained with the Green and UV

$\gamma+\mathrm{n}+(\mathrm{p}) \rightarrow \pi^{\circ}+\mathrm{n}+(\mathrm{p}) \quad \Delta \theta \vee \mathrm{s} \Delta \phi$

deltatheta vs coplanarity

fitzfunz2006.f
Monday, May 26, 2008

ICTP May 14, 2008

$\gamma+n+(p) \rightarrow \pi^{\circ}+n+(p) E_{\text {cal }} / E_{\text {mis }} V s M M \eta$
 central proton ecalceta/eeta vs missmass eta data

rmiss from eta vs ecalc eta/emeas eta

Monday, May 26, 2008

rmiss from eta vs ecalc eta/emeas eta

ICTP May 14, 2008

Monday, May 26, 2008
ICTP May 14, 2008

$\gamma+n+(p) \rightarrow \pi^{0}+n+(p) \quad q f n / q f p \quad 0.70-0.96 \mathrm{GeV}$

π° asymmetries quasi-free proton vs quasi-free neutron $0.70-0.96 \mathrm{GeV}$

[^0]\triangle quosi-free proton
Monday, May 26, 2008
ICTP May 14, 2008

$\gamma+n+(p) \rightarrow \pi^{\circ}+n+(p) \quad q f n / q f p \quad 0.99-1.23 \mathrm{GeV}$

\bigcirc free proton
\triangle quasi-free proton
Monday, May 26, 2008

$\gamma+n+(p) \rightarrow \pi^{\circ}+n+(p) \quad q f n / q f p \quad 1.26-1.47 \mathrm{GeV}$

π° asymmetries quasi-free proton vS quasi-free neutron $1.26-1.47 \mathrm{GeV}$

O quasi-free neutron
Monday, May 26, 2008
ICTP May 14, 2008

$\gamma+n+(p) \rightarrow \eta+n+(p) \Delta \theta / \Delta \phi$
 (a)

(d)

FIG. 1: Upper part: The correlation $\Delta \theta$ vs. $\left(\Delta \phi-180^{\circ}\right)$ in three-dimensional view(a) and its projection on two dimensions (b); Lower part: The bidimensional gaussian fit (c) and its projection on two dimensions (d).

$$
\underset{\text { (a) }}{\gamma+(p) \rightarrow \eta}+\underset{\text { (b) }}{n+(p)} \underset{\text { cal }}{\sum_{\text {cal }}} / E_{\text {meas }}^{\eta}
$$

FIG. 2: The three-dimensional correlation $\mathrm{E}_{\eta}^{\text {calc }} / \mathrm{E}_{\eta}^{\text {meas }}$ vs. ($\mathrm{M}_{X}-\mathrm{M}_{N}$) (a) (see text for explanation) and its projection on two dimensions (b).
$\gamma+n+(p) \rightarrow \eta+n+(p)$ Coplan. + Fermi

Eta- N coplanarity (deg)

Fermi Momentum (MeV)

FIG. 5: Left: Coplanarity between the η and the free proton (solid line) and the quasi-free proton (dotted line): the smearing between the two distributions is due to the Fermi motion; Right: The Fermi momentum distribution before (solid line) and after (dashed line) the application of the bidimensional cuts (see text for details).

FIG. 3: The η invariant mass without cuts (solid line) and with the kinematical cuts (dotted line) for a central proton (a) and neutron (b) (in logarithmic scale), for a forward proton (c) and neutron (d).

FIG. 4: The azimuthal distribution of the ratio (2) for the q.f. proton (a) and q.f. neutron (b) data in a fixed bin of E_{γ} and $\theta_{\eta}^{c m}$.

FIG. 6: Beam asymmetry Σ in η photoproduction on the quasi-free proton (open squares) in the deuteron and on the free proton (full circles)[2]. The energy value outside and inside parenthesis indicate the mean value of the bin for quasi free and free protons respectively. In dotted lines are illustrated the predictions of Maid2001 [7] for the free proton, in solid and dashed lines those for the quasi-free proton of Maid2001 [7] and the reggeized model [3], respectively (see text for details).

FIG. 7: Energy dependence of the differential cross section for $\gamma p \rightarrow \eta p$ calculated at $\theta=50^{\circ}$. The unpolarized cross section (5), the polarized cross section (6) and the beam asymmetry Σ are presented in the three pairs of curves for the free proton (dashed curves) and the quasi free proton (solid curves) respectively.

FIG. 8: Beam asymmetry Σ in η photoproduction on the quasi-free neutron in eleven energy bins, plotted as a function of the $\theta_{\eta}^{c m}$. In each plot, the mean γ energy of the bin is also indicated. In solid and dashed lines are illustrated the predictions for neutrons of Maid2001 and of the reggeized model respectively (see text for details).

$\gamma+n+(p) \rightarrow \eta+n+(p) \Sigma(\theta) q f n / q f p$

FIG. 9: Comparison between the beam asymmetry Σ in η photoproduction on the quasi-free proton (open squares) and the quasi-free neutron (full triangles) in the eleven energy bins, plotted as a function of the $\theta_{\eta}^{c m}$. See text for details.

$\gamma+n+(p) \rightarrow \eta+n+(p)$ Yield $(E \gamma)$

$\gamma+n+(p) \rightarrow \eta+n+(p)$ Yield(W)

FIG. 10: Comparison between the beam asymmetry Σ in η photoproduction on the quasi-free proton (open squares) and the quasi-free neutron (full triangles) in seven angular bins, plotted as a function of the γ energy (intervals of $\simeq 25 \mathrm{MeV}$ width.

FIG. 2: Total cross section of the reaction $\gamma p \rightarrow \eta \pi^{0} p$. The dots are the experimental data of this work. The open circles are from reference [9]. The results of the model of Ref. $[6,7]$ are given with their uncertainty by a hatched band of the figure. The uncertainty originates from the one on the $\gamma p \Delta(1700)$ coupling which was taken from the PDG [10]

Monday, May 26, 2008
ICTP May 14, 2008

$$
\gamma+p \rightarrow \pi^{0}+\eta+p \quad \mathrm{IM}
$$

(a) $\rightarrow E_{\gamma}=1.1$
(b) $\rightarrow 1.2$
(c) $\rightarrow 1.3$
(d) $\rightarrow 1.4$
$(e) \rightarrow 1.5(\mathrm{GeV})$

$\gamma+p \rightarrow \pi^{0}+\eta+p \quad \Sigma$

(a) $\rightarrow E_{\gamma}=1$ 1.1-1. $2 \quad$ (b) $\rightarrow E_{\gamma}=$ 1.2-1. $3 \quad$ (c) $\rightarrow E_{\gamma}=1.3-1.4 \quad($ d $) \rightarrow E_{\gamma}$ I.4-1. $5 \quad(\mathrm{GeV})$

FIG. 4: Beam asymmetry of the reaction $\gamma p \rightarrow \eta \pi^{0} p$. The theoretical results are calculated with the model of Ref. $[6,7]$

$\mathrm{K}-\Lambda$ e $\mathrm{K}-\Sigma$

European Physic Journal A31, 79 (2007) Graal closed circles CLAS open squares

Fig. 10. Σ^{0} recoil polarizations for $\gamma p \rightarrow K^{+} \Sigma^{0}$. Comparison between GRAAL (closed circles), Bonn (open triangles) and CLAS (open squares) data. Data are compared with the
Bonn2005 solutions with large (dashcd lines) and small (solid lines) S_{11} contribution at low encrgies and with the KaonMAID2000 standard calculation (dotted lines)

Angular distributions of the beam recoil observable O_{x}.
Data are compared with the predictions of two models: solid line BCC (Bonn Coupled Channel - A. V. Anisovich et al. Eur. Phys. J. A 25, 427 (2005), A. V. Sarantsev et al. Eur. Phys. J. A 25, 441(2005));
dotted line GRPR (Ghent Regge Plus Resonance - T. Corthals, J. Ryckerbush and T. Van Cauteren, Phys. Rev. C 73, 045207 (2006)).

$\underset{G R A A L}{\gamma}+\underset{v s}{\mathrm{P}} \rightarrow \mathrm{K}$

Angular distributions of the target asymmetry T.
Data are compared with the predictions of the BCC (solid line) and GRPR (dotted line) models.

$\gamma+p \rightarrow K+\Lambda$

GRAAL \times CLAS data

Graal and CLAS

Angular distributions of the quantity $\mathrm{C}_{\mathrm{z}} \mathrm{O}_{\mathrm{x}}-\mathrm{C}_{\mathrm{x}} \mathrm{O}_{\mathrm{z}}-\mathrm{T}+\mathrm{P} \Sigma$.
It is calculated using the C_{x} and C_{z} results published by the CLAS collaboration (energy in parentheses)
combined with our O_{x} and O_{z} data converted to have the same z^{\prime} axis convention and with our Σ, P and T measurements. The used CLAS data are those corresponding to the angles $\cos \left(\theta_{\mathrm{cm}}\right)=0.85$, mean $(0.65,0.45)$, mean($0.25,0.05$), -0.15 , mean (-0.35,-0.55) and -0.75 . We should have the equality $\mathrm{C}_{\mathrm{z}} \mathrm{O}_{\mathrm{x}}-\mathrm{C}_{\mathrm{x}} \mathrm{O}_{\mathrm{z}}-\mathrm{T}+\mathrm{P} \mathrm{\Sigma}=0$

$\gamma+d \rightarrow p+n \quad \Sigma$

Graal data analyzed in different ways

Monday, May 26, 2008

ICTP May 14, 2008

LEGS at BNL - Summary

NSLS $E_{e}=2.8 \mathrm{GeV}$
γ beam energy determined by e' tagging

$$
E_{\gamma}=\mathbf{E}_{\mathrm{e}}-\mathbf{E}_{\mathbf{e}^{\prime}}, \quad \Delta E_{\gamma}=3 \mathrm{MeV}
$$

LEGS at BNL: Spring 05 Neutron Detection

LEGS at BNL: Target Polarization

Figure 1. Polarizations of H (blue) and D (green-vector and red-tensor) nuclei in HD during the two data collection periods. Mid-way through each, the H polarization was flipped using an RF transition.

LEGS at BNL: H/D $\left(\gamma, \pi^{0 / \pm}\right)$

Differences between 2-body kinematics and the measured energy for π_{0} (top panels) and $\pi_{ \pm}$(bottom panels), in the cases of parallel (left panels) and anti-parallel (right panels) beam and target spin alignments. The simulated energy differences are shown as the solid curves.

PRELIMINARY

LEGS at BNL: $\mathrm{H}\left(\gamma, \pi^{0 /+}\right)$

Monday, May 26, 2008

Figure 4. Angular dependence of the $[\mathrm{d} \mathrm{\sigma}(\mathrm{P})-\mathrm{d} \sigma(\mathrm{A})]$ spin-difference cross section for polarized H at beam energies near the Δ peak. The full data from Fall'04 and Spring'05 are shown as solid circles. Unpolarized limits (solid squares) at 0o and 180o are the mean of SAID[8] and MAID[9]. Open diamonds are results from Mainz [21] at 310 MeV (left) and at 330 MeV (right). Predictions from SAID and MAID are shown as dotted and dashed curves, respectively. The solid curves in the top panels are a Legendre fit to the new data.

PRELIMINARY

Compton Scattering Kinematics

2. The maximum energy lost by the electrons after an elastic scattering with a laser photon is given by the maximum energy acquired by the photon:

$$
E_{e l}^{0}-E_{e l}^{\text {scatt }}=E_{\gamma \max }=\frac{4 \gamma^{2} E_{\text {laser }}}{1+\frac{4 \gamma E_{\text {laser }}}{m_{e}}} \approx 4 \gamma^{2} E_{\text {laser }}
$$

This energy loss is measured by the displacement \mathbf{d} of the scattered electrons from the primary electron beam after the first magnetic dipole. For the ESRF electron energy of 6.03 GeV and a UV laser line of 3.53 eV , the energy loss is 1.487 GeV and corresponds to an electron displacement at the position of the Graal tagging detector: $\boldsymbol{d} \approx \mathbf{5 2 . 3} \mathbf{~ m m}$.
The microstrips of the Graal tagging detector measure the displacement \boldsymbol{d} of the scattered electrons from the main orbit and therefore the energy lost by the electrons (and acquired by the gamma-rays):

$E_{\gamma} \propto d$

Compton Scattering Kinematics

3. From the relativistic kinematics of Compton scattering:

$$
E_{\gamma \max }=\frac{4 \gamma^{2} E_{\text {laser }}}{1+\frac{4 \gamma E_{\text {laser }}}{m_{e}}} \approx 4 \gamma^{2} E_{\text {laser }} \quad \text { and } \quad \frac{d E_{\gamma}}{E_{\gamma}} \approx 2 \frac{d \gamma}{\gamma} \quad \text { or } \quad \frac{d \gamma}{\gamma} \approx \frac{1}{2} \frac{d E_{\gamma}}{E_{\gamma}}
$$

and in general from relativistic kinematics:

$$
\beta d \beta=\left(\frac{1}{\gamma^{2}}\right) \frac{d \gamma}{\gamma} \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{d E_{\gamma}}{E_{\gamma}} \quad \text { or } \quad \Delta \beta \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{\Delta E_{\gamma}}{E_{\gamma}}
$$

since at the ESRF:
we have:

$$
\gamma=\frac{E_{e}}{m_{e}}=\frac{6030}{0.511}=11800 ; \quad 2 \gamma^{2} \approx 2.8 \cdot 10^{8}
$$

$$
\Delta \beta \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx \frac{1}{2,8 \cdot 10^{8}} \cdot \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \frac{\Delta d}{d}
$$

The error in β is reduced by eight orders of magnitude with respect to the relative error in \boldsymbol{d} (the displacement of the scattered electrons from the main orbit).

Graal Tagging Microstrips

Schematic description of the tagging detector in more details. Vertical cut: the electrons fly out of the screen.

Distribution of Graal Data

DATA R 01p <99.35-100.48> 10.04.1998-11.05.2002 (833-3920, Day 1493) 09.09.2004 15:50:41
POSITION: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

[^1]
Daily Compton Edges Distributions

Experimental data plotted as a function of (solar) hour, showing their daily variation. The dispersion of data around the average, taken arbitrarily at zero, is expressed in fractions of microstrip (300 micrometers width or about 7 MeV for one microstrip).

Same as the previous figure, but each point is the average over one hour. The dotted lines show the refill time of the machine corresponding to a possible change in the temperature of the tagging detector or the position of the beam. The average is expressed in microstrip fractions ($0.01=3 \mu \mathrm{~m}$).

Graal Beam Orientation on the Earth

Earth rotation around its axis: $\omega=7.3 \cdot 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
Earth rotation around the sun: $\omega=2 \cdot 10^{-7} \mathrm{rad} \mathrm{s}^{-1}$

Graal Rotations and the CMB

Compton Edge Positions vs CMB Dipole

Experimental data plotted as a function of the azimuth (above); below, the variation of the angle between the beam and the CMB dipole decomposed to azimuth (dotted) and declination (dashed) angles is shown.

Preliminary Result

Assuming an error of

$$
2 \cdot 10^{-4}
$$

in our determination of the position of the Compton Edge, we could arrive to an estimated upper limit on the asymmetry of the velocity of light of:

$$
\Delta \beta \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \frac{\Delta d}{d} \approx 0.4 \cdot 10^{-8} \cdot 2 \cdot 10^{-4} \approx 10^{-12}
$$

Considering that we have analyzed old data and we have not been able to reconstruct completely the status of the system - accelerator + tagging detector - during our runs we have published the more conservative number:

$$
3 \cdot 10^{-12}
$$

An Optimistic View of the Future

In conclusion if optimistically we assume a systematic error of $2.5 \mu \mathrm{~m}$ in the distance between the position of the Compton Edge and the electron beam, we have:

$$
\frac{(\Delta d)_{s y s}}{d} \approx \frac{2.5 \mu \mathrm{~m}}{52.3 \mathrm{~mm}} \approx 5 \cdot 10^{-5} \approx \frac{\left(\Delta E_{\gamma}\right)_{s t a t}}{E_{\gamma}}
$$

and we can hope to be able to verify the isotropy of the velocity of light with respect to some absolute reference frame with a precision of:

$$
\Delta \beta \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \cdot 5 \cdot 10^{-5} \approx 2 \cdot 10^{-13}
$$

[^0]: O quasi-free neutron

[^1]:

