
The Abdus Satam
* International Centre for Theoretical Physics

1942-40

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

Jet correlations from unintcgrated parton distributions.

F. Hautmann

OCRS
Switzerland

Stratfs Casciera 11, 340H TriHie, Icily -Tel. +y> MO 2140 111 Fax +J9 C4O 224 163 - tcLinfo@ktp.ii. www.icip.il



Hadronic Physics 08 — Triest, May 2008

Jet correlations from unintegrated parton distributions

F. Hautmann (Oxford/CERN)

I. Motivation: multiparticle production in high-energy hadron collisions

I I . General issues on unintegrated parton distributions

I I I . Multi-jet correlations in small-x final states



I. INTRODUCTION

Multi-scale hard processes at high-energy hadron colliders

B

= / fa/A ® fb/B

phase space opening up for large

Hab

2
In

• large number of events with multiple hard scales:

• potentially large corrections to all orders in a$, ~ \uk(qf/q'j)

parton distributions probed near kinematic boundaries x ^ O , 1 — x^



> Part of the effects are universal

^ ex.: high-order corrections in renormalization group evolution

d *
M-7-J = 7 ® /

dji

7 ~ 7<L°) (1 + Clas + ... + c n + m a r ( « s L)n + ...) , L = "large log

> Part of them are not universal (final-state correlations, exclusive variables, ...)

^ yet can be summed by techniques that generalize RG factorization

• pdf's unintegrated in both || and ± components

Examples:

• Sudakov processes

• small-x physics

• reconstruction of fully exclusive final states by Monte-Carlos



• perturbative calculations at fixed order (NLO, multi-leg)

Multi-jet final states:

• parton-slnower event simulation (higher orders, hadronization)

Multiple Finite transverse-momentum tail in initial-state radiative processes

=^> important for x —> 0 (high-energy region)

hard scales x ^ l (Sudakov region)

i
• included partially, order-by-order, in perturbative calculations (higher loops)

• amounts to corrections to the angular ordering in standard parton showers

(HERWIG, PYTHIA)

inclusive jet cross sections: NLO (+ standard shower) probably sufficient

correlations, exclusive final-state structure?



Multiple QCD radiation —> parton shower:

> H E R W I G : ordering in decay angles in space-like shower

( « k^-ordering for x < C l )

• collinear (incoherent) emission

a a

soft gluon coherence (x ~ 1)

P

xp
> Coherent radiation at x <C 1 —> corrections to angular ordering:

MC based on k^-dependent unintegrated pdfs and MEs



Outline

i) How to characterize u-pdf's with precision?

> gauge-invariant operator matrix elements

> lightcone divergences and regularization methods

ii) Applications t o x < l parton showers and jets

> effects of initial-state radiation on multi-jet angular correlations



I I . General issues on u-pdf's

Example 1: Ordinary (integrated) pdf

o

= ( p , m / 2 p , O

f» f(y)

correlation of quark fields at lightlike separation y = (0,y 70±)

J{y) = {P +
7

+ V0(n) P) ,

Vy(n) = P e x p (igs J ° ° dr n • A(y + r n) ) eikonal line in direction n = (0,1, Ox)

• /i-dependence from renormalization of operator product

• gauge-invariant Wilson line matrix elements



Example 2: Unintegrated pdf from physical cross section (high energy limit). E.g.

e

A20 single gluon polarization dominates s ^> M 2

^ gauge invariance rescued (despite gluon off-shell)

but to define u-pdf gauge-invariantly over the whole phase space

is more difficult

Example 3: Generalize matrix element to non-lightlike distances

/(!/) =
•f Vo(n) P ty±)

• works at tree level [Mulders, 2002; Belitsky et al., 2003; Collins, 2004]

subtler at level of radiative corrections (-^



0 Suppose a gluon is absorbed or emitted by eikonal line:

(O, 0, 0, )

= PR(X, &JL) - 6(1 - x) S(k±) / dx'dk±PR(x, k'±)

where PR =
as CF

7T'

1

1 — x

T

p
+ {regular at

endpoint singularity (q' —> 0, V

Physical observables:

O =

dx dk±_ \ k±) — ^ k±)

n = (0, 1, 0)

p=IR regulator

inclusive case: (p independent of k± => 1/(1 — x)+ from real + virtual

general case: endpoint divergences (incomplete KLN cancellation)



• Distributions at fixed k^ are no longer protected by KLN

mechanism against uncancelled lightcone divergences

• Only after supplying matrix element with a regularization

prescription is distribution well defined.

• Note: regularization of endpoint divergences also affects

distributions integrated over k^ and UV subtractions

[H, hep-ph/0702196]

dk± / (x , k±,fi) O(JJL — fej_) = / (ar,

= holds only at tree le el: full relation involves coefficient function R

= R(x) (85

0 R calculable as a power series in as, R(x) = S(l — x) + J^k rk

Applications: Cut-off regularization vs. Subtractive regularization



CUT-OFF REGULARIZATION

> cut-off in Monte-Carlo generators using u-pdf's

CASCADE www.quark.lu.se/~lnannes/cascade

SMALLX Marchesini & Webber, 90's

LDCMC www.tlnep.lu.se/~leif/ariadne

> cut-off from gauge link in non-lightlike direction n:

/
2 2

• n d = ( p . n) / n

T T Collins, Rogers & Stasto, arXiv:0708.2833

Ji, Ma & Yuan, 2005, 2006

earlier work from 80's and 90's

finite r\ => singularity is cut off at 1 —

• Note: lightcone limits y2^0 and n2^0 do not commute

dk± f(£ik±,fi,-rf) = F(x1/jJ1r]) / ordinary pdf



UPDF's WITH SUBTRACTIVE REGULARIZATION

• Endpoint divergences #—»1 from incomplete KLN cancellation

Subtractive method: more systematic than cut-off. Widely used in NLO calculations.

Formulation suitable for eikonal-operator matrix elements: Collins & H, 2001.

• gauge link still evaluated at n lightlike, but multiplied by "subtraction factors"

f(suhtT)(y-,y±)
original matrix element

t t y

{0\Vy(u)Vy\n)Vo(n)V^(u)\0)

counterterms
0 n

y = (0, y ,0±); u = auxiliary non-liglntlike eikonal , Ox)

H, arXiv:0708.1319

u serves to regularize the endpoint; drops out of distribution integrated over k±



I I I . Jet correlations in small-x final states

0 All MC's based on u-pdf's rely on factorization in

a) generate hard-scattering event (hard ME)

b) couple it to initial-state shower

0 differ by detailed model for initial state
(a) (b)

all implement correct a™x x l n n x x behavior for spacelike evolution at x

to all orders in as

• resum non-universal ak
s\n

k{s/p2
[_) (in certain cases)

subleading contributions possibly important for final states



Implementations:

Hoche, Krauss and Teubner, arXiv:0705.4577 (BFKL)

Golec, Jadach, Placzek, Stephens, Skrzypek, hep-ph/0703317 (CCFM)

LDCMC Lonnblad & Sjodahl, 2005; Gustafson, Lonnblad & Miu, 2002 (LDC)

CASCADE Jung, 2004, 2002; Jung and Salam, 2001 (CCFM)

SMALLX Marchesini & Webber, 1992 (CCFM)

Advantages over standard Monte-Carlo like P Y T H I A or H E R W I G :

• better treatment of high-energy logarithmic effects

• likely more suitable for simulating underlying event's k^

Current limitations:

• radiative terms associated to x ~ 1 not automatically included

• procedure to correct for this not yet systematic

<-̂  e.g.: LO-DGLAP in Hoche et al

• quark contributions in initial state included partially

^ see also: k± kernel for sea-quark evolution [Catani & H]

• l imited knowledge of U-pdf's [Jung et al., arXiv:0706.3793;

J. R. Andersen et al., 2006]



Basic ingredients in the CASCADE Monte-Carlo

• ME by perturbative computation

dz I dq2

branching eq. : A(x, = Ao(x,kT,lJi) + - zq)

X
x A(^zq) V(z,q,kT) A{-,kT 4- (1 - z)q,q)

z

xp

P a 1

X

(left) Coherent radiation in the space-like parton shower for x

(right) the unintegrated splitting function V, including small-a^ virtual corrections.

a/x > at\ > a (small — x coherence region)



U-pdf fits 0 evolution

[«—> DIS, jets, heavy flavors]

unintegrated gluon distribution as a function of x , k±, \i [Hansson & Jung, 2007]
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MULTI-JET DIS PRODUCTION AND NLO RESULTS
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(left) Azimuth dependence and (right) Bjorken-x dependence of di-jet distributions

• measured by ZEUS [arXiv:0705.1931]

• compared with NLO results [Z. Nagy and Z. Trocsanyi, PRL 87 (2001)]

large variation from order-as to order-c^ prediction as A 0 and x decrease

sizeable theory uncertainty at NLO (underestimated by "\i error band")



Jet clustering and hadronization:

> moderate hadronization corrections from jet algorithm used by Zeus and HI

[arXiv:0705.1931 [hep-ex]; hep-ex/0310019]

> jet clustering free of non-global logarithms

[Dasgupta et al., hep-ph/0610242]

> asymmetric jet cuts to avoid double logs in minimum pr

[Banfi and Dasgupta, hep-ph/0312108]

> nonperturbative corrections in inverse powers of Q moderate for Q2 > lOGeV2

Radiative effects at higher order:

0 fixed-order beyond NLO is outside present reach for multi-jets in ep and pp

0 enhanced (soft/collinear) higher orders from near back-to-back region

Y.Delenda et al., arXiv:0706.2172; arXiv:0804.3786; HERWIG

largest effects seen at small A 0 (3 well-separated hard jets)



azimuthal distribution in 3-jet cross section [Zeus, 2007]
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besides angular correlations, sizeable NLO uncertainties in other associated

distributions

• NLO results much more stable for inclusive jet cross sections



AZIMUTHAL DISTRIBUTION OF THE THIRD JET
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Cross section in the azimuthal angle between the hardest and the third jet

for small (left) and large (right) azimuthal separations between the leading jets

Jung & H, arXiv:0712.0568 [hep-ph]

small Acj) ^> non-negligible initial k^ ^> larger corrections to collinear ordering

• curves become closer at large A 0



Angular jet correlations from CASCADE and HERWIG compared with DIS data
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(left) di-jet cross section; (right) three-jet cross section

Jung & H, arXiv:0712.0568 [hep-ph]

• different shapes from the two MC

• largest differences at small A<p

good description of measurement by CASCADE



Normalize to the back-to-back cross section:

< 1
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> high-k^ component in ME essential to describe correlation at small Acp

> k^-dependence in u-pdf alone not sufficient



JET MULTIPLICITIES
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[Jung & H, arXiv:0805.1049]

larger contribution from high multiplicity in the MC with u-pdf



MOMENTUM CORRELATIONS [Jung & H, arXiv:0805.1049]
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Summary on DIS 3-jet

> U-pdfs 0 k^-dependent hard MEs describe

multi-jet measurements including correlations.

> Physical picture: • growth of k^ along spacelike jet

• finite-angle emission corrections

> Furthermore:

• Results similar to HERWIG if reduced to k^-ordered phase space

• Similar to fixed NLO where corrections are not large

\> Non-forward jets =̂> results less dependent on details of

u-pdf evolution models



I V . Further developments and conclusions

0 Forward-region observables

• More pronounced dependence on evolution model

• better understanding of u-pdf's needed in target fragmentation region

[Trentadue et al, 2007]

Gluon-gluon fusion processes:

• production of b, c

large NLO uncertainties at LHC energies

[Nason et al. 2004]

• final states with Higgs

10 -^ 20 % effects in pt spectrum from a; < 1 terms

[Kulesza, Sterman & Vogelsang, 2004]



ISSUES AT HIGHER ORDER

u-pdf defined gauge-invariantly for small x by high-energy factorization

• general definitions including x ~ 1?

Collins, Rogers and Stasto, arXiv:0708.2833

H, PLB 655 (2007) [hep-ph/0702196]

soft gluon exchange with spectator partons in pp collisions

—> possibly factorization-breaking? (back-to-back dihadron production)

Mulders, Bomhof, Collins,

Vogelsang, Qiu, Yuan, Pijlman, ...

2006-2008

0 appears at N3LO (2 soft, 1 collinear partons)

<0> does it survive destructive interference from multiple emission?

Note: Coulomb/radiative mixing terms also appear to break coherence

in di-jet cross sections with gap in rapidity

Forshaw, Kyrieleis & Seymour, JHEP 08 (2006)



MORE ON U-PDF'S WITH SUBTRACTIVE REGULARIZATION

One loop expansion:

(x, k±) PR(%, k±) -- 5(1 - x) 5(k±) I dx/dk/j_PR(x\k/j_) (^from numerator)

r

with PR = agCp/TT2 | l / [ ( l — x) (k2^ + m 2 ( l — x)2)] + .. . | = real emission prob.

WR = asCF/7T2 { l / [ ( l - x) {k\_ + 4C(1 - x)2)} + . . . } = counterterm

• ^-dependence cancels upon integration in k±

O = I dx dk± f^htT)(x,k±) (p(x,k±)

dx dk± {PR [ip(x, Oj.) - ip(l, 0_L)] + (PR - WR) [ip(x, fcj.) - (^(x, Oj.)]}

• first term: usual 1/(1 — #)+ distribution

• second term: singularity in P R cancelled by WR



Note: it works because terms in £(1 — x) cancel between the two vev's,

-WR(xik±1Q-\-S(l-x)S{k±) I dx'dk'±WR

and

+S(k±) dkf
±WR(x1k

/
±,()-S(l-x)5(k±) dxdkf

±WR .

• virtual correction to gauge link does not depend on y±

G. Korchemsky

V. Braun et al

> subtractions have (relatively) simple form in coordinate space

> operator representation valid to all orders

> one-loop counterterm gives extension for k^ ^ 0 of the

plus-distribution regularization



Conclusions

Branching methods based on k^-dependent u-pdfs and MEs useful for

simulation of high-energy parton showers

> k^ shower Monte-Carlo gives good description of

small-x multi-jet final states

» Extension of u-pdf's over whole phase space important to

turn these Monte-Carlo's into general-purpose tools

> special issues at x ~ 1 (and matching with small x)

relevant for showering algorithm


