

1942-14

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

Electromagnetic Transition Form Factors.

Aznauryan Jefferson Lab USA

V.D. Burkert Jefferson Lab USA

V. Mokeev Jefferson Lab USA

Electromagnetic Transition Form Factors

Aznauryan, V. D. Burkert, V. Mokeev

Jefferson Lab

(CLAS Collaboration)

Motivation
Baryon resonance transitions in Nπ, Nη

NΔ(1232) multipoles
Roper P₁₁(1440), S₁₁(1535)
Helicity structure of D₁₃(1520)

Transition amplitudes in pπ⁺π⁻ channel

P₁₁(1440), D₁₃(1520), D₃₃(1700), P₁₃(1720)

Summary & Outlook

Hadron Structure with e.m. Probes?

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

2

SU(6)xO(3) Classification of lowest lying Baryons

JLab Site: The 6 GeV CW Electron Accelerator

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

N- Δ (1232) Quadrupole Transition

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

Multipole Ratios R_{EM} , R_{SM} before 1999

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

N Δ electroproduction experiments after 1999

Reaction	Observable	W	Q ²	Author, Conference, Publication	LAB
$p(e,e^{*}p)\pi^{0}$	$\sigma_0 \sigma_{TT} \sigma_{LT} \sigma_{LTP}$	1.221	0.060	S. Stave, EPJA, 30, 471 (2006)	MAMI
$p(e,e^{\prime}p)\pi^{0}$	$R_{LT'}^{\prime} R_{LT}^{\prime\prime} R_{LT}^{\prime\prime}$	1.232	0.121	H. Schmieden, EPJA, 28, 91 (2006)	MAMI
$p(e,e^{\prime}p)\pi^{0}$	$R_{LT'}^{l} R_{LT}^{n} R_{LT}^{l}$	1.232	0.121	Th. Pospischil, PRL 86, 2959 (2001)	MAMI
p(e,e'p)π ⁰	$\sigma_0 \ \sigma_{TT} \ \sigma_{LT} \ \sigma_{LTP}$	1.232	0.127	C. Mertz, PRL 86, 2963 (2001) C. Kunz, PLB 564, 21 (2003) N. Sparveris, PRL 94, 22003 (2005)	BATES
p(e,e'p)π ⁰	$\sigma_0 \sigma_{TT} \sigma_{LT} \sigma_{LTP}$	1.232 1.221	0.127 0.200	N. Sparveris, SOH Workshop (2006) N. Sparveris, nucl-ex/611033	MAMI
р(e,e' р) л ⁰	A_{LT} A_{LTP}	1.232	0.200	P. Bartsch, PRL 88, 142001 (2002) D. Elsner, EPJA, 27, 91 (2006)	MAMI
p(e,e'p)π ⁰ p(e,e'π+)n	$σ_0$ σ _{TT} σ _{LT} σ _{LTP}	1.10-1.40	0.16-0.35	C. Smith, SOH Workshop (2006)	JLAB / CLAS
$p(e,e'p)\pi^0$	$\sigma_0 \sigma_{TT} \sigma_{LT}$	1.11-1.70	0.4-1.8	K. Joo, PRL 88, 122001 (2001)	JLAB / CLAS
p(e,e'p)π ⁰ p(e,e'π+)n	σ_{LTP}	1.11-1.70	0.40,0.65	K. Joo, PRC 68, 32201 (2003) K. Joo, PRC 70, 42201 (2004) K. Joo, PRC 72, 58202 (2005)	ILAB / CLAS
р(e , e ' π +)n	$\sigma_0 \sigma_{TT} \sigma_{LT}$	1.11-1.60	0.3-0.6	H. Egiyan, PRC 73, 25204 (2006)	JLAB / CLAS
p(e,e'p)π ⁰	16 response functions	1.17-1.35	1.0	J. Kelly, PRL 95, 102001 (2005)	JLAB / Hall A
p(e,e'p)π ⁰	$\sigma_0 \sigma_{TT} \sigma_{LT}$	1.10-1.40	3.0-6.0	M. Ungaro, PRL 97, 112003 (2006)	JLAB / CLAS
p(e,e'p)π ⁰	$\sigma_0 \sigma_{TT} \sigma_{LT}$	1.10-1.35	2.8, 4.0	V. Frolov, PRL 82 , 45 (1999)	JLAB / Hall C

$N\Delta$ Multipole Ratios R_{EM} , R_{SM} in 2007

- There is no sign for asymptotic pQCD behavior in R_{EM} or $R_{\text{SM}}.$

• $R_{EM} < 0$ at low Q² favors oblate shape of $\Delta(1232)$ and prolate shape of the proton.

 Dynamical models attribute the deformation to contributions of the pion cloud at low Q².

 Data at Q²=7 GeV² still to come from Jlab Hall C.

Comparison with Theory

2nd and 3rd nucleon resonance regions

State	$\eta_{N\pi}$	$\eta_{ m N\eta}$	$\eta_{N\pi\pi}$
P ₁₁ (1440)	0.55-0.75		0.3-0.4
D ₁₃ (1520)	0.55-0.65	0.0023	0.4-0.5
S ₁₁ (1535)	0.35-0.55	0.45-0.60	< 0.1
D ₃₃ (1700)	0.1-0.2		0.8-0.9
P ₁₃ (1720)	0.1-0.2	0.04	> 0.7

(PDG 2006)

<u>Analysis tools:</u>

- Unitary isobar model (UIM), starting from MAID.
- Dispersion relations (DR), for 1-pion analysis.
- Isobar model (JM06) for 2-pion analysis with leading contributions as observed in the data. Fit to 9 independent one-dimensional projections of 5-dim. cross sections.

UIM & DR Fit at low & high Q^2

# data points > 50,000 ,	E _e = 1.515, 1.645, 5.75 GeV
--------------------------	---

Observable	Q^2	Number of Data points
dσ/dΩ(πº)	0.40 0.65	3 530 3 818
dσ/dΩ(π+)	0.40 0.65 1.7-4.3	2 308 1 716 <mark>33 000</mark>
Α _e (π ⁰)	0.40 0.65	956 805
Α _e (π+)	0.40 0.65 1.7 - 4.3	918 812 <mark>3 300</mark>
dσ/dΩ(η)	0.375 0.750	172 412

Low Q² results: I. Aznauryan et al., PRC71, 015201, 2005; PRC 72, 045201, 2005;

High Q² results on Roper: I. Aznauryan et al., arXiv:0804.0447 [nuclex].

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

Legendre moments for $\sigma_T + \epsilon \sigma_L$

> DR and UIM give close results for real parts of multipole amplitudes

Im		
Re	UIM	
Re	DR	

Roper transition amplitudes from $N\pi$ data

JM06 Fit to $p(\gamma_v, p\pi^-\pi^+)$

Simultaneous fit to 9 one-dimensional integrated cross sections.

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

Integrated cross sections for $p(\gamma_v, p\pi^+\pi^-)$

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

$P_{11}(1440)$ amplitudes from $p\pi^+\pi^-$ data.

 $P_{11}(1440)$ amplitudes from $N\pi$ and $N\pi\pi$

Transition amplitudes for $\gamma_v p D_{13}(1520)$

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

- This state has traditionally been studied in the $S_{11}(1535) \rightarrow p\eta$ channel, which a prominent decay. $S_{11}(1535) \rightarrow p\eta$; pη selects isospin I=1/2 $S_{11}(1535) \rightarrow N\pi$; Nπ sensitive to I=1/2, 3/2
- For the study of $S_{1/2} N\pi$ channel is important. $S_{1/2}$ difficult to extract in pŋ channel.

Transition amplitudes for $S_{11}(1535)$

- $A_{1/2}$ from $n\pi^+$ consistent with pŋ within uncertainties of b.r.
- In $n\pi^+$ the S₀₊ amplitude interferes with the strong M₁₋ allowing access to the longitudinal coupling. **D**₀^{LT} ~ **Re(E**₀₊S^{*}₁₋ + S₀₊M₁₋*).
- Sign not consistent with CQM, but agrees with dynamically generated resonance prediction.
 This may indicate that CQM's must take into account meson cloud to reproduce sign of S_{1/2}, see: B. Julia-Diaz, et.al. (EBAC), Phys. Rev. C77:045205(2008).

Transition amplitudes for $D_{33}(1700)$, $P_{13}(1720)$

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

Conclusions & Outlook

- $N\Delta(1232)$ amplitudes are well determined at Q^2 up to 6 GeV².
 - No sign of transition to asymptotic QCD behavior
- Roper P₁₁(1440) amplitudes determined up to 4.5 GeV² using two different analysis approaches (DR, UIM), and two channels
 - Sign change of $A_{1/2}$ seen in $N\pi$ and $N\pi\pi$
 - High Q² behavior consistent with radial excitation of the nucleon as in CQM
- $S_{11}(1535)$ amplitudes measured in $n\pi^+$ channel, for the first time
 - Hard A $_{1/2}$ form factor confirmed
 - First measurement of $S_{1/2}$. Sign inconsistent with CQM, consistent with dynamically generated state
- D₁₃(1520) in nπ⁺ and pπ⁺π⁻
 - Helicity switch from $A_{3/2}$ dominance to $A_{1/2}$ dominance at Q²>0.6 GeV²
- $P_{13}(1720)$ and $D_{33}(1700)$ in $p\pi^+\pi^-$
 - the first consistent mapping of their Q² dependence

Future prospects of N* Physics at the Jlab

- Hall C data on NA at high Q^2 expected soon
- New data on Q² dependence of high mass states (CLAS)
- \bullet An experiment is planned in Hall A to study ND at very low Q^2
- An extensive program is underway with polarized photon beams and polarized targets to search for new baryon states (CLAS)
- Large effort underway at EBAC to develop the coupled channel analysis of these and other data
- Proposal for a transition form factor program at high Q² for the JLab 12 GeV upgrade with CLAS12

Projections for N* Transition Amplitudes @ 12 GeV

Probe the transition from effective degrees of freedom, e.g. constituent quarks, to elementary quarks, with characteristic Q² dependence.

Additional Slides

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

3-body processes:

Isobar channels included:

 $\pi^{-}\Delta^{++}$

•All well established N* with $\pi\Delta$ decays and $3/2^+(1720)$ candidate, seen in CLAS 2π data.

•Reggetized Born terms & effective FSI&ISI treatment .

•Extra $\pi\Delta$ contact term.

ρp

•All well established N* with pp decays and 3/2+(1720) candidate.

•Diffractive ansatz for non-resonant part & ρ-line shrinkage in N* region.

3. Jefferson Lab -

JM06 Model, cont'd

6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008