Sixth International Conference on Perspectives in Hadronic Physics

12-16 May 2008

Damping and spin asymmetry for forward neutrons.

B. Kopeliovich

Universidad Tecnica Federico Santa Maria Chile

Danping and spin-asymmetry of forward neutrons

Boris Kopeliovich

Universidad Técnica Federico Santa María Valparaiso, Chile

In collaboration with:

Irina Potashnikova
 Ivan Schmidt

Jacques Soffer

Born approximation

Triple-Regge phenomenology

$$
\begin{aligned}
& A_{p \rightarrow n}^{B}(\vec{q}, z)=\frac{1}{\sqrt{z}} \bar{\xi}_{n}\left[\sigma_{3} q_{L}+\vec{\sigma} \cdot \vec{q}_{T}\right] \xi_{p} \phi^{B}\left(q_{T}, z\right) \\
& \phi^{B}\left(q_{T}, z\right)=\frac{\alpha_{\pi}^{\prime}}{8} g_{\pi^{+} p n}(t) F(t) \eta_{\pi}(t)(1-z)^{-\alpha_{\pi}(t)} A_{\pi p \rightarrow X}\left(M_{X}^{2}\right) \\
& q_{L}=(1-z) m_{N} ; \quad t=-\frac{1}{z}\left(q_{L}^{2}+q_{T}^{2}\right)
\end{aligned}
$$

Born approximation

$$
z \frac{d \sigma_{p \rightarrow n}^{B}}{d z d q_{T}^{2}}=\frac{g_{\pi^{+} p n}^{2}}{(4 \pi)^{2}} \frac{|t| F^{2}(t)}{\left(m_{\pi}^{2}-t\right)^{2}}(1-z)^{1-2 \alpha_{\pi}(t)} \sigma_{t o t}^{\pi^{+} p}\left(M_{X}^{2}\right)
$$

What is missed?

Absorptive corrections

a

b

Absorptive corrections: State of Art

U.D. Alesio and H.J. Pirner, Eur.Phys.J. A7(2000)109 N.N. Nikolaev et al. Phys.Rev. D60(1999)014004

Absorptive corrections

The survival probability amplitude $\boldsymbol{S}(\boldsymbol{b})$ for a color octet-octet dipole is rather low.

- What has been missed in previous calculations?

Reggeon calculus:
a: was included;
b: was neglected; c: was overlooked.

a

b

c

Absorptive corrections

Structure of the missed graph

- Interaction of the target with the proton remnants leads to eikonal-type graphs (a: included);
Interaction with radiated gluons (Pomeron ladder rungs) results in a small triple-Pomeron coupling (b: neglected);
Interaction with the pion remnants is as important, as the first contribution (c: should be added).

Survival probability amplitude $\mathbf{S}(\mathbf{b})$

- Dipole representation
$1 / N_{c}$ expansion:

$$
\begin{gathered}
S^{(5 q)}(b)=S^{(3 q)}(b) S^{(q \bar{q})}(b)=\left[1-\operatorname{Im} \Gamma^{(3 q) p}(b)\right]\left[1-\operatorname{Im} \Gamma^{(\bar{q} q) p}(b)\right] \\
\operatorname{Im} \Gamma^{(\overline{3} 3) p}(b, z)=\int d^{2} r W_{\overline{3} 3}\left(r, M_{X}^{2}\right) \operatorname{Im} f_{e l}^{\overline{3} 3}(\vec{b}, \vec{r}, x, \alpha) \\
W_{\overline{3} 3}\left(r, M_{X}^{2}\right)=\frac{1}{2 \pi B_{e l}^{\pi p}\left(M_{X}^{2}\right)} \exp \left[-\frac{r^{2}}{2 B_{e l}^{\pi p}\left(M_{X}^{2}\right)}\right]
\end{gathered}
$$

The partial dipole amplitude $f_{e l}^{\overline{3} 3}(\vec{b}, \vec{r}, s, \alpha)$ is calculated in the saturated model fitted to photoproduction and DIS data.

Survival probability amplitude $\mathbf{S}(\mathbf{b})$

$$
\begin{aligned}
& \operatorname{Imf}_{\mathrm{el}}^{\overline{\mathrm{q} q}}(\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{r}}, \mathbf{x}, \alpha)=\frac{\sigma_{0}}{8 \pi B}\left\{\exp \left[-\frac{[\vec{b}+\vec{r}(1-\alpha)]^{2}}{2 B}\right]\right. \\
+ & \left.\exp \left[-\frac{(\vec{b}-\vec{r} \alpha)^{2}}{2 B}\right]-2 \exp \left[-\frac{r^{2}}{R_{0}^{2}(x)}-\frac{[\vec{b}+(1 / 2-\alpha) \vec{r}]^{2}}{2 B(s)}\right]\right\}
\end{aligned}
$$

The partial amplitude reproduces the total dipole-proton cross section,

$$
2 \int d^{2} b \operatorname{Im} f_{e l}^{\bar{q} q}(\vec{b}, \vec{r}, x, \alpha) \equiv \sigma_{\bar{q} q}(r, x)=\sigma_{0}\left[1-e^{-r^{2} / R_{0}^{2}(x)}\right],
$$

and the pion-proton elastic slope,

$$
B=B_{e l}^{\pi p}-\frac{1}{3}\left\langle r_{c h}^{2}\right\rangle_{\pi}-\frac{1}{8} R_{0}^{2}
$$

Survival probability amplitude $\mathbf{S}(\mathbf{b})$

- Hadronic representation The 5-quark Fock state can be expanded over the hadronic basis,

$$
\left|\{3 q\}_{8}\{\bar{q} q\}_{8}\right\rangle=d_{0}|p\rangle+d_{1}|N \pi\rangle+\ldots
$$

Assuming that the $|\pi N\rangle$ component dominates,

$$
\begin{aligned}
& S^{(h a d r)}(b)=S^{\pi p}(b) S^{p p}(b) \\
= & {\left[1-\operatorname{Im} \Gamma^{p p}(b)\right]\left[1-\operatorname{Im} \Gamma^{\pi p}(b)\right] }
\end{aligned}
$$

The partial amplitudes $\operatorname{Im} \Gamma^{h p}(b)$
can be extracted directly from data.

Survival probability amplitude $\mathbf{S}(\mathbf{b})$

Dipole representation

Impact parameter representation

Absorption effects factorize in impact parameters

$$
f_{p \rightarrow n}(\vec{b}, z)=\mathrm{S}(\mathbf{b}) \times \frac{1}{\sqrt{z}} \bar{\xi}_{n}\left[\sigma_{3} q_{L} \theta_{0}^{B}(b, z)-i \frac{\vec{\sigma} \cdot \vec{b}}{b} \theta_{s}^{B}(b, z)\right] \xi_{p}
$$

Born amplitudes:

$$
\begin{aligned}
\theta_{0}^{B}(b, z) & =N(z)\left\{i \frac{\pi \alpha_{\pi}^{\prime}}{2 z \beta^{2}} K_{0}(b / \beta)+\frac{1}{1-\beta^{2} \epsilon^{2}}\left[K_{0}(\epsilon b)-K_{0}(b / \beta)\right]\right\} ; \\
\theta_{s}^{B}(b, z)= & \frac{1}{b} N(z)\left\{i \frac{\pi \alpha_{\pi}^{\prime}}{2 z \beta^{3}} K_{1}(b / \beta)+\frac{1}{1-\beta^{2} \epsilon^{2}}\left[\epsilon K_{1}(\epsilon b)-\frac{1}{\beta} K_{1}(b / \beta)\right]\right\} \\
N(z) & =\frac{1}{2} g_{\pi+p n} z(1-z)^{\alpha_{\pi}^{\prime}\left(m_{\pi}^{2}+q_{L}^{2} / z\right)} e^{-R_{1}^{2} q_{L}^{2} / z} A_{\pi p \rightarrow X}\left(M_{X}^{2}\right) \\
\epsilon^{2} & =q_{L}^{2}+z m_{\pi}^{2}, \\
\beta^{2} & =\frac{1}{z}\left[R_{1}^{2}-\alpha_{\pi}^{\prime} \ln (1-z)\right]
\end{aligned}
$$

Absorption corrections

Partial spin amplitudes corrected for absorption

Real parts of partial spin amplitudes for neutron production, non-flip, $\theta_{0}(b, z)$, and spin-flip, $b \theta_{s}(b, z)$. Solid curves show the result of Born approximation. Dashed and dot-dashed curves include absorptive corrections calculated in the dipole approach $\left(\times S^{(5 q)}(b, z)\right)$ and in hadronic model $\left(\times S^{(h a d r)}(b, z)\right)$, respectively

Cross section

- The two models for absorptive corrections lead to similar results.
- The absorption corrected cross section considerably underestimates the ISR data.

Cross section
 Challenging the ISR data

The normalization of the data has systematic uncertainty 20%

- There is a strong evidence from the recent measurements by ZEUS of leading neutron production in DIS that the normalization of the ISR data is twice overestimated. According to Regge factorization the ratio

$$
\frac{d N}{d z d q_{T}^{2}}=\frac{1}{\sigma_{t o t}^{h p}} \frac{d \sigma_{h p \rightarrow X n}}{d z d q_{T}^{2}}
$$

should be universal, i.e. independent of the particle h.

- The ratio of the pion-to-proton structure functions measured at small x by ZEUS is about $1 / 3$, twice as small as was expected.

Cross section

q_{T}-dependence

Spin-flip contribution rises towards $z=1$

Single-spin asymmetry $\boldsymbol{A}_{\boldsymbol{N}}$

PHENIX measurements

Neutron asymmetry X_{F} distribution with single neutron trigger

Single-spin asymmetry \boldsymbol{A}_{N}

$$
f_{p \rightarrow n}(\vec{q}, z)=\frac{1}{\sqrt{z}} \bar{\xi}_{n}\left[\sigma_{3} q_{L} \phi_{0}\left(q_{T}, z\right)+\vec{\sigma} \cdot \vec{q}_{T} \phi_{s}\left(q_{T}, z\right)\right] \xi_{p}
$$

$$
A_{N}\left(q_{T}, z\right)=\frac{2 q_{T} q_{L} \phi_{0}\left(q_{T}, z\right) \phi_{s}\left(q_{T}, z\right)}{q_{L}^{2}\left|\phi_{0}\left(q_{T}, z\right)\right|^{2}+q_{T}^{2}\left|\phi_{s}\left(q_{T}, z\right)\right|^{2}} \sin \left(\delta_{0}-\delta_{s}\right)
$$

The phase shift between spin-flip and non-flip amplitudes emerges due to absorptive corrections, which affect the real and imaginary parts differently.

Fixed $z=0.6,0.7,0.8,0.9:$

Single-spin asymmetry $\boldsymbol{A}_{\boldsymbol{N}}$

Fixed angle $\boldsymbol{\theta}=1,2,3,4,5 \mathrm{mrad}, q_{T}=\theta z \sqrt{s} / 2$

Asymmetry at $\theta=1-2 \mathrm{mrad}$ is vanishingly small

Interference with a_{1} meson

Advantages:

- a_{1} and pion have similar Regge trajectories, but different signatures, so the amplitudes have the optimal for spin asymmetry phase shift, $\pi / 2$;
- The process $\pi p \rightarrow a_{1} p$ is diffractive, so the $\pi-a_{1}$ interference does not fall with energy

Interference with a_{1} meson

Problems :

- The cross section of $\pi p \rightarrow a_{1} p$ is more than order of magnitude suppressed compared to $\pi p \rightarrow \pi p$;
- The $a_{1} N N$ non-flip coupling is several times smaller than $\pi N N$;
- At $z<0.7$ the spin-flip cross section is order of magnitude less that the non-flip one;
- Additional suppression by an order of magnitude is due to smallness of $q_{T} \approx 0.1 G e V$.

The asymmetry is measured at such a small $q_{T}^{2} \approx 0.01 G e V^{2}$, that available mechanisms fail to explain the observed strong effect.

Summary

-

Pion exchange is usually associated with the spin-flip amplitude. However, the amplitude of inclusive process mediated by pion exchange acquires a substantial non-flip part.

Summary

O
Pion exchange is usually associated with the spin-flip amplitude. However, the amplitude of inclusive process mediated by pion exchange acquires a substantial non-flip part.

- One should not convolute the survival probability with the cross section, but work with the amplitudes.

Summary

- Pion exchange is usually associated with the spin-flip amplitude. However, the amplitude of inclusive process mediated by pion exchange acquires a substantial non-flip part.
- One should not convolute the survival
probability with the cross section, but work with the amplitudes.
- We identified the projectile system which undergoes initial and final state interactions as a color octet-octet 5-quark state. Absorptive corrections are calculated within two very different models, color-dipole light-cone approach, and in hadronic representation. Nevertheless the results are very similar.

Summary

The cross section corrected for absorption is about twice lower than the ISR data. However, comparison with DIS data shows that there is a problem with the normalization of the ISR data.

Summary

-

The cross section corrected for absorption is about twice lower than the ISR data. However, comparison with DIS data shows that there is a problem with the normalization of the ISR data. - Absorption corrections generate a relative phase between the spin-flip and non-flip amplitudes. The resulting asymmetry is rather large, but not at such small transverse momenta, $\boldsymbol{q}_{\boldsymbol{T}}^{2} \sim 0.01 \mathrm{GeV}^{2}$.

Summary

- The cross section corrected for absorption is about twice lower than the ISR data. However, comparison with DIS data shows that there is a problem with the normalization of the ISR data. - Absorption corrections generate a relative phase between the spin-flip and non-flip amplitudes. The resulting asymmetry is rather large, but not at such small transverse momenta, $\boldsymbol{q}_{\boldsymbol{T}}^{2} \sim 0.01 \mathrm{GeV}^{2}$.
- These transverse momenta are proper for CNI, while there is no room for Coulomb effects here. No hadronic mechanism has been known so far, which could provide such a large asymmetry at so small $\boldsymbol{q}_{\boldsymbol{T}}$. The observed large $\boldsymbol{A}_{\boldsymbol{N}}$ for neutrons is becoming a serious challenge for theory.

