

1942-38

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

Parity violation and strangeness content of the nucleon.

F.E. Maas GSI/Mainz University Germany

Parity Violating Electron Scattering and Strangeness in the Nucleon

Frank E. Maas GSI/Mainz University

Sixth International Conference on Perspectives in Hadronic Physics Abdus Salam International Centre for Theoretical Physics Miramare-Trieste 15.05.2008

Outline

Nonperturbative QCD: Strangeness
weak form factors -> asymmetries in ep-scattering
strangeness parity experiments: A4 in Mainz

QCD-Renormalisation à la QED

<<

Contribution to CHARGE distribution (G_E^s)

S

 $\overline{\mathbf{S}}$

Contribution to MAGNETISATION distribution (G_M^s)

U

 $\overline{\mathbf{S}}$

S

u

Strangeness in the Nucleon

Vacuum	<0 s s 0>	(0.8±0.1) <0 q q 0>	QCD sum rules
Momentum	∫x(s +s)dx	2-4%	DIS V,µ,e
Mass	m _s <n ss N></n 	220 MeV	πN-scatt. Σ _{πN} -Term
Spin	<n sγ_μγ⁵s N></n 	- 10 %	pol. DIS
EM FF Ge ^s , Gm ^s	<n sγ_µs N></n	???	PVelectron scattering

Theoretical Estimates of Strangeness

- Dispersion Theory: Vector Meson Dominance Jaffe, Drechsel, Musolf, Hammer
- Quark Models

Jido and Weise $\mu_s = +0.16\mu_N$ Zou and Riska: $\mu_s > 0$, s in ground state, uuds: L = 1 $p \rightarrow K^+ + \Lambda$, $p \rightarrow \pi^+ + n$ ($G_E^s, G_M^s < 0$) Skyrme-Models (Baryon as Soliton of Mesons) Chiral Perturbation Theory Lattice Gauge Theory: $G_M^s(0) = \mu_s = -0.051 \pm 0.021 \mu_N$

Born Approximation Elastic Scattering $\sigma~\sim~{}_{\mathcal{M}}{}_{\mathcal{M}}{}^{*}$ $\sim (j_{\mu} \frac{1}{Q^2} J^{\mu}) (j_{\mu} \frac{1}{Q^2} J^{\mu})^*$ $j_{\mu} \sim \overline{e} \gamma_{\mu} e$ Vector Current $J^{\mu}_{\gamma} \sim \left\langle N | q^{\mu} \overline{u} \gamma_{\mu} u + q^{d} \overline{d} \gamma_{\mu} d + q^{s} \overline{s} \gamma_{\mu} s | N' \right\rangle$ $= \overline{\mathcal{P}}[\gamma^{\mu}F_{1} - i\sigma^{\mu\nu}q_{\nu}\frac{\kappa_{p}}{2M_{N}}F_{2}]\mathcal{P}$

Born Approximation Elastic Scattering e e' $\tilde{q}^{d}_{V} = \tau_3 - 2q^{d}sin^2(\theta_W)$ Z_0 weak vector charge $\tilde{J}_{Z}^{\mu} \sim \left\langle N | \tilde{q}^{\mu} \overline{u} \gamma_{\mu} u + \tilde{q}^{d} \overline{d} \gamma_{\mu} d + \tilde{q}^{s} \overline{s} \gamma_{\mu} s | N' \right\rangle$ $= \overline{\mathcal{P}} [\gamma^{\mu} \tilde{F}_{1} - i \sigma^{\mu\nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} \tilde{F}_{2}] \mathcal{P}$

Strangeness Contribution to electromagnetic Form Factors $F_1^p = \frac{2}{3}F_1^u - \frac{1}{3}F_1^d - \frac{1}{3}F_1^s$ Isospin Universality $F_1^n = \frac{2}{3}F_1^d - \frac{1}{3}F_1^u - \frac{1}{3}F_1^s$ EW mixing $\tilde{F}_{1}^{P} = \left(\frac{1}{4} - \frac{2}{3}sin^{2}\theta_{W}\right)F^{u}_{1} - \left(\frac{1}{4} - \frac{1}{3}sin^{2}\theta_{W}\right)F^{d}_{1} - \left(\frac{1}{4} - \frac{1}{3}sin^{2}\theta_{W}\right)F^{s}_{1}$ $\tilde{F}_{1}^{p} = \frac{1}{4} (F^{u}_{1} - F^{d}_{1}) - \frac{1}{4} F^{s}_{1} - sin^{2} \theta_{W} (\frac{2}{3} F^{u}_{1} - \frac{1}{3} F^{d}_{1} - \frac{1}{3} F^{s}_{1})$ $\tilde{F}_{1}^{p} = \frac{1}{4}(F_{1}^{p}-F_{1}^{n})-sin^{2}\theta_{W}F_{1}^{p}-\left(\frac{1}{4}F_{1}^{s}\right)$ electric (G_E) and magnetic (G_M) $G_E = F_1 - \tau F_2$ form factor $G_M = F_1 + F_2$

Isospin breaking in the vector current of the nucleon

0. motivation

2.

- constituent quark model
 - ▷ Dmitrašinović and Pollock, Phys. Rev. C52, 1061 (1995).
 ▷ Miller, Phys. Rev. C57, 1492 (1998).

light-cone meson-baryon model ▷ Ma, Phys. Lett. B408, 387 (1997).

3.

chiral perturbation theory > Lewis and Mobed, Phys. Rev. D59, 073002 (1999).

chiral perturbation theory with resonance saturation *Kubis and Lewis, nucl-th/0605006 (2006)*.

[KL] = Kubis and Lewis, nucl-th/0605006 (2006)

Parity Violation in Electroweak Interaction

Parity Violation in Electroweak Interaction

Parity Violation in Electroweak Interaction

Vector-Form Factor Axial-Form Factor G^{s}_{E}, G^{s}_{M} : "Rosenbluth Separation", G_{A} : different Targets: p, d

Error in Asymmetry from Input Parameters

at $E_e = 315 \text{MeV}$, $\theta_e = 145^\circ$:

Q2= $(0.223 \text{ GeV}^2/c2)$ A0 = (-16.17+-1.02) ppm

* <u>Error contribution to AO at 145 degree</u>:

*	GAp	err:	0.96	ppm
*	GMn	err:	0.27	ppm
*	GMp	err:	0.23	ppm
*	GEp	err:	0.04	ppm
*	Weinberg	err:	0.03	ppm
*	GEn	err:	0.02	ppm
*	Gmue	err:	0.00	ppm
==:		:====	=====	=====
~ (quaar. sum		1.02	ppm

False Asymmetries

 $A_{exp} = A_{PV} + A_f^{\theta}$

Experiments Asymmetries: 10⁻⁶ -> 10¹⁴ events high luminosity, high count rates inelastic scattering

SAMPLE MIT/Bates Air Cherenkov Integrating No Magnet Backward

Experiments Asymmetries: 10⁻⁶ -> 10¹⁴ events high luminosity, high count rates inelastic scattering

HAPPEX Hall A, Jefferson Lab Magnetic Spectrometer Integrating Forward

Experiments Asymmetries: 10⁻⁶ -> 10¹⁴ events high luminosity, high count rates inelastic scattering

G0 HALL C Jefferson Lab Toroidal magnetic Spectrometer Forward Backward Counting ToF

 G_{E}^{s} , G_{M}^{s} and G_{A}^{e} separated over range $Q^2 \sim 0.1 \ 1.0 \ (\text{GeV/c})^2$ Detectors Superconducting Coils Electron Beam Target

Experiments Asymmetries: 10⁻⁶ -> 10¹⁴ events high luminosity, inelastic scatter

A4 MAMI (Mainz) Electromagnetic Calorimeter Counting Forward Backward

PV Experiments

	SAMPLE EXPERIMENT Unit = 130-170° Experimentary	HAPPEX (CEBAF, JLab)	A4 (MAMI)	Ceebaff, JLab
Q² [GeV²/c²]	0.04, 0.1	0.1, 0.48, (0.63)	0.1, 0.23, (0.48) (0.23 fw)	0.1, 1,0 0.23, 0.63
Angle	В	F	F, B	F, B
Target	H, D	H, He	Η, D	H, D
Separation	Gm ^s , Ga	Ge ^s , Gm ^s	Ge ^s , Gm ^s , Ga	Ge ^s , Gm ^s , Ga

Fast PbF₂ Calorimeter

A4: Fast PbF₂ Calorimeter

Readout Electronics

Readout Electronics

World Data at 0.1 (GeV/c)²

 $G_{M}^{s} = 0.28 \pm 0.20$

 $G_{E}^{s} = -0.006 \pm 0.016$

A4-Backward Angle

Q²=0.23 (GeV/c)² Data and Simulations backward

$Q^2=0.23$ (GeV/c)² backward

About 1050h of data N_{elastic}=2.1×10¹² A_{coinc}= (-16.22 ± 1.15)ppm (± 0.93stat ± 0.67sys)

$Q^2=0.23$ (GeV/c)² backward

About 1100h of stored data (2000h real time)

Q²=0.23 (GeV/c)² backward

 $APV = (-16.23 + -0.96_{stat} + -0.75_{syst}) 10^{-6}$ GsM + 0.25 GsE = 0.004 + -0.146

A4-Data, deuterium, backward angle

PV Experiments

	SAMPLE EXPERIMENT $E_{a} = 200 \text{ MeV}$ $E_{c} = 200 \text{ MeV}$ SAMPLE (MIT Bates)	HAPPEX (CEBAF, JLab)	A4 (MAMI)	CEBAF, JLab
Q² [GeV²/c²]	0.04, 0.1	0.1, 0.48, (0.63)	0.1, 0.23 (0.23 fw)	0.1, 1,0 0.23, 0.63
Angle	В	F	F, B	F, B
Target	H, D	H, He	Η, D	H, D
Separation	G _M s, G _A	Ge ^s , Gm ^s	Ge ^s , Gm ^s , Ga	Ge ^s , Gm ^s , Ga

Summary

- Perturbative QCD - PV e(p, p')e': Strangeness Vector Form Factors A4: Fast (100 Mhz) EM Calorimeter Situation on Strangeness, world data: $Q^2 = 0.10 (GeV/c)^2$: $G_M^s = 0.28 \pm 0.20$ $G_E^s = -0.006 \pm 0.016$ A4: $Q^2 = 0.23 (GeV/c)^2$: $G_M^s = -0.01 \pm 0.15 \quad G_E^s = 0.034 \pm 0.050$ preliminary!! Effect of Sea in nonpert. QCD Effect is small: Constituent s-quark suppressed Analysis of Backward Angles (0.23 GeV², deuterium)