

1942-53

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

Exploring the transverse spin structure of the nucleon.

U. D'Alesio Physics Department and INFN University of Cagliari Italy

based on the collaboration with: Anselmino, Boglione, Kotzinian, Melis, Murgia, Prokudin, Turk Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Trieste, 12-16 May, 2008

Exploring the transverse spin structure of the nucleon

Umberto D'Alesio Physics Department and INFN University of Cagliari, Italy

Sixth International Conference on Perspectives in Hadronic Physics May 12-16, 2008 Trieste, Italy

based on collaboration with Anselmino, Boglione, Kotzinian, Melis, Murgia, Prokudin, Turk

- Nucleon spin structure: collinear picture
- Transversity: few remarks
- Access to transversity (collinear framework): double spin asymmetries ...mainly
- Transverse Momentum Dependent (TMD) distributions: transversity friends
- Access to transversity and related TMDs: azimuthal and single spin asymmetries
- Phenomenology: overview and present status
- Conclusions and outlook

Nucleon structure in a collinear picture: $p_q = xP_N$ and $S = 0, (+), (\uparrow)$ three leading twist quantities \Rightarrow complete description of quark momentum and spin:

- unpolarized parton distribution: $q(x) = q_{+/+} + q_{-/+}$
- longitudinally polarized distribution: $\Delta q(x) = q_{+/+} q_{-/+}$
- transversely polarized distribution: $\Delta_T q(x) = q_{\uparrow/\uparrow} q_{\downarrow/\uparrow}$ $[h_1^q, \delta q]$

Three independent forward quark-nucleon amplitudes $(N \rightarrow qX)$:

Theory side (equally well known)

- pQCD evolution (NLO, NNLO); QCD sum rules
- vector charge axial charge tensor charge $\int dx(q-\bar{q}) = \int dx(\Delta q + \Delta \bar{q}) = \int dx(\Delta_T q - \Delta_T \bar{q})$
- $|\Delta_T q| \leq (q + \Delta q)/2$ (Soffer bound)
- $\Delta_T q = \Delta q$ for non relativistic quarks
- No gluon transversity \rightarrow Non-singlet Q^2 -evolution
- Angular momentum sum rules:

$$\frac{1}{2} = \frac{1}{2} \int dx (\Delta q + \Delta \bar{q}) + \int dx \Delta g + L_z^q + L_z^g \quad \text{established}$$
$$\frac{1}{2} = \frac{1}{2} \int dx (\Delta_T q + \Delta_T \bar{q}) \quad + L_T^q + L_T^g \quad \text{"controversial"}$$

Bakker, Leader, Trueman 04

Phenomenology [big differences]

- q, \bar{q} and g: very well known (extended x, Q^2 coverage)
- Δq quite well known; $\Delta \bar{q}$ and Δg known with large uncertainties but fast improving
- $\Delta_T q$ [escaped for long time] just started !

why?

 $\Delta_T q$ is chirally-odd (off-diagonal amplitude: helicity flip)

 $\Delta_T q: \chi \text{-odd}$ $\Rightarrow \text{needs a } \chi \text{-odd partner}$

χ -odd partner in INITIAL hadron:

• A_{TT} in Drell-Yan processes: $p^{\uparrow}p^{\uparrow} \rightarrow \ell^{+}\ell^{-}$ Ralston, Soper 1979

$$A_{TT} \equiv \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} \sim \sum_{q} e_q^2 \left[h_1^q(x_1) h_1^{\bar{q}}(x_2) + h_1^{\bar{q}}(x_1) h_1^q(x_2) \right]$$

feasible @ RHIC [large \sqrt{s} (200 GeV)], small NLO QCD corrections small x (no gluon in evolution), small h_1 for antiquark $\Rightarrow A_{TT} \sim 1-2\%$

• IDEA, (PAX @ GSI): $p^{\uparrow} \bar{p}^{\uparrow} \rightarrow \ell^+ \ell^- + X$

$$A_{TT}^{p\bar{p}} \sim \sum_{q} e_{q}^{2} \left[h_{1}^{q}(x_{1}) h_{1}^{q}(x_{2}) + h_{1}^{\bar{q}}(x_{1}) h_{1}^{\bar{q}}(x_{2}) \right]$$

- product of two quark h_1 , valence region [moderate \sqrt{s}]
- small resummation corrections in A_{TT} [Shimizu et al. 2005] $A_{TT} \sim 20-40\%$
- polarization of antiprotons, low rates
- Higher rates: J/ψ peak (gain 2 order of magnitudes) [Anselmino et al. 2004]

• $p^{\uparrow}p^{\uparrow} \rightarrow \gamma(\pi) + X$ high rates but gluon dominance in $d\sigma^{unp} \rightarrow small A_{TT}$

χ -odd partner in FINAL hadron

•
$$\ell p^{\uparrow} \to \ell' \Lambda^{\uparrow} + X$$
 (SIDIS) or $pp^{\uparrow} \to \Lambda^{\uparrow} + X$

A self-analyzing through parity violating decay $P_{\Lambda} \simeq \Delta_T q(x) \Delta_T D_{\Lambda}(z)$, unknown twist-two transversely polarized FF *u* quark dominated (charge and nucleon content) but $s^{\uparrow} \rightarrow \Lambda^{\uparrow}$

• $\ell p^{\uparrow} \rightarrow \pi \pi + X$ [SSA, Jaffe et al. 1998, Bacchetta, Bianconi, Boffi, Jakob, Radici] $A_{UT} \simeq \Delta_T q \otimes \delta q_I$

 $\delta q_I \equiv$ interference FF: $q \to \pi \pi$ [collinear factorization] unknown δq_I (extraction from e^+e^- : promising)

Help from TMDs: $p_q = xP + \mathbf{k}_{\perp}$

 $\hat{F}^{\lambda_q,\lambda_q'}_{\lambda_N,\lambda_N'}(x, \mathbf{k}_{\perp})$ Helicity conservation, Parity, Rotational invariance

 \rightarrow 3 + 5 independent amplitudes i.e. \rightarrow 3 + 5 spin and TMD distributions Helicity formalism (each direction refers to the particle helicity frame)

$$\begin{aligned} f_q(x, \mathbf{k}_{\perp}) &= (F_{++}^{++} + F_{++}^{--}) & \text{unpolarized} \\ \Delta f_{s_z/+}(x, \mathbf{k}_{\perp}) &= (F_{++}^{++} - F_{++}^{--}) & \text{helicity} \\ \Delta f_{s_x/+}(x, \mathbf{k}_{\perp}) &= 2 \operatorname{Re} F_{++}^{+-} \\ \Delta' \hat{f}_{s_y/\uparrow}(x, \mathbf{k}_{\perp}) &= (F_{+-}^{+-} - F_{+-}^{-+}) \sin(\phi_{\uparrow} - \phi_q) \Rightarrow \text{transversity} \\ \Delta \hat{f}_{s_x/\uparrow}(x, \mathbf{k}_{\perp}) &= (F_{+-}^{+-} + F_{+-}^{-+}) \cos(\phi_{\uparrow} - \phi_q) \\ \Delta \hat{f}_{s_z/\uparrow}(x, \mathbf{k}_{\perp}) &= 2 \operatorname{Re} F_{+-}^{++} \cos(\phi_{\uparrow} - \phi_q) , \\ \Delta \hat{f}_{q/\uparrow}(x, \mathbf{k}_{\perp}) &= 4 \operatorname{Im} F_{+-}^{++} \sin(\phi_{\uparrow} - \phi_q) & \text{Sivers} \\ \Delta f_{s_y/N}(x, \mathbf{k}_{\perp}) &= -2 \operatorname{Im} F_{++}^{+-} & \text{Boer - Mulders} \end{aligned}$$

NOTICE: $\Delta \equiv$ difference of quark spin directions [except for Sivers funct.] Other common notation: $f_1, g_{1L}, h_{1L}^{\perp}, h_{1T}, h_{1T}^{\perp}, g_{1T}, f_{1T}^{\perp}, h_1^{\perp}$

• Boer-Mulders function $[Im F_{++}^{+-}]$

Boer, Mulders 1998

"T-odd" distributions: T-reversal invariance $\Rightarrow \Delta f_{\uparrow} = -\Delta f_{\uparrow} \rightarrow \mathbf{0} \ (A^+ = 0 \text{ gauge})$

Brodsky, Hwang, Schmidt 2001final state interactions in DIS through softgluon rescattering: leading twist effect.Model for the Sivers asymmetry

- Need of quark orbital angular momentum.

Soft gluons \leftrightarrow gauge link for gauge-invariant parton density [*Collins, Ji, Yuan, ...*]

$$\mathcal{P}\exp\left(-ig_s\int_{\xi^-}^{\infty}dz^-\,\hat{A}^+(z^-,\xi_\perp)
ight)$$

T-reversal invariance implies [modified universality]

$$\Delta f_{\uparrow}|_{\text{future}} = -\Delta f_{\uparrow}|_{\text{past}} \implies \Delta f_{\uparrow}|_{\text{DIS}} = -\Delta f_{\uparrow}|_{\text{DY}}$$

TMD in the fragmentation sector ($P_h = zp_q + \mathbf{k}_{\perp}$) spin-0 (or unpolarized): 1 + 1 FFs spin-1/2: 3 + 5 FFs (as PDFs) unpolarized hadron:

$$\begin{split} D_{h/q} \text{ probability for } q &\to h + X & \text{unpolarized FF} \\ \Delta \hat{D}_{h/q^{\uparrow}} \equiv \hat{D}_{h/q^{\uparrow}} - \hat{D}_{h/q^{\downarrow}} = \Delta^N D_{h/q^{\uparrow}}(z, p_{\perp}) \ \boldsymbol{s_q} \cdot (\hat{p}_q \times \hat{\boldsymbol{k}}_{\perp}) & \text{Collins '93} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

T-odd but safe: final state interactions h X

gauge links \rightarrow universality (*Collins & Metz 2004, Yuan 2008*) same function in $e^+e^- \rightarrow hh + X \quad \ell p^{\uparrow} \rightarrow \ell' h + X \text{ and } p^{\uparrow}p \rightarrow h \text{ jet } + X$

More functions \rightarrow more difficulties??? Not exactly!

- Sivers function: link to Orbital Angular Momentum
- Boer-Mulders and Collins functions: (χ -odd): friends of transversity
- Deeper understanding of color interaction [modified universality]
- Role in Azimuthal and Single Spin Asymmetries: beginning of TMDs

A quick look into SSAs

pQCD: vanishing SSA at large energy scales!

$$\hat{a}_N = \frac{d\hat{\sigma}^{\uparrow} - d\hat{\sigma}^{\downarrow}}{d\hat{\sigma}^{\uparrow} + d\hat{\sigma}^{\downarrow}} \sim \operatorname{Im}[A_{\operatorname{flip}} A_{\operatorname{no-flip}}^*]$$

requires:

- helicity flip at the partonic level but helicity conserved in massless QCD
- relative phase between helicity amplitudes but real Born amplitudes.

$$\Rightarrow \hat{a}_N \propto \alpha_s \frac{m}{\sqrt{s}}$$
 Kane et al. 1978

Contrary to observation: E704 data (90s) $p^{\uparrow}p \rightarrow \pi + X$ at $\sqrt{20}$ GeV \rightarrow large A_N (transverse w.r.t. production plane)

TMD approach to SSAs (*Sivers, Anselmino, Boglione, UD, Leader, Melis, Murgia*): model: not proved not disproved [alternative: Twist-3 approach, *Qiu & Sterman*]

 $A_N \simeq$ Sivers + Transversity \otimes Collins + Boer-Mulders \otimes transversity (not separable)

Rich phenomenology [to the latest **RHIC** data at $\sqrt{s} = 200$ GeV, intense programme @ BRAHMS, STAR, PHENIX]

E704(left), STAR(right) data, UD, Murgia 04 (Sivers effect), Kouvaris et al. 06 (Twist-3 mech.)

TMDs vs. Azimuthal and SSAs: QCD developments

• TMD factorization proved for

DY, SIDIS, [and e^+e^- annihilation] processes in the two-scale regime:

- large Q^2 (i.e. boson virtuality)
- small q_T (lepton-pair or final hadron transverse momentum)

Collins, Ji, Yuan, Ma, Belitsky

Opening of a new and exciting phenomenology

• DY processes, $pp \to \ell^+ \ell^- + X$:

$$d\sigma \simeq 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$$

puzzling in LO and NLO collinear pQCD, explained in TMD approach: $d\sigma \simeq \text{Boer-Mulders} \otimes \text{Boer-Mulders} \cos 2\phi$

• SSA in $p^{\uparrow}p \rightarrow \ell^{+}\ell^{-} + X$: $A_{N} \simeq \Delta^{N}f_{q/p^{\uparrow}} \otimes f_{\bar{q}/p} \sin(\phi - \phi_{\uparrow}) + \Delta_{T}q \otimes \Delta^{N}f_{q^{\uparrow}/p} \sin(\phi + \phi_{\uparrow})$ (different azimuthal dependences \rightarrow separable) NO DATA

SIDIS

• azimuthal dependence in $\ell p \rightarrow \ell' h + X$ $d\sigma \simeq \Delta^N f_{q^{\uparrow}/p} \otimes \Delta^N D_{h/q^{\uparrow}} \cos 2\phi_h$ + Cahn effect

(different azimuthal dependences \rightarrow separation of Sivers and Collins effects)

Experimental Programmes:

• SSA in $\ell p^{\uparrow} \rightarrow \ell' h + X$

 $A_{UT} \simeq d\sigma(\phi_S) - d\sigma(\phi_S + \pi)$

HERMES @ HERA [FIRST EVIDENCE], COMPASS @ CERN, CLAS @ JLAB

• Azimuthal correlations in $e^+e^- \rightarrow h_1h_1 + X$: Collins effect

Experimental Program: Belle @ KEK [FIRST EVIDENCE]

Phenomenology of: Sivers function Collins function & transversity function

Sivers function: u, d and s(latest analysis) quarks Collins function: favoured and unfavoured FFs: $u \to \pi^+$ and $d \to \pi^+$ Transversity: u and d quarks simple ansatz: $Nx^a(1-x)^b \times$ [Gaussian] k_{\perp} dependence

Other similar analyses from Vogelsang & Yuan, Efremov et al.

• Sivers effect in SIDIS: NEW analysis [completed]

Anselmino et al. 2008

(deuterium target)

• Collins effect in SIDIS: NEW analysis [preliminary]

Preliminary fit of [left] HERMES data [*Diefenthaler et al. 2007*] (hydrogen target) and [right] COMPASS data [*Alekseev et al. 2008*] (deuterium target).

• Collins effect in $e^+e^- \rightarrow \pi\pi + X$ NEW analysis [preliminary]

Anselmino et al. 2008

Preliminary fit of data on $e^+e^- \rightarrow h_1h_2 X$ from Belle Collaboration. [Ogawa et al. 2007].

Sivers function: valence quarks New analysis (on π and K^{\pm})

Anselmino et al. 2008

 $\langle k_{\perp}^{u} \rangle = 96 \text{ MeV } \langle k_{\perp}^{d} \rangle = -113 \text{ MeV } \langle k_{\perp}^{\text{sea}} \rangle = -14 \text{ MeV}$ \Rightarrow [via Burkardt Sum Rule] little room for gluon Sivers function

Collins function [NEW analysis: upgrade of 2007]

Anselmino et al. 2008

Consistent with other extractions [Efremov et al. 2006, Vogelsang & Yuan 2005] $A_{UT}^{\pi^+}(p) \simeq 4\Delta_T u \,\Delta^N D_{\text{fav}} + \Delta_T d \,\Delta^N D_{\text{unf}}$ $A_{UT}^{\pi^-}(p) \simeq 4\Delta_T u \,\Delta^N D_{\text{unf}} + \Delta_T d \,\Delta^N D_{\text{fav}}$ larger $|A_{UT}^{\pi^-}| \Rightarrow$ large and negative unfav. FF

Transversity function [NEW analysis: upgrade of 2007 First extraction]

Anselmino et al. 2008

Errors strongly reduced! $\Delta_T u$: larger; Tensor charge: $\delta u = 0.59^{+0.14}_{-0.13}$ $\delta d = -0.20^{+0.05}_{-0.07}$ at $Q^2 = 0.8 \text{ GeV}^2$

Transversity: Comparison with models

Conclusions

- Transverse spin structure of nucleons: recent and important progresses
- Sivers effect: in a transversely polarized nucleon quarks are left-right asymmetric around the spin direction; $L \neq 0$
- Collins effect as a polarimeter to access $\Delta_T q$. Large (negative) unfavoured FF.
- First extraction of transversity distribution: u and d smaller than their Soffer bounds

Conclusions

- Transverse spin structure of nucleons: recent and important progresses
- Sivers effect: in a transversely polarized nucleon quarks are left-right asymmetric around the spin direction; $L \neq 0$
- Collins effect as a polarimeter to access $\Delta_T q$. Large (negative) unfavoured FF
- First extraction of transversity distribution: u and d smaller than their Soffer bounds

Open issues:

- Q^2 -evolution of TMDs
- modified universality: to be checked [$\Delta f_{\uparrow}|_{\text{DIS}} = -\Delta f_{\uparrow}|_{\text{DY}}$]
- SSAs in SIDIS: binning in x, z, P_{\perp} and error correlation matrix

large (low) x region still uncovered [JLAB(COMPASS)]

- SSAs in $p^{\uparrow}p \rightarrow CX$: disentangling TMD approach and Twist-3 formalism
- SSAs in $p^{\uparrow}p \rightarrow \text{jet } \pi X$: universality and separation of Sivers and Collins effects

Trieste, 12-16 May, 2008

THE TRANSVERSE SPIN ERA HAS JUST STARTED

Let's enjoy it

THANK YOU