Sixth International Conference on Perspectives in Hadronic Physics

12-16 May 2008

Sivers asymmetry for the proton and the neutron.

S. Scopetta

University of Perugia / INFN
Italy

Dipartimento di Fisica dell'Università di Perugia and INFN, Sezione di Perugia, Italy

Outline

- Transversity observables in Semi-inclusive DIS (SiDIS): Sivers (and Collins) Single Spin Asymmetries (SSAs)
- A quark model calculation of the Sivers function (A. Courtoy, F. Fratini, S.S. and V. Vento, arXiv:0801.4347 [hep-ph])
- Relevance of the neutron information $\longrightarrow{ }^{3} \vec{H} e$: An Impulse Approximation approach to SiDIS off ${ }^{3} \overrightarrow{H e}$ (S.S., PRD 75 (2007) 054005)
- Conclusions

The Transversity distribution h_{1}

How many \perp-polarized partons in a \perp-polarized target?
(Bj limit: $Q^{2}, \nu \rightarrow \infty$)

It turns out that h_{1} is a twist-2 quantity (its effects survive the Bj limit), but it is χ-odd \longrightarrow unseen in DIS:

But Ok in SiDIS !

Single Spin Asymmetries (SSAs) - 1

The number of emitted hadrons at a given ϕ_{h} depends on the orientation of \vec{S}_{\perp} ! SSAs due to 2 different mechanisms, which can be distinguished experimentally

- Sivers: correlations between \mathbf{k}_{\perp} of the parton and $\vec{S}_{\perp} \rightarrow$ parton OAM !

$$
A_{U T}^{\text {Sivers }}=\frac{\int d \phi_{S} d \phi_{h} \sin \left(\phi_{h}-\phi_{S}\right) d^{6} \sigma_{U T}}{\int d \phi_{S} d \phi_{h} d^{6} \sigma_{U U}}
$$

$$
\text { Collins: due to FSI } \quad A_{U T}^{\text {Collins }}=\frac{\int d \phi_{S} d \phi_{h} \sin \left(\phi_{h}+\phi_{s}\right) d^{6} \sigma_{U T}}{\int d \phi_{S} d \phi_{h} d^{6} \sigma_{U U}}
$$

SSAs - 2

SSAs in terms of parton distributions and fragmentation functions:

- $A_{U T}^{\text {Sivers }}=\frac{1-y}{1-y+y^{2} / 2}\left|\mathbf{S}_{\mathbf{T}}\right| N^{\text {Sivers }} / D$
- $A_{U T}^{\text {Collins }}=\frac{1-y}{1-y+y^{2} / 2}\left|\mathbf{S}_{\mathbf{T}}\right| N^{\text {Collins }} / D$

$$
\begin{aligned}
N^{\text {Sivers }} & =\sum_{q} e_{q}^{2} \int d \phi_{S} d \phi_{h} d^{2} \kappa_{\mathbf{T}} d^{2} \mathbf{k}_{\mathbf{T}} \delta^{2}\left(\mathbf{k}_{\mathbf{T}}+\mathbf{q}_{\mathbf{T}}-\kappa_{\mathbf{T}}\right) \frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{\mathbf{T}}}{\mathbf{M}} f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\mathbf{T}}{ }^{2}\right) D_{1}^{q, h}\left(z,\left(z \kappa_{\mathbf{T}}\right)^{2}\right) \\
N^{\text {Collins }} & =\sum_{q} e_{q}^{2} \int d \phi_{S} d \phi_{h} d^{2} \kappa_{\mathbf{T}} d^{2} \mathbf{k}_{\mathbf{T}} \delta^{2}\left(\mathbf{k}_{\mathbf{T}}+\mathbf{q}_{\mathbf{T}}-\kappa_{\mathbf{T}}\right) \frac{\hat{\mathbf{h}} \cdot \kappa_{\mathbf{T}}}{\mathbf{M}_{\mathbf{h}}} h_{1}^{q}\left(x, \mathbf{k}_{\mathbf{T}}{ }^{2}\right) H_{1}^{\perp q, h}\left(z,\left(z \kappa_{\mathbf{T}}\right)^{2}\right) \\
D & =\sum_{q} e_{q}^{2} \int d \phi_{S} d \phi_{h} d^{2} \kappa_{\mathbf{T}} d^{2} \mathbf{k}_{\mathbf{T}} \delta^{2}\left(\mathbf{k}_{\mathbf{T}}+\mathbf{q}_{\mathbf{T}}-\kappa_{\mathbf{T}}\right) f_{1}^{q}\left(x, \mathbf{k}_{\mathbf{T}}^{2}\right) D_{1}^{q, h}\left(z,\left(z \kappa_{\mathbf{T}}\right)^{2}\right)
\end{aligned}
$$

$$
x=\frac{Q^{2}}{2 P \cdot q} \quad y=\frac{P \cdot q}{P \cdot l} \quad z=\frac{P \cdot h}{P \cdot q}
$$

Sivers function - Definition

A Transverse Momentum Dependent (TMD) Parton Distribution (PD).
Asymmetry of unpolarized partons with given k_{T} in a transversely polarized target:

$$
\begin{aligned}
f_{1 T}^{\perp Q}\left(x, k_{T}\right) & =-\frac{M}{4 k_{x}} \int \frac{d \xi^{-} d^{2} \vec{\xi}_{T}}{(2 \pi)^{3}} e^{-i\left(x \xi^{-} P^{+}-\vec{\xi}_{T} \cdot \vec{k}_{T}\right)} \\
& \times\left\{\left\langle P S_{y}=1\right| \hat{O}_{Q}\left|P S_{y}=1\right\rangle-\left\langle P S_{y}=-1\right| \hat{O}_{Q}\left|P S_{y}=-1\right\rangle\right\}
\end{aligned}
$$

where

$$
\hat{O}_{Q}=\bar{\psi}_{Q}\left(0, \xi^{-}, \vec{\xi}_{T}\right) \mathcal{L}_{\vec{\xi}_{T}}^{\dagger}\left(\infty, \xi^{-}\right) \gamma^{+} \mathcal{L}_{0}(\infty, 0) \psi_{Q}(0,0,0),
$$

and the gauge link:

$$
\begin{aligned}
\mathcal{L}_{\vec{\xi}_{T}}\left(\infty, \xi^{-}\right) & =P \exp \left(-i g \int_{\xi^{-}}^{\infty} A^{+}\left(\eta^{-}, \vec{\xi}_{T}\right) d \eta^{-}\right) \\
& \simeq \frac{n}{n} \text { and }
\end{aligned}
$$

No gauge link (i.e., no FSI @ leading twist) $\longrightarrow f_{1 T}^{\perp q}\left(x, k_{T}\right)=0$
S. Brodsky, D. Hwang, I Schmidt, PLB 530 (2002) 99; J. Collins NPB 396, (1993) 161 A.V. Belitsky, X. Ji, F. Yuan NPB 656 (2003) 165.

Sivers function - present knowledge

- Theory

A t-odd quantity? (P. Mulders, D. Boer, O. Teryaev, J. Collins, A. Drago...)

- Relation with GPDs (?) and OAM (M. Burkardt, S. Brodsky...)

Burkardt Sum Rule (M. Burkardt, PRD 69 (2004) 091501)

- Experiment
\square LARGE $A_{U T}^{\text {Sivers }}$ measured in $\vec{p}\left(e, e^{\prime} \pi\right) x$ HERMES PRL 94, 012002 (2005)
- SMALL $A_{U T}^{\text {Sivers }}$ measured in $\vec{D}\left(e, e^{\prime} \pi\right) x$; COMPASS PRL 94, 202002 (2005)
- Extraction from data
\square W. Vogelsang and F. Yuan, PRD 72, 054028 (2005)M. Anselmino et al., PRD 72, 094007 (2005)J.C. Collins et al., PRD 73, 014021 (2006)
- Model calculations
- MIT: F. Yuan PLB 575, 45 (2003); I.O. Cherdnikov et al. PLB, 39 (2006).quark-diquark model, A. Bacchetta et al., PLB 578, 109 (2004)...HERE: a 3B - Constituent Quark Model (CQM) calculation

Sivers function in a CQM

In a helicity basis, to the first non-vanishing order:

$$
\begin{aligned}
f_{1 T}^{\perp Q}\left(x, k_{T}\right) & =\Im\left\{\frac{M}{2 k_{x}} \int \frac{d \xi^{-} d^{2} \vec{\xi}_{T}}{(2 \pi)^{3}} e^{-i\left(x \xi^{-} P^{+}-\vec{\xi}_{T} \cdot \vec{k}_{T}\right)}\left\langle\operatorname{Pr} S_{z}=1\right|\right. \\
& \times \bar{\psi}_{Q i}\left(0, \xi^{-}, \vec{\xi}_{T}\right)(i g) \int_{\xi^{-}}^{\infty} A_{a}^{+}\left(0, \eta^{-}, \vec{\xi}_{T}\right) d \eta^{-} T_{i j}^{a} \gamma^{+} \psi_{Q j}(0,0,0) \\
& \left.\times\left|P S_{z}=-1\right\rangle+\text { h.c. }\right\}
\end{aligned}
$$

Sivers function in a CQM

In a helicity basis, to the first non-vanishing order

$$
\begin{aligned}
f_{1 T}^{\perp Q}\left(x, k_{T}\right) & =\Im\left\{\frac{M}{2 k_{x}} \int \frac{d \xi^{-} d^{2} \vec{\xi}_{T}}{(2 \pi)^{3}} e^{-i\left(x \xi^{-} P^{+}-\vec{\xi}_{T} \cdot \vec{k}_{T}\right)}\left\langle\operatorname{Pr} S_{z}=1\right|\right. \\
& \times \bar{\psi}_{Q i}\left(0, \xi^{-}, \vec{\xi}_{T}\right)(i g) \int_{\xi^{-}}^{\infty} A_{a}^{+}\left(0, \eta^{-}, \vec{\xi}_{T}\right) d \eta^{-} T_{i j}^{a} \gamma^{+} \psi_{Q j}(0,0,0) \\
& \left.\times\left|P S_{z}=-1\right\rangle+\text { h.c. }\right\}
\end{aligned}
$$

By expanding the quark fields and by properly inserting complete sets of free states (A. Courtoy, F. Fratini, S.S. and V. Vento, arXiv:0801.4347 [hep-ph])

Sivers function in a CQM

In a helicity basis, to the first non-vanishing order:

$$
\begin{aligned}
f_{1 T}^{\perp Q}\left(x, k_{T}\right) & =\Im\left\{\frac{M}{2 k_{x}} \int \frac{d \xi^{-} d^{2} \vec{\xi}_{T}}{(2 \pi)^{3}} e^{-i\left(x \xi^{-} P^{+}-\vec{\xi}_{T} \cdot \vec{k}_{T}\right)}\left\langle\operatorname{Pr} S_{z}=1\right|\right. \\
& \times \int d \tilde{k}_{3} \sum_{m_{3}} b_{m_{3} i}^{\mathcal{Q} \dagger}\left(\tilde{k}_{3}\right) e^{i k_{3}^{+} \xi^{-}-i \vec{k}_{3 T} \cdot \vec{\xi}_{T} \bar{u}_{m_{3}}\left(\vec{k}_{3}\right)} \\
& \times \sum_{l_{n}, l_{1}} \int d \tilde{k_{n}} \int d \tilde{k}_{1}\left|\tilde{k}_{1} l_{1}\right\rangle\left|\tilde{k}_{n} l_{n}\right\rangle\left\langle\tilde{k}_{n} l_{n}\right|\left\langle\tilde{k}_{1} l_{1}\right| \\
& \times(i g) \int_{\xi^{-}}^{\infty} A_{a}^{+}\left(0, \eta^{-}, \vec{\xi}_{T}\right) d \eta^{-} T_{i j}^{a} \\
& \times \sum_{l_{n}^{\prime}, l_{1}^{\prime}} \int d{\tilde{k_{n}^{\prime}}} \int d \tilde{k}_{1}^{\prime}\left|\tilde{k}_{1}^{\prime} l_{1}^{\prime}\right\rangle\left|\tilde{k}_{n}^{\prime} l_{n}^{\prime}\right\rangle\left\langle\tilde{k}_{n}^{\prime} l_{n}^{\prime}\right|\left\langle\tilde{k}_{1}^{\prime} l_{1}^{\prime}\right| \gamma^{+} \\
& \left.\times \sum_{m_{3}^{\prime}} \int d{\tilde{k_{3}^{\prime}}} b_{m_{3}^{\prime} j}^{\mathcal{Q}}\left(\tilde{k}_{3}^{\prime}\right) u_{m_{3}^{\prime}}\left(\vec{k}_{3}^{\prime}\right)\left|\operatorname{Pr} S_{z}=-1\right\rangle+\text { h.c. }\right\}
\end{aligned}
$$

Sivers function in CQM - 2

After some technical steps, using translational invariance:

$$
\begin{aligned}
f_{1 T}^{\perp Q}\left(x, k_{T}\right) & =\Im\left\{i g^{2} \frac{M}{2 k_{x}} \int d \tilde{k}_{1} d \tilde{k}_{3} \frac{d^{4} q}{(2 \pi)^{3}} \delta\left(q^{+}\right)(2 \pi) \delta\left(q_{0}\right)\right. \\
& \times \delta\left(k_{3}^{+}+q^{+}-x P^{+}\right) \delta\left(\vec{k}_{3 T}+\vec{q}_{T}-\vec{k}_{T}\right) \sum_{\mathcal{F}_{1},\left\{m_{i}\right\}\left\{c_{i}\right\}} \\
& \times \Psi_{r S_{z}=1}^{\dagger}\left(\tilde{k}_{3}\left\{m_{3}, i, Q\right\} ; \tilde{k}_{1}\left\{m_{1}, c_{1}, \mathcal{F}_{1}\right\} ; \tilde{P}-\tilde{k}_{3}-\tilde{k}_{1}, l_{n}\right) \\
& \times T_{i j}^{a} T_{c_{1} c_{1}^{\prime}}^{a} V\left(\vec{k}_{1}, \vec{k}_{3}, \vec{q}\right) \\
& \left.\times \Psi_{r S_{z}=-1}\left(\tilde{k}_{3}+\tilde{q},\left\{m_{3}^{\prime}, j, Q\right\} ; \tilde{k}_{1}-\tilde{q},\left\{m_{1}^{\prime}, c_{1}^{\prime}, \mathcal{F}_{1}\right\} ; \tilde{P}-\tilde{k}_{3}-\tilde{k}_{1}, l_{n}\right)\right\}
\end{aligned}
$$

with the interaction given by:

$$
V\left(\vec{k}_{1}, \vec{k}_{3}, \vec{q}\right)=\frac{1}{q^{2}} \bar{u}_{m_{3}}\left(\vec{k}_{3}\right) \gamma^{+} u_{m_{3}^{\prime}}\left(\vec{k}_{3}+\vec{q}\right) \bar{u}_{m_{1}}\left(\vec{k}_{1}\right) \gamma^{+} u_{m_{1}^{\prime}}\left(\vec{k}_{1}-\vec{q}\right)
$$

Sivers function in a NR CQM

In a NR CQM the Sivers function becomes

$$
\begin{aligned}
f_{1 T}^{\perp u(d)}\left(x, k_{T}\right) & =\Im\left\{-2 i g^{2} \frac{M^{2}}{k_{x}} \int d \vec{k}_{1} d \vec{k}_{3} \frac{d^{2} \vec{q}_{T}}{(2 \pi)^{2}} \delta\left(k_{3}^{+}-x P^{+}\right) \delta\left(\vec{k}_{3 T}+\vec{q}_{T}-\vec{k}_{T}\right)\right. \\
& \times \sum_{m_{i}} \Phi_{s f, S_{z}=1}^{\dagger}\left(\vec{k}_{3}, m_{3} ; \vec{k}_{1}, m_{1} ;-\vec{k}_{3}-\vec{k}_{1}, m_{n}\right) \frac{1 \pm \tau_{3}(3)}{2} \\
& \left.\times V_{N R}\left(\vec{k}_{1}, \vec{k}_{3}, \vec{q}\right) \Phi_{s f, S_{z}=-1}\left(\vec{k}_{3}+\vec{q}, m_{3}^{\prime} ; \vec{k}_{1}-\vec{q}, m_{1}^{\prime} ;-\vec{k}_{3}-\vec{k}_{1}, m_{n}\right)\right\}
\end{aligned}
$$

with the interaction reduced to a potential

$$
\begin{aligned}
V_{N R}\left(\vec{k}_{1}, \vec{k}_{3}, \vec{q}\right) & =\frac{1}{2 q^{2}}\left\{1+\frac{k_{3}^{z}}{m}+\frac{\vec{q} \cdot \vec{k}_{3}}{4 m^{2}}+i \frac{\left(\vec{q} \wedge \vec{\sigma}_{3}\right)_{z}}{2 m}+i \frac{\vec{\sigma}_{3} \cdot\left(\vec{k}_{3} \wedge \vec{q}\right)_{z}}{4 m^{2}}\right\} \\
& \times\left\{1+\frac{k_{1}^{z}}{m}-\frac{\vec{q} \cdot \vec{k}_{1}}{4 m^{2}}-i \frac{\left(\vec{q} \wedge \vec{\sigma}_{1}\right)_{z}}{2 m}-i \frac{\vec{\sigma}_{1} \cdot\left(\vec{k}_{1} \wedge \vec{q}\right)_{z}}{4 m^{2}}\right\}
\end{aligned}
$$

The Sivers function can be now evaluated in any NR 3-body model

Example: the Isgur-Karl (IK) CQM

IK is a well known model based on an ONE GLUON EXCHANGE (OGE) correction to the H.O., generating a hyperfine interaction which breaks SU(6). Nucleon state:

$$
\left.\left.\left.\left.|N\rangle=\left.a\right|^{2} S_{1 / 2}\right\rangle_{S}+\left.b\right|^{2} S_{1 / 2}^{\prime}\right\rangle_{S}+\left.c\right|^{2} S_{1 / 2}\right\rangle_{M}+\left.d\right|^{4} D_{1 / 2}\right\rangle_{M}
$$

Notation: $\left|{ }^{2 S+1} X_{J}\right\rangle_{t} ; t=A, M, S=$ symmetry type
From spectroscopy: $a=0.931, b=-0.274, c=-0.233, d=-0.067$
Suitable framework fo the calculation of the Sivers function:

- Gross features of the standard PDs are well reproduced;
- Based on a OGE mechanism, the same generating the FSI in the definition of the Sivers function.

Nevertheless: the model results are related to a low momentum scale (hadronic scale, μ_{o}^{2}). Since there are only valence quarks, the scale has to be very low (around $0.1 \mathrm{GeV}^{2}$ according to NLO pQCD). Data are taken in DIS kinematics, high momentum scale Q^{2}.
QCD evolution needed!
QCD evolution largely unknown for the Sivers function and all the TMDs!

Results for $f_{1 T}^{\perp(1) q}(x)=\int d^{2} \vec{k}_{T} \frac{k_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp q}\left(x, k_{T}\right)$.

- shaded area: $1-\sigma$ region of the best fit of the Sivers function extracted from HERMES data, at $Q^{2}=2.5 \mathrm{GeV}^{2}$ (J.C. Collins et al., PRD 73 (2006) 014021);
- full: results at the hadronic scale $\mu_{o}^{2}=0.1 \mathrm{GeV}^{2}$;
- Blue: results after NLO-standard evolution to $Q^{2}=2.5 \mathrm{GeV}^{2}$;

Sivers in CQM: discussion of results

- Evolution needed!
- Correct Evolution missing.
- Difference in sign, and little difference in size between u and d consistent with results of Impact Parameter Dependent PDs calculated in IK;
- Burkardt Sum Rule, $u \simeq-d$, confirmed to a large extent.
- Encouraging agreement: (at least) not worse than the results of other calculations.
- Importance of "small" components: relevance of further analysis with other (relativistic) models.

SSAs - experimental knowledge

- LARGE $A_{U T}^{\text {Sivers }}$ measured in $\vec{p}\left(e, e^{\prime} \pi\right) x$ HERMES PRL 94, 012002 (2005)
- SMALL $A_{U T}^{\text {Sivers }}$ measured in $\vec{D}\left(e, e^{\prime} \pi\right) x$; COMPASS PRL 94, 202002 (2005)

Importance of the neutron!
2 experiments planned at JLAB on ${ }^{3} \mathrm{He}$
(E-06-010 Chen - Peng; E-06-011 Cisbani - Gao)
${ }^{3} \mathrm{He}$ is the ideal target to study the polarized neutron:

$$
\begin{aligned}
& \text { In } S \text {-wave } \\
& { }^{3} \vec{H} e=\vec{n}!
\end{aligned}
$$

\vec{n} from ${ }^{3} \vec{H} e$: DIS case

... But the bound nucleons in ${ }^{3} \mathrm{He}$ are moving!
Long time ago, a realistic spin-dependent spectral function for ${ }^{3} \vec{H} e$ was used to simulate dynamical nuclear effects in the extraction of the neutron information in inclusive DIS (${ }^{3} \vec{H} e\left(e, e^{\prime}\right) X$, C. Ciofi degli Atti et al., PRC 48, R968 (1993)).

It was found that the formula

$$
A_{n} \simeq \frac{1}{p_{n} f_{n}}\left(A_{3}^{e x p}-2 p_{p} f_{p} A_{p}^{e x p}\right)
$$

where all the nuclear effects are hidden in the "effective polarizations"

$$
p_{p}=-0.024 \quad(A v 18) \quad p_{n}=0.878 \quad(A v 18)
$$

can be safely used \longrightarrow widely used by experimental collaborations.
Can one use the same formula for extracting the SSAs? In principle NO:
in SiDIS also the fragmentation functions are modified by the nuclear environment!

\vec{n} from ${ }^{3} \vec{H} e$: SiDIS case

The process ${ }^{3} \vec{H} e\left(\vec{e}, e^{\prime} \pi\right) X$ has been evaluated in IA: no FSI between the π, the remnant and the two nucleon recoiling system; Current fragmentation region;

The obtained expressions for the nuclear SSAs are involved and not reported here (see S.S., PRD 75 (2007) 054005 for details).

In any case SSAs involve convolutions of the spin-dependent nuclear spectral function with parton distributions AND fragmentation functions:

$$
A \simeq \int d \vec{p} d E \ldots \vec{P}(\vec{p}, E) f_{1}^{q}\left(\frac{Q^{2}}{2 p \cdot q}, \mathbf{k}_{\mathbf{T}}^{\mathbf{2}}\right) D_{1}^{q, h}\left(\frac{p \cdot h}{p \cdot q},\left(\frac{p \cdot h}{p \cdot q} \kappa_{\mathbf{T}}\right)^{2}\right)
$$

The nuclear effects on fragmentation functions are new with respect to the DIS case and have to be studied carefully

\vec{n} from ${ }^{3} \vec{H} e$: SiDIS case

Ingredients of the calculations:

- A realistic spin-dependent spectral function of ${ }^{3} \mathrm{He}$ (C. Ciofi degli Atti et al., PRC 46 R 1591 (1992); A. Kievsky et al., PRC 56, 64 (1997)) obtained using the AV18 interaction and the wave functions evaluated by the Pisa group (A. Kievsky et al., NPA 577, 511 (1994).)
- Parameterizations of data for pdfs and fragmentation functions whenever available ($f_{1}^{q}\left(x, \mathbf{k}_{\mathbf{T}}^{2}\right)$, GRV 1998, $f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\mathbf{T}}{ }^{2}\right)$, Anselmino et al. 2005, $D_{1}^{q, h}\left(z,\left(z \kappa_{\mathbf{T}}\right)^{2}\right)$, Kretzer 2000)
- Models for the unknown pdfs and fragmentation functions.
$\left(h_{1}^{q}\left(x, \mathrm{k}_{\mathrm{T}}{ }^{2}\right)\right.$, GRVW 2001, $H_{1}^{\perp q, h}\left(z,\left(z \kappa_{\mathrm{T}}\right)^{2}\right)$ Amrath et al. 2005)
The aim is to study nuclear effects, not to obtain realistic figures: any reasonable input for the nucleon structure is ok.

Results: \vec{n} from ${ }^{3} \vec{H} e$: $A_{U T}^{\text {Sivers }}$, @ JLab

FULL: Neutron (model)
DOTS: Neutron (model) extracted from ${ }^{3} \mathrm{He}$ (calculation) neglecting any nuclear structure effects

DASHED : Neutron (model) extracted from ${ }^{3} \mathrm{He}$ (calculation) taking into account nuclear structure effects through the formula:

$$
A_{n}^{\text {model }} \simeq \frac{1}{p_{n} f_{n}}\left(A_{3}^{\text {calc }}-2 p_{p} f_{p} A_{p}^{\text {model }}\right)
$$

The extraction procedure successful in DIS works nicely also in SiDIS, for both the Collins and the Sivers SSAs!

Results: SSAs for \vec{n} from ${ }^{3} \vec{H} e @$ JLab

Our findings are easily explained: in JLab kinematics one has

$$
\begin{aligned}
E_{i} & \simeq 6 G e V \quad 0.13 \leq x \leq 0.41 \\
z & \simeq 0.5 \rightarrow E_{\pi} \simeq 3 G e V \simeq p_{\pi} \rightarrow \text { current fragmentation }
\end{aligned}
$$

and the π emitted forward, $\theta_{q h} \leq 16^{\circ}$, so that $\theta_{p h} \simeq \theta_{p q}$; therefore

$$
\frac{p \cdot h}{p \cdot q} \simeq \frac{E_{h}\left(p_{0}-p \cos \theta_{p h}\right)}{\nu\left(p_{0}-p \cos \theta_{p q}\right)} \simeq \frac{E_{h}}{\nu}=z
$$

so that:

$$
D_{1}^{q, h}\left(\frac{p \cdot h}{p \cdot q},\left(\frac{p \cdot h}{p \cdot q} \kappa_{\mathbf{T}}\right)^{2}\right) \longrightarrow D_{1}^{q, h}\left(z,\left(z \kappa_{\mathbf{T}}\right)^{2}\right)
$$

Only negligible nuclear effects in the fragmentation functions! The same results as in the DIS case, in Impulse Approximation, is found.

Conclusions

- My results:

An analysis of the Sivers function in a 3-Body model:
reasonable agreement with data and with the theoretical wisdom; Evolution needed!

A realistic study of ${ }^{3} \vec{H} e\left(e, e^{\prime} \pi\right) X$ @ JLab kinematics:
In IA, nuclear effects in the extraction of the neutron information are under control

- To go beyond:

for the proton target:
Calculation of the Sivers function in other (relativistic) models; proper QCD evolution
for ${ }^{3} \mathrm{He}$:
Estimate of effects beyond IA and beyond JLab kinematics:
study of FSI for the propagation of the π in the nuclear medium, crucial for other studies: Color Transparency, Deeply Virtual Meson Production...

IPDPDs

