Sixth International Conference on Perspectives in Hadronic Physics

12-16 May 2008

Generalized Parton Distributions, Analyticity and Formfactors.

O. Teryaev

JINR, Dubna Russian Federation

Generalized Parton Distributions, Analyticity and Formfactors
 Perspectives in Hadronic Physics Trieste, May 152008

Oleg Teryaev
JINR, Dubna

Main Topics

- Analyticity vs QCD factorization
- Crossing, Tomography, Holography and Duality of GPD's
- GPDs and Hard Double Diffraction
- GPDs and (gravitational) formfactors: Equivalence Principle, its Extension and AdS/QCD

QCD Factorization for DIS and DVCS (AND VM production)

- Manifestly spectral

$$
\mathcal{H}\left(x_{B}\right)=\int_{-1}^{1} d x \frac{H(x)}{x-x_{B}+i \epsilon} .
$$

- Extra dependence on ξ

Unphysical regions

- DIS : Analytical function polynomial in $J \backslash X^{B}$ if $1 \leq\left|X_{B}\right|$

$$
H\left(x_{B}\right)=-\int_{-1}^{1} d x \sum_{n=0}^{\infty} H(x) \frac{x^{n}}{x_{B}^{n+1}}
$$

- DVCS - additional problem of analytical continuation of $H(x, \xi)$
- Solved by using of Double Distributions Radon transform

$$
H(z, \xi)=\int_{-1}^{1} d x \int_{|x|-1}^{1-|x|} d y(F(x, y)+\xi G(x, y)) \delta(z-x-\xi y)
$$

Double distributions and their integration

- Slope of the integration lineskewness
- Kinematics of DIS: $\xi=0$ ("forward") - vertical line (1)
- Kinematics of DVCS: $\xi<1$
- line 2
- Line 3: $\quad \xi>1$ unphysical region - required to restore DD by inverse Radon transform: tomography

$$
\begin{array}{r}
f(x, y)=-\frac{1}{2 \pi^{2}} \int_{0}^{\infty} \frac{d p}{p^{2}} \int_{0}^{2 \pi} d \phi|\cos \phi|(H(p / \cos \phi+x+y \operatorname{tg} \phi, \operatorname{tg} \phi)-H(x+y t g \phi, t g \phi))= \\
=-\frac{1}{2 \pi^{2}} \int_{-\infty}^{\infty} \frac{d z}{z^{2}} \int_{-\infty}^{\infty} d \xi(H(z+x+y \xi, \xi)-H(x+y \xi, \xi))
\end{array}
$$

Crossing for DVCS and GPD

- DVCS -> hadron pair production in the collisions of real and virtual photons
- GPD -> Generalized Distribution Amplitudes
- Duality between s and t channels
(Polyakov,Shuvaev,
Guzey, Vanderhaeghen)

Radon (OT’01) and Abel (Moiseeva, Polyakov’08) Transforms: even vs odd-dimensional spaces

- Even (integrals over lines in plane): integral (global) inversion formula
- Odd (integrals over planes in space) differential (local) inversion formula Huygens principle
- Triple distributions - THREE pions production (Pire, OT’01) or (deuteron) Decay PD. Relation to nuclei breakup in studies of SRC?!

GDA -> back to unphysical regions for DIS and DVCS

- Recall DIS

$$
H\left(x_{B}\right)=-\int_{-1}^{1} d x \sum_{n=0}^{\infty} H(x) \frac{x^{n}}{x_{B}^{n+1}}
$$

- Non-positive powers of $\quad X_{B}$
- DVCS
$H(\xi)=-\int_{-1}^{1} d x \sum_{n=0}^{\infty} H(x, \xi) \frac{x^{n}}{\xi^{n+1}}$
- Polynomiality (general property of Radon transforms): moments integrals in x weighted with x^{n} - are polynomials in $1 / \xi$ of power $n+1$
- As a result, analyticity is preserved: only non-positive powers of ξ appear

Holographic property (OT’05)

Factorization

Formula
-> - Analyticity -> I maginary part -> Dispersion relation:

$$
\mathcal{H}(\xi)=\int_{-1}^{1} d x \frac{H(x, \xi)}{x-\xi+i \epsilon}
$$

$$
\mathcal{H}(\xi)=\int_{-1}^{1} d x \frac{H(x, x)}{x-\xi+i \epsilon}
$$

$$
\Delta \mathcal{H}(\xi) \equiv \int_{-1}^{1} d x \frac{H(x, x)-H(x, \xi)}{x-\xi+i \epsilon}
$$

- "Holographic" equation (DVCS AND VM)

$$
=\sum_{n=1}^{\infty} \frac{1}{n!} \frac{\partial^{n}}{\partial \xi^{n}} \int_{-1}^{1} H(x, \xi) d x(x-\xi)^{n-1}=\mathrm{const}
$$

Holographic property - II

- Directly follows from double distributions

$$
H(z, \xi)=\int_{-1}^{1} d x \int_{|x|-1}^{1-|x|} d y(F(x, y)+\xi G(x, y)) \delta(z-x-\xi y)
$$

- Constant is the SUBTRACTION one - due to the (generalized) Polyakov-Weiss term $G(x, y)$

$$
\begin{array}{r}
\Delta \mathcal{H}(\xi)=\int_{-1}^{1} d x \int_{|x|-1}^{1-|x|} d y \frac{G(x, y)}{1-y} \\
=\int_{-\xi}^{\xi} d x \frac{D(x / \xi)}{x-\xi+i \epsilon}=\int_{-1}^{1} d z \frac{D(z)}{z-1}=\text { const }
\end{array}
$$

Holographic property - III

- 2-dimensional space -> 1-dimensional section!
- Momentum space: any relation to holography in coordinate space (talk of S. Brodsky)?!
- New strategy of GPD's studies: start at diagonals (through SSA due to imaginary part of DVCS
 amplitude) and restore by making use of dispersion relations + subtraction constants

Angular distribution in hadron pairs production

- Back to GDA region

$$
H(\xi)=-\int_{-1}^{1} d x \sum_{n=0}^{\infty} H(x, \xi) \frac{x^{n}}{\xi^{n+1}}
$$

- -> moments of $\mathrm{H}(\mathrm{x}, \mathrm{x})$
define the coefficients of powers of cosine!- $1 / \xi$
- Higher powers of cosine in t-channel - threshold in s -channel
- Larger for pion than for nucleon pairs because of less fast decrease at $x->1$

Holographic property - IV

- Follows directly from DD -> preserved by (LO) evolution; NLO -Diehl, D.Ivanov'07
- Asymptotic GPD -> Pure real DVCS Amplitude (=subtraction term) growing like ξ^{-2}
- Direct consequence of finite asymptotic value of the quark momentum fraction

Analyticity of Compton amplitudes in energy plane (Anikin,OT’07)

- Finite subtraction implied

$$
\begin{gathered}
\operatorname{Re} \mathcal{A}\left(\nu, Q^{2}\right)=\frac{\nu^{2}}{\pi} \mathcal{P} \int_{\nu_{0}}^{\infty} \frac{d \nu^{\prime 2}}{\nu^{\prime 2}} \frac{\operatorname{Im} \mathcal{A}\left(\nu^{\prime}, Q^{2}\right)}{\left(\nu^{\prime 2}-\nu^{2}\right)}+\Delta \quad \Delta=2 \int_{-1}^{1} d \beta \frac{D(\beta)}{\beta-1} \\
\Delta_{\mathrm{CQM}}^{p}(2)=\Delta_{\mathrm{CQM}}^{n}(2) \approx 4.4, \quad \Delta_{\text {latt }}^{p} \approx \Delta_{\text {latt }}^{n} \approx 1.1
\end{gathered}
$$

- Numerically close to Thomson term for real proton (but NOT neutron) Compton Scattering!
- Stability of subtraction against NPQCD?twist -3related to twist 2 (Moiseeva, Polyakov'08)
- Duality (sum of squares vs square of sum; proton: $4 / 9+4 / 9+1 / 9=1$)?!

Is D-term independent?

- Fast enough decrease at large energy -

$$
\begin{aligned}
&>\quad \operatorname{Re} \mathcal{A}(\nu)=\frac{\mathcal{P}}{\pi} \int_{\nu_{0}}^{\infty} d \nu^{\prime 2} \frac{\operatorname{Im} \mathcal{A}\left(\nu^{\prime}\right)}{\nu^{\prime 2}-\nu^{2}}+\mathrm{C}_{0} \\
& \mathrm{C}_{0}= \Delta-\frac{\mathcal{p}}{\pi} \int_{\nu_{0}}^{\infty} d \nu^{2} \frac{\mathrm{I} \frac{\mathcal{A}\left(\nu^{\prime}\right)}{\nu^{\prime 2}}}{} \\
& \quad=\Delta+\mathcal{P} \int_{-1}{ }_{-1} d x \frac{H^{(+)}(x, x)}{x} .
\end{aligned}
$$

- FORWARD limit of Holographic equation

$$
\begin{aligned}
\Delta & =\mathcal{P} \int_{-1}^{1} d x \frac{H^{(t)}(x, 0)-H^{+()}(x, x)}{x} \\
& ={ }^{2} \int_{-1}^{1} d \frac{d(x, 0)-H(x, x)}{x},
\end{aligned} \quad \mathrm{C}_{0}(t)=2 \mathcal{P} \int_{-1}^{1} d x \frac{H(x, 0, t)}{x}
$$

"D - term" 30 years before...

- Cf Brodsky, Close, Gunion'72
- D-term - typical renormalization constant
- May be calculated in effective theory if we know fundamental one
- OR
- Recover through special regularization procedure (D. Mueller)?

Duality between various QCD mechanisms (Anikin, Cherednikov, Stefanis, OT, in preparation)

- 2 pion production : GDA (small s) vs TDA+DA (small t)

- Scalar model asymptotics(Efremov,
Ginzburg, Radyushkin...)

Duality in scalar model

- "Right" (TDA, red) and "wrong" (GDA, blue) asymptotics / exact result (>1- negative "Higher Twist"

Duality in QCD

- Qualitatively- surprisingly good, quantitatively - model-dependent

Applications of analyticity: complicated hard reactions

- Starting from (Pion) form factor- 2 DA's

$$
F \sim\left(\int d x \frac{\phi(x)}{1-x}\right)^{2}
$$

- 1 DA -> GPD :Exclusive mesons production (Frankfurt, Strikman): analytic continuation=factorizati on + D-subtraction
$M \sim \int d x \frac{\phi(x)}{1-x} \int d x \frac{H(x, \xi)}{x-\xi+i \varepsilon}$

Next step: 2 DA's -> 2 GPD'sDouble Diffraction

- Exclusive double diffractive DY process
- Analytic continuation:

$$
M \sim \int d x \frac{H\left(x, \xi_{1}\right)}{x-\xi_{1} \pm i \varepsilon} \int d y \frac{H\left(y, \xi_{2}\right)}{y-\xi_{2} \mp i \varepsilon}
$$

- DIFFERS from direct calculation - NO factorization in physical region

$$
M \sim \iint d x d y \frac{H\left(x, \xi_{1}\right) H\left(y, \xi_{2}\right)}{\left(x-\xi_{1}\right)\left(y-\xi_{2}\right)+i \varepsilon}
$$

Double Diffraction: gluons

- One or both GPDs may be gluonic
- Complementary description of LHC DD (Higgs, Quarkonia, dijets)

Double Diffraction: properties and problems

- Holographic equation: DR contains double and single (linear in D-term) dispersion integrals as well as subtraction (quadratic in D-term)
- Analytic continuation in relation to various cuts is still unclear...

GPDs and FF (talks of M. Vanderhaeghen, B.Pasquini)

- Simple model for t-dependence (Selyugin, OT’07)

$$
\mathcal{H}^{q}(x, t)=q(x) \exp \left[a_{+} \frac{(1-x)^{2}}{x^{b}} t\right] ; \quad \mathcal{E}^{q}(x, t)=\mathcal{E}^{q}(x) \exp \left[a_{-} \frac{(1-x)^{2}}{x^{b}} t\right]
$$

- SAME t-dependence for u and d
- Difference only in t slope of Edescription of Rosenbluth and polarisation data (talk of L. Pentchev)

Neutron vs Proton

- Neutron GE - (much?) better described by the slope obtained from proton polarisation data

1-st moments - EM, 2-nd Gravitational Formfactors

$\left\langle p^{\prime}\right| T_{q, g}^{\mu \nu}|p\rangle=\bar{u}\left(p^{\prime}\right)\left[A_{q, g}\left(\Delta^{2}\right) \gamma^{(\mu} p^{\nu)}+B_{q, g}\left(\Delta^{2}\right) P^{\left(\mu_{i} \sigma^{\nu) \alpha}\right.} \Delta_{\alpha} / 2 M\right] u(p)$

- Conservation laws - zero Anomalous Gravitomagnetic Moment: $\quad \mu_{G}=J \quad(\mathbf{g}=2)$

$$
\begin{array}{cc}
P_{q, g}=A_{q, g}(0) & A_{q}(0)+A_{q}(0)=1 \\
J_{q, g}=\frac{1}{2}\left[A_{q, g}(0)+B_{q, g}(0)\right] & A_{q}(0)+B_{q}(0)+A_{g}(0)+B_{g}(0)=1
\end{array}
$$

- May be extracted from high-energy experiments/NPQCD calculations
- Describe the partition of angular momentum between quarks and gluons
- Describe ainteraction with both classical and TeV gravity

Electromagnetism vs Gravity

- Interaction - field vs metric deviation

$$
M=\left\langle P^{\prime}\right| J_{q}^{\mu}|P\rangle A_{\mu}(q) \quad M=\frac{1}{2} \sum_{q, G}\left\langle P^{\prime}\right| T_{q, G}^{\mu \nu}|P\rangle h_{\mu \nu}(q)
$$

- Static limit

$$
\langle P| J_{q}^{\mu}|P\rangle=2 e_{q} P^{\mu}
$$

$$
\begin{array}{r}
\sum_{q, G}\langle P| T_{i}^{\mu \nu}|P\rangle=2 P^{\mu} P^{\nu} \\
h_{00}=2 \phi(x)
\end{array}
$$

$$
M_{0}=\langle P| J_{q}^{\mu}|P\rangle A_{\mu}=2 e_{q} M \phi(q) \quad M_{0}=\frac{1}{2} \sum_{q, G}\langle P| T_{i}^{\mu \nu}|P\rangle h_{\mu \nu}=2 M \cdot M \phi(q)
$$

- Mass as charge - equivalence principle

Equivalence principle

- Newtonian - "Falling elevator" - well known and checked
- Post-Newtonian - gravity action on SPI N known since 1962 (Kobzarev and Okun') not checked on purpose but in fact checked in atomic spins experiments at \% level (Silenko,OT’07)
- Anomalous gravitomagnetic moment iz ZERO or
- Classical and QUANTUM rotators behave in the SAME way

Gravitomagnetism

- Gravitomagnetic field - action on spin - ½ from

$$
M=\frac{1}{2} \sum_{q, G}\left\langle P^{\prime}\right| T_{q, G}^{\mu \nu}|P\rangle h_{\mu \nu}(q)
$$

$\vec{H}_{J}=\frac{1}{2} \operatorname{rot} \vec{g} ; \vec{g}_{i} \equiv g_{0 i}$ spin dragging twice smaller than EM

- Lorentz force - similar to EM case: factor $1 / 2$ cancelled with 2 from $h_{00}=2 \phi(x)$ Larmor frequency same as EM $\quad \vec{H}_{L}=\operatorname{rot} \vec{g}$
- Orbital and Spin momenta dragging - the same - Equivalence principle $\omega_{J}=\frac{\mu_{G}}{J} H_{J}=\frac{H_{L}}{2}=\omega_{L}$

Equivalence principle for
 moving particles

- Compare gravity and acceleration: gravity provides EXTRA space components of metrics $h_{z z}=h_{x X}=h_{y y}=h_{00}$
- Matrix elements DI FFER

$$
\mathcal{M}_{g}=\left(\epsilon^{2}+p^{2}\right) h_{00}(q), \quad \mathcal{M}_{a}=\epsilon^{2} h_{00}(q)
$$

- Ratio of accelerations: $R=\frac{\epsilon^{2}+p^{2}}{\epsilon^{2}} \quad$ confirmed by explicit solution of Dirac equation (Silenko, O.T.)

Generalization of Equivalence principle

- Various arguments: AGM ≈ 0 separately for quarks and gluons - most clear from the lattice (LHPC/SESAM)

Extended Equivalence Principle=Exact EquiPartition

- In pQCD - violated
- Reason - in the case of EEP- no smooth transition for zero fermion mass limit (Milton, 73)
- Conjecture (O.T., 2001 - prior to lattice data) - valid in NP QCD - zero quark mass limit is safe due to chiral symmetry breaking
- Supported by smallness of E (isoscalar AMM)
- Polyakov Vanderhaeghen: dual model with $\mathrm{E}=0$

Vector mesons and EEP

- J=1/2 -> J=1. QCD SR calculation of Rho's AMM gives g close to 2 .
- Maybe because of similarity of moments
- $g-2=<E(x)>; B=<x E(x)>$
- Directly for charged Rho (combinations like p+n for nucleons unnecessary!). Not reduced to non-extended EP: Gluons momentum fraction sizable. Direct calculation of AGM are in progress.

EEP and AdS/QCD

- Recent development - calculation of Rho formfactors in Holographic QCD (Grigoryan, Radyushkin)
- Provides $\mathrm{g}=2$ identically!
- Experimental test at time -like region possible

EEP and Sivers function (talks of U. d'Alesio, S. Scopetta)

- Sivers function - process dependent (effective) one
- T-odd effect in T-conserving theory- phase
- FSI - Brodsky-Hwang-Schmidt model
- Unsuppressed by M/Q twist 3
- Process dependence- colour factors
- After Extraction of phase - relation to universal (T-even) matrix elements

EEP and Sivers function -II

- Qualitatively similar to OAM and Anomalous Magnetic Moment (talk of S. Brodsky)
- Quantification : weighted TM moment of Sivers PROPORTIONAL to GPD E (OT'07, 0612205): $\quad x f_{T}(x) \sim x E(x)$
- Burkardt SR for Sivers functions is then related to Ji's SR for E and, in turn, to Equivalence Principle

$$
\sum_{q, G} \int d x x f_{T}(x)=\sum_{q, G} \int d x x E(x)=0
$$

EEP and Sivers function for deuteron

- EEP - smallness of deuteron Sivers function
- Cancellation of Sivers functions separately for quarks (before inclusion gluons)
- Equipartition + small gluon spin - large longitudinal orbital momenta (BUT small transverse ones -Brodsky, Gardner)

Another relation of Gravitational FF and NP QCD (first reported at 1992: hep-ph/ 9303228)

- BELI NFANTE (relocalization) invariance : decreasing in coordinate -

$$
M^{\mu \nu \rho}=\frac{1}{2} \mu^{\mu \mu \sigma} J_{s_{\sigma} \sigma}+x^{\nu} T^{\mu \rho}-x^{\sigma} T^{\mu \omega}
$$

smoothness in momentum space
$M^{\mu \nu \nu}=x^{\nu} T_{B}^{\mu \varphi}-x^{\rho} T_{B}^{U L}$

- Leads to absence of massless pole in singlet channel - U_A(1)
- Delicate effect of NP QCD $\quad\left(g_{\mu \nu} g_{\mu \mu}-g_{\mu \mu} g_{\omega N}\right) \partial^{(}\left(J_{5 s}^{\alpha} v^{\nu}\right)=0$
- Equipartition - deeply $q^{2} \frac{\partial}{\partial q^{\alpha}}\langle P| J_{s s \mid}^{s}|P+q\rangle=\left(q^{\beta} \frac{\partial}{\partial q^{\beta}}-1\right) q_{\gamma}\langle P| \int_{s s \mid}^{s_{s}}|P+q\rangle$ related to relocalization

$$
\left.q^{2} G_{2}\right|_{0}=0
$$

invariance by QCD evolution

CONCLUSIONS

- Crossing analogs of GPD -> GDA
- Analyticity for DVCS - holographic property of GPD's: special role of sections $x= \pm \xi$
- Analytic continuation - QCD calculations of double diffractive processes: Drell-Yan, Higgs, Heavy flavours production.
- Gravitational formfactors - possible link between gravity and NP (and AdS) QCD

