Sixth International Conference on Perspectives in Hadronic Physics

12-16 May 2008

Highlights from the COMPASS experiment at CERN.

F. Bradamante

University of trieste / INFN
Trieste
Italy

HIGHLIGHTS FROM THE COMPASS EXPERIMENT @ CERN

F. Bradamante
University of Trieste and INFN Trieste

COmmon
 Muon and Proton
 Apparatus for Structure and Spectroscopy

NA58

Czech Republic, Finland, France, Germany, India, Israel, Italy, Japan, Poland, Portugal, Russia

Bielefeld, Bochum, Bonn, Burdwan, Calcutta, CERN, Dubna, Erlangen, Freiburg, Heidelberg, Helsinki, Lisbon, Mainz, Miyazaky, Moscow, Munich, Nagoya, Prague, Protvino, Saclay, Tel Aviv, Torino, Trieste, Warsaw

$$
28 \text { Institutes, ~230 physicists }
$$

COMPASS

- experiment: thought of in

April '94	Trento workshop
Nov. ‘94	Trieste workshop
	@ICTP

Lol	March '95	
\quad encouraged	June '95	SPSLC in Cogne
Proposal	March '96	
\quad recommended	Sept. '96	
\quad approved by RB	Feb. '97	as NA58
Technical run	2000	
Commissioning	2001	

- since 2002 taking data with a new spectrometer with outstanding performances
- merging of two programmes: HMC
(muon beam)

CHEOPS
(hadron beam)

Physics program of COMPASS

- Experiments with muon beam
- $\Delta \mathrm{G} / \mathrm{G}$
- g_{1}
- Transverse spin effects
- Flavor decomposition of spin distribution functions
- Vector meson production
- Spin transfer in Λ-hyperon production
- Experiments with hadron beams
- Pion and Kaon polarizabilities
- Diffractive production of exotic states
- Search for glueballs
- Light meson spectroscopy
- Production of double charmed baryons

The Spectrometer for the Muon Programme

WHERE ARE WE ?

- in 2002, 2003, 2004, 2006 and 2007 COMPASS has taken data in the muon program configuration

160 GeV , polarized μ beam
2002-2006 ${ }^{6}$ LiD polarized target (\sim polarized deuterons)
$2007 \quad \mathrm{NH}_{3}$ polarized target (\sim polarized protons)

```
2000 TB ~ ~ 5.1010}\mathrm{ events
```

- pilot run in 2004 for hadron program
- 2008: hadron beam at 190 GeV for diffractive and central production

physics results

1. $\Delta \mathrm{G} / \mathrm{G}$
2. $\Delta \Sigma$
3. Transversity
4. Cahn asymmetry
5. Pentaquark
6. Exclusive ρ^{0}
7. Λ physics
8. pion polarizability
9. PWA in diffractive scattering

THE COMPASS MUON PROGRAM

TWO CLASSES OF PHENOMENA:

-LONGITUDINAL SPIN CASE

- TRANSVERSE SPIN CASE

LONGITUDINAL SPIN CASE: the beginning

EMC 1988

$$
\Gamma_{1}^{\mathrm{p}}=0.123 \pm 0.013 \pm 0.019 \quad \Delta \Sigma=0.12 \pm 0.17
$$

\rightarrow SPIN CRISIS

LONGITUDINAL SPIN CASE

from polarised lepton - polarised nucleon DIS $\mathrm{d} \sigma=\mathrm{d} \bar{\sigma} \pm \mathrm{d} \Delta \sigma$

$$
\begin{aligned}
& \frac{d \Delta \sigma}{d x d y}=\frac{\mathbf{e}^{4}}{4 \pi^{2} \mathbf{Q}^{2}} \cdot\left\{\cos \alpha \cdot\left[\left(1-\frac{y}{2}-\frac{\mathbf{y}^{2}}{4} \cdot \gamma^{2}\right) \cdot \mathbf{g}_{1}-\frac{9}{2} \cdot \gamma^{2} \cdot \mathbf{g}_{2}\right]-\sin \alpha \cdot \cos \varphi \cdot \sqrt{1-\frac{\mathbf{y}}{2}-\frac{\mathbf{y}^{2}}{4} \cdot \gamma^{2}} \cdot \gamma \cdot\left(\frac{\mathbf{y}}{\mathbf{2}} \cdot \mathbf{g}_{1}+\mathbf{g}_{2}\right)\right\} \\
& \text { with } \quad \mathbf{g}_{1}(\mathbf{x}) \approx \sum_{\mathrm{q}} \mathbf{e}_{\mathrm{q}}^{2} \cdot[\Delta \mathbf{q}(\mathbf{x})+\Delta \overline{\mathbf{q}}(\mathbf{x})] \quad \text { and } \quad \Delta \mathbf{q}=\stackrel{\rightharpoonup}{\mathbf{q}}-\overrightarrow{\mathbf{q}} \\
& \text { first moments: } \quad \Gamma_{1}=\int g_{1}(\mathbf{x}) \mathbf{d x} \quad \Delta \mathbf{q}=\int \Delta \mathbf{q}(\mathbf{x}) \mathbf{d x}
\end{aligned}
$$

from Γ_{1}^{p} measurement of EMC in 1988 and using complementary information from neutron and hyperon β-decay one obtained

$$
\begin{array}{r}
\Delta \boldsymbol{\Sigma}=\Delta \mathbf{u}+\Delta \mathbf{d}+\Delta \mathbf{s}=0.12 \pm 0.17 \\
\\
\text { at variance with naïve expectation }
\end{array}
$$

since $\quad \frac{1}{2}=\frac{1}{2} \Delta \boldsymbol{\Sigma}+\Delta \mathbf{G}+\mathbf{L}_{\mathrm{q}, \mathrm{g}}$
necessity for measuring Γ_{1}^{n}
Δq and $\Delta \bar{q}$ in SIDIS
ΔG in SIDIS

SMC, SLAC, HERMES
SMC, HERMES, COMPASS
HERMES, COMPASS

[^0]
LONGITUDINAL SPIN CASE

physics results

$\Delta G / G$

MEASUREMENTS OF THE GLUON POLARIZATION

FOUR LINES OF ATTACK:

1. Double spin asymmetry of the OPEN CHARM cross-section in high energy $\mu \mathrm{D}$ scattering
2. Double spin asymmetry of the HIGH- p_{t} HADRON PAIRS in high energy $\mu \mathrm{D}$ DIS ($\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$)
3. Double spin asymmetry of the high- p_{t} hadron pairs in high energy $\mu \mathrm{D}$ scattering ($\mathrm{Q}^{2}<1 \mathrm{GeV}^{2}$)
4. Measurement of g_{1} of the deuteron and QCD fit of all the world data

Δ G/G at COMPASS

Photon Gluon Fusion

$\mathrm{q}=\mathrm{c}$ cross section difference in charmed meson production
\rightarrow theory well understood
\rightarrow experiment challenging
$\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s}$ cross section difference in 2+1 jet production in COMPASS: events with 2 hadrons with high p_{t}
\rightarrow experiment easy
\rightarrow theory more difficult

$\Delta \mathrm{G} / \mathrm{G}$

from Open Charm

D mass spectra

$$
\mathrm{D}^{0} \rightarrow \mathrm{~K}+\pi \quad \mathrm{D}^{*} \rightarrow \mathrm{D}^{0}+\pi_{\mathrm{s}} \rightarrow \mathrm{~K}+\pi+\pi_{\mathrm{s}}
$$

APS, 13 April 2008
G.K. Mallot

$\Delta G / G$ from open charm

2002-2006 data $D^{0}+D^{*}$

$\Delta \mathrm{G} / \mathrm{G}=-0.49 \pm 0.27$ (stat) ± 0.11 (syst)

$$
@<x_{g}>\sim 0.11,<\mu^{2}>\sim 13(\mathrm{GeV} / \mathrm{c})^{2}
$$

> preliminary

$\Delta G / G$

from High p $_{\mathrm{t}}$ hadron pairs

$\Delta \mathrm{G} / \mathrm{G}$ from High- p_{t} hadrons, $\mathrm{Q}^{2}>1(\mathrm{GeV} / \mathrm{c})^{2}$

PGF and background

$$
\frac{A_{L L}}{D} \approx \frac{a_{L L}^{P G F}}{D} \frac{\Delta G}{G} \frac{\sigma^{P G F}}{\sigma^{t o t}}+A_{1} \frac{a_{L L}^{L O}}{D} \frac{\sigma^{L O}}{\sigma^{t o t}}+A_{1} \frac{a_{L L}^{Q C D-C}}{D} \frac{\sigma^{Q C D-C}}{\sigma^{t o t}}
$$

$\Delta G / G$ from High- p_{t} hadrons, $Q^{2}>1(\mathrm{GeV} / \mathrm{c})^{2}$

2002-2004 data: High $p_{\mathrm{T}}, \mathrm{Q}^{2}>1 \mathrm{GeV} / \mathrm{c}^{2}$

$$
\begin{aligned}
\boldsymbol{\Delta} \mathbf{G} / \mathbf{G} & =\mathbf{0 . 0 8} \pm \mathbf{0 . 1 0} \text { (stat) } \pm \mathbf{0 . 0 5}(\text { syst) } \\
@<x_{g}> & =0.082 \text { (range: } 0.055-0.123), \mu^{2} \sim 3(\mathrm{GeV} / \mathrm{c})^{2}
\end{aligned}
$$

preliminary

$\Delta G / G$ from High $-p_{t}$ hadrons

$\Delta \mathrm{G} / \mathrm{G}$ from High- p_{t} hadrons, $\mathrm{Q}^{2}<1(\mathrm{GeV} / \mathrm{c})^{2}$

2002-2004 data: High $p_{T}, Q^{2}<1 \mathrm{GeV} / \mathrm{c}^{2}$

$$
\begin{gathered}
\Delta \mathbf{G} / \mathbf{G}=0.016 \pm 0.058 \text { (stat) } \pm 0.055 \text { (syst) } \\
@\left\langle x_{g}\right\rangle=0.085, \mu^{2}=3 \mathrm{GeV}^{2}
\end{gathered}
$$

preliminary

Gluon Polarization

COMPASS preliminary results

high $-p_{T}$ pairs, $Q^{2}>1 \mathrm{GeV}^{2}$: 2002-2004
$\Delta \mathrm{G} / \mathrm{G}=0.08 \pm 0.10$ (stat) ± 0.05 (syst)

$$
@\left\langle x_{g}\right\rangle=0.082 \text { (range: } 0.055-0.123 \text {), } \mu^{2} \sim 3(\mathrm{GeV} / \mathrm{c})^{2}
$$

high- p_{t} pairs, $Q^{2}<1 \mathrm{GeV}^{2}: \quad$ 2002-2004

$$
\begin{aligned}
\Delta \mathrm{G} / \mathrm{G}= & 0.016 \pm 0.058 \text { (stat) } \pm 0.055 \text { (syst) } \\
& @\left\langle x_{g}\right\rangle=0.085, \mu^{2}=3 \mathrm{GeV}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { open charm: } \\
& \begin{array}{l}
\Delta \mathrm{G} / \mathrm{G}=-\mathbf{0 . 4 9} \pm 0.27 \text { (stat) } \pm 0.11 \text { (syst) } \\
@<x_{g}>\sim 0.11,<\mu^{2}>\sim 13(\mathrm{GeV} / \mathrm{c})^{2}
\end{array}
\end{aligned}
$$

Summary of results

$g_{1}{ }^{d}$

g_{1} of the deuteron (2002-2003)

Phys Lett B 612 (2005) 154

- most precise measurement for $0.004<x<0.03$
- new NLO QCD fit, precision of a_{0} improves factor $2\left(Q^{2}=4 \mathrm{GeV}^{2}\right)$

$$
a_{0}=\Delta \Sigma(\overline{M S})=0.237_{-0.029}^{+0.024}
$$

CONCLUSION from Δ G MEASUREMENTS:

Δ G SMALL

more precise measurements will come soon
COMPASS 2006
RHIC RUN6
$\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+\underbrace{L_{i, g}}_{\text {orbital angular momentum }}$
GPD's
Ji's SUM RULE $\quad J^{q}(t)=\frac{1}{2} \int d x x\left(H^{q}+E^{q}\right)$

more on LONGITUDINAL SPIN CASE

MEASUREMENT OF
VALENCE QUARK POLARISATION

valence quark polarisation

hadron asymmetries

Semi-inclusive asymmetries
$A^{+}=\frac{\sigma_{\uparrow \downarrow}^{h+}-\sigma_{\uparrow \uparrow}^{h+}}{\sigma_{\uparrow \downarrow}^{h+}+\sigma_{\uparrow \uparrow}^{h+}} \quad A=\frac{\sigma_{\uparrow \downarrow}^{h}-\sigma_{\uparrow \uparrow}^{h}}{\sigma_{\uparrow \downarrow}^{h-}+\sigma_{\uparrow \uparrow}^{h-}}$
$A_{1}^{h}(x)=\frac{\sum_{q} e_{q}^{2}\left(\Delta q(x) D_{q}^{h}+\Delta \bar{q}(x) D_{\bar{q}}^{h}\right)}{\sum_{q} e_{q}^{2}\left(q(x) D_{q}^{h}+\bar{q}(x) D_{\bar{q}}^{h}\right)}$

Difference asymmetry

$$
\begin{gathered}
A^{+}=\frac{\left(\sigma_{\uparrow \downarrow}^{h+}-\sigma_{\uparrow \downarrow}^{h}\right)-\left(\sigma_{\uparrow \uparrow}^{h+}-\sigma_{\uparrow \uparrow}^{h}\right)}{\left(\sigma_{\uparrow \downarrow}^{h+}-\sigma_{\uparrow \downarrow}^{h}\right)+\left(\sigma_{\uparrow \uparrow}^{h+}-\sigma_{\uparrow \uparrow}^{h}\right)} \\
A_{d}^{\pi^{+}-\pi^{-}}(x)=A_{d}^{K^{+}-K^{-}}(x)=\frac{\Delta u_{v}(x)+\Delta d_{v}(x)}{u_{v}(x)+d_{v}(x)}
\end{gathered}
$$

- Fragmentation functions $D_{q}^{h}=\int D_{q}^{h}(z) d z$ are poorly known
- Difference asymmetry originally was proposed in:
L.Frankfurt et al., Phys. Lett. B230 (1989) 141
- First was used in SMC: B. Adeva et al., Phys. Lett. B369 (1996) 93.
- Meaningful physics results for the deuteron target in LO QCD even without hadron identification

valence quark polarisation

comparison with other experiments

The Transverse Spin Case

Transverse Spin case

Large effects observed in hadronic interactions

$$
\begin{gathered}
p+B e \rightarrow M+X \\
\text { at } 300 \mathrm{GeV}
\end{gathered}
$$

VIEW LETTERS
10 May 1976

Fig. 4. 4_{N} versus x_{F} for π^{+}, π^{-}and π^{0} data.

Transverse Spin case

Large effects observed in hadronic interactions
Theoretical developments:
at leading order a third PDF is necessary for a complete description of the structure of the nucleon
R.L. Jaffe and X. Ji, Phys. Rev. Lett. 67 (1991) 552

- $\Delta_{\mathrm{T}} \mathrm{q}(\mathbf{x})$ being chiral-odd, it can be measured only in conjunction with another chiral-odd partner:

DY $\Delta_{\mathrm{T}} \mathbf{q} \otimes \Delta_{\mathrm{T}} \overline{\mathbf{q}} \quad$ SIDIS $\Delta_{\mathrm{T}} \mathbf{q} \otimes F F \quad$ measurable in

- relevance of e+e- \rightarrow hadrons
transverse momentum dependent (TMD) PDF and FF

Many Workshops in recent years on Transverse Momentum, spin, and position distributions of partons in hadrons

[^1]
Transversity - single hadron -1

Collins and Sivers angles

ϕ_{S}, \quad azimuthal angle of spin vector of fragmenting quark $\left(\phi_{S^{n}}=\pi-\phi_{S}\right)$
$\phi_{h} \quad$ azimuthal angle of hadron momentum

Transversity - single hadron -2

first measurements of transverse spin asymmetries in DIS of high energy muons on a transversely polarized deuteron target published single hadron asymmetries from 2002-2004 runs

- Collins: related to transverse quark distributions
- Sivers: related to intrinsic $\boldsymbol{k}_{\boldsymbol{T}}$

Phys Rev Lett 94 (2005) 202002
Nucl Phys B765 (2007) 31

Collins asymmetry for pions and kaons

preliminary
2002-2004 data proton
(virtual photon asymm)
(lepton beam 2002-05 \rightarrow DIS07)

final CERN-PH-EP/2008-002 hep-ex/0802.2160 (PRL) 2003-2004 data deuteron
(virtual photon asymm)

COMPASS
sign convention

Independent Measurement of the Collins FF

measurable in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

- first attempts to measured it from the correlation between the azimuthal angles of $\pi^{\star} s$ from $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation using LEP data

last years: great news from BELLE

the Collins FF is being measured in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation, and it is different from zero!
measurement of the correlation between the azimuthal angles of $\pi^{\prime} s$ in the near jet and in the far jet from $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

- $547 \mathrm{fb}^{-1}$ charm corrected data sample,
- UL and UC double ratios

[^2]
Collins asymmetries: SUMMARY

The facts:

- HERMES has measured on a proton target non-zero Collins asymmetries for π^{+}and π^{-}
- COMPASS has measured on a deuteron target Collins asymmetries compatible with zero
- BELLE has produced the first results on Collins FF

Conclusion:

- Collins mechanism is a real phenomenon
- universality of Collins FF
- transversity can be measured in SIDIS

Present picture

- Collins: $\Delta_{T} \mathbf{u} \sim-\Delta_{T} d$
$\Delta_{T}{ }^{0} \mathrm{D}$ (fav.) $\sim-\Delta_{T}{ }^{0} D$ (unfav)
To extract TMD DF and FF GLOBAL ANALISYS are necessary

Transversity

HERMES, COMPASS, BELLE

- This is the extraction of transversity from new experimental data.
- Compared to previous extraction PRD75:054032,2007
- $\Delta_{T} u(x)>0$ and $\Delta_{T} d(x)<0$ The errors are diminished significantly.
- $\Delta_{T} u(x)$ became larger than that of the previous fit.

Sivers asymmetry for pions and kaons

preliminary
2002-2005 data proton
(DISOT)

CERN-PH-EP/2008-002 hep-ex/0802.2160 (PRL) 2003-2004 data deuteron

First moment of the Sivers functions

$\diamond \Delta^{N} f_{q}^{(1)}(x) \equiv \int d^{2} k_{\perp} \frac{k_{\perp}}{4 m_{p}} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right)=-f_{1 T}^{\perp(1) q}(x)$

Sivers asymmetry

the measured asymmetry on deuteron compatible with zero has been interpreted as

Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon S.J. Brodsky and S. Gardner, PLB643 (2006) 22

The approximate cancellation of the SSA measured on a deuterium target suggests that the gluon mechanism, and thus the orbital angular momentums carried by gluons in the nucleon, is small.

SUMMARY AND OUTLOOK

- a technically challenging new experiment is IN OPERATION SINCE 2002
"LHC" technologies detectors read-out
data handling
- a privileged situation at CERN
- MANY PHYSICS RESULTS have been produced MANY MORE IN THE PIPE-LINE
- COMPASS is foreseen to run up to the end of the present mid-term plan of CERN (2010)

BIG DISCOVERY POTENTIAL

- with some upgrade COMPASS might be an interesting option even in the second decade of this century

[^0]: F. Bradamante, 6th International Confrence on Perspectives in Hadronic Physics

[^1]: F. Bradamante, 6th International Confrence on Perspectives in Hadronic Physics

[^2]: F. Bradamante, 6th International Confrence on Perspectives in Hadronic Physics

