Sixth International Conference on Perspectives in Hadronic Physics

12-16 May 2008

Experimental prospects at GSI (Panda and PAX).

R. Kaiser

University of Glasgow

PANDA \& PAX @ FAIR

Exploring Nucleon Structure with Antiprotons

Ralf Kaiser, University of Glasgow

- The High Energy Storage Ring at FAIR
- The PANDA Experiment
- The PAX Experiment
- Nucleon Structure with PANDA \& PAX

Research at $F \mathcal{A l R}$

HESR - High Energy Storage Ring

- Circumference 442.5 m
- Production rate $2 \times 10^{7} / \mathrm{sec}$
- $P_{\text {beam }}=1-15 \mathrm{GeV} / \mathrm{c}$
- $\mathrm{N}_{\text {stored }}=5 \times 10^{10}$
- Internal Target

High Resolution Mode

$$
\delta p / p \sim 10^{-5}
$$

electron cooling
Luminosity: $10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
High Luminosity Mode

$$
\delta p / p \sim 10^{-4}
$$

stochastic cooling
Luminosity: $2 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Physics at PANDA

Exotic Hadrons

The QCD spectrum is much richer than expected from the naive quark model, because also gluons can act as hadron components

The "exotic hadrons" fall in 3 general categories:

Multiquarks $\mathrm{qq} \overline{\mathrm{q}} \overline{\mathrm{q}}$
Hybrids $q g \bar{q}$
Glueballs gg

In the light meson spectrum exotic states overlap with conventional states

Exotic Hadrons

The QCD spectrum is much richer than expected from the naive quark model, because also gluons can act as hadron components

The "exotic hadrons" fall in 3 general categories:

Multiquarks $\mathrm{qq} \overline{\mathrm{q}} \overline{\mathrm{q}}$
Hybrids qgā

Glueballs gg

In the light meson spectrum exotic states overlap with conventional states,
 while in the cc meson spectrum the density of states is lower \Rightarrow less overlap

Accessible Mass Range at PANDA

Nucleon Structure at PANDA

- Timelike Form Factors
- Transition Distribution Amplitudes
- Boer-Mulders Parton Distribution Function

Time-like Proton Form Factors

- All existing data measure absolute cross section $\mathrm{G}_{\mathrm{E}}=\mathrm{G}_{\mathrm{M}}$
- PANDA will provide independent measurements of G_{E} and Gm
- widest kinematic range in a single experiment
- Time-like form factors are complex
- precision experiments will reveal these structures

PANDA range

Hard Exclusive Reactions

- The prototype of all hard exclusive reactions is Deeply Virtual Compton Scattering.
- DVCS is one of the modern tools to explore the structure of the nucleon.
- Simplest process to measure Generalised Parton Distributions
- Allows to access the orbital angular momentum of quarks.
- Current and future experiments at HERMES, COMPASS and JLAB

DVCS at PANDA

- PANDA can measure the 'cross channel' or 'time-like' version of the same process, that depends on the same GPDs
- More precisely on Generalised Distribution Amplitutes, introduced by M.Diehl et.al. to describe the inverse process [PRL.81:1782 (1998)].

Transition Distribution Amplitudes

-TDAs extend the GPD concept to transitions [B.Pire, L.Szymanowski, PLB 622 (2005) 83, J.P.Lansberg et al. Nucl.Phys. A782 (2007) 16-23]

- Impact parameter space interpretation as for GPDs
- Fourier transform gives a transverse picture of the pion cloud in the proton

Transition Distribution Amplitudes

- Current models of TDA predict small cross section (~100 fb)
- Need excellent detector system to remove background
- Measurement feasible with PANDA

Parton Distribution Functions

Drell-Yan angular distribution

$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)$

- Experimentally, a violation of the Lam-Tung sum rule is observed by sizeable $\cos 2 \Phi$ moments
- Several model explanations
- higher twist
- spin correlation due to non-trival QCD vacuum
- Non-zero Boer Mulders function

$$
\text { Lam - Tung SR : } 1-\lambda=2 \nu
$$

$$
\text { NLO pQCD : } \lambda \approx 1 \mu \approx 0 \nu \approx 0
$$

$$
\text { experiment: } \nu \approx 0.3
$$

Azimuthal $\cos 2 \varphi$ Distribution in $\pi-N$ Drell Yan

E615 at Fermilab: $252 \mathrm{GeV} \pi^{-}+\mathrm{W} \quad$ Conway et al., PRD39,92(1989)

NA10 at CERN: 140/194/286 GeV $\pi-+$ W Z. Phys. C37, 545 (1988)

Boer-Mulders Function and NA10 Data

An approach in terms of h_{1}^{\perp} can fit the NA10 data at 194 GeV . Boer, PRD60,014012(1999)

$$
\nu=2 \kappa=4 \kappa_{1} \frac{Q_{T}^{2} M_{C}^{2}}{\left(Q_{T}^{2}+4 M_{C}^{2}\right)^{2}} ; \quad \lambda=1 ; \mu=0
$$

$$
\begin{aligned}
& \text { ve.35 } \\
& \nu \propto h_{1}^{1}\left(x_{1}\right) \bar{h}_{1}^{1}\left(x_{2}\right) \\
& h_{1}^{\perp}\left(x, k_{T}^{2}\right)=\frac{\alpha_{T}}{\pi} c_{H} \frac{M_{C} M_{H}}{k_{T}^{2}+M_{C}^{2}} e^{-\alpha_{T} k_{T}^{2}} f_{1}(x) \\
& \kappa_{1}=0.5 \\
& \mathrm{~m}_{\mathrm{C}}=2.3 \\
& \alpha_{T}=C_{H}=1
\end{aligned}
$$

Boer-Mulders Function

- Boer-Mulders distribution function $\mathrm{h}_{1}{ }^{\perp}$ can be measured in unpolarised Drell-Yan at PANDA

$$
\begin{gathered}
\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \sim \frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi \\
\nu \sim \sum_{a} e_{a}^{2} \frac{h_{1}^{\perp} h_{1}^{\perp}}{f_{1} \bar{f}_{1}}
\end{gathered}
$$

- Boer-Mulders function expected to be larger than Sivers function (measured at HERMES) [M.Burkhardt, hep-ph/0611256]

Nucleon Structure at PAX

- Timelike Form Factors with relative Phase
- Direct Measurement of the Transversity Distribution

PAX - Phase I - Fixed Target

PAX Detector

Timelike FF in double polarised $\bar{p} p-A n n i h i l a t i o n ~$

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{0} A_{x x}=\sin ^{2} \theta\left(\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \mathcal{N} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{0} A_{y y}=-\sin ^{2} \theta\left(\left|G_{M}\right|^{2}-\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \mathcal{N}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{0} A_{z z}=\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}-\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \mathcal{N}, \\
& \left(\frac{d \sigma}{d \Omega}\right)_{0} A_{x z}=\left(\frac{d \sigma}{d \Omega}\right)_{0} A_{z x}=\frac{1}{\sqrt{\tau}} \sin 2 \theta \operatorname{Re} G_{E} G_{M}^{*} \mathcal{N}
\end{aligned}
$$

E. Tomasi, F. Lacroix, C. Duterte, G.I. Gakh, EPJA 24, 419(2005)

- Most asymmetries contain moduli of $\mathrm{G}_{\mathrm{E}}, \mathrm{G}_{\mathrm{M}}$, allowing an independent measurement and a test of Rosenbluth separation in the time-like region
- Access to the $\mathrm{G}_{\mathrm{E}}-\mathrm{Gm}_{\mathrm{m}}$ phase
- Sensitive to different models

Form Factor Models

Spacelike

Measurement of Phase Difference

- Timelike formfactors are complex
- Single spin asymmetries in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{pp}$ and $\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ are sensitive to complex phase
- sizeable asymmetry predicted in models

$$
A_{y}=\frac{\sin 2 \theta \cdot \operatorname{Im}\left(G_{E}^{*} G_{M}\right)}{\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\sin ^{2} \theta\left|G_{E}\right|^{2} / \tau\right] \sqrt{\tau}}
$$

PAX - Phase II - Asymmetric $\overline{\mathrm{p}} \mathrm{p}$-Collider

Parton Distribution Functions

Parton Distribution Functions

Leading twist

Transversity

- u-dominance
- $\left|h_{1 u}\right|>\left|h_{1 d}\right|$

$$
A_{T T} \approx \hat{a}_{T T} \frac{h_{1 u}\left(x_{1}\right) h_{1 u}\left(x_{2}\right)}{u\left(x_{1}\right) u\left(x_{2}\right)}
$$

PAX: $M^{2} / s=x_{1} x_{2} \sim 0.02-0.3$ valence quarks
($A_{\text {TT }}$ large $\sim 0.2-0.3$)

1 year run: 10% precision on the $h_{1 u}(x)$ in the valence region

Polarised Antiprotons

- Spin filtering using an internal polarised proton target is the most promising method to polarise the antiproton beam
- Positive results in ppscattering from the FILTEX experiment at the TSR in Heidelberg in 1992
- Test experiments planned at COSY and AD/CERN

Polarised Antiprotons - Timeline

Fall 2008 Technical Proposal to COSY PAC for spin filtering experiment Technical Proposal to SPSC for spin filtering at AD

2008-2009 Design and construction phase
2009
Spin filtering studies at COSY
Commissioning of AD
experiment
>2010 Installation at AD
Spin filtering studies at AD

Summary

- In the coming decade FAIR will be one of the leading facilities in hadron physics worldwide
- PANDA at FAIR will be a versatile multi purpose detector open to a wide physics program: search for particles with exotic quantum numbers, charmonium spectroscopy and nucleon structure
- PAX at FAIR will extend the measurements of timelike form factors and provide the first direct measurement of the transversity distribution

Additional Slides

Advantages of PANDA

- $\quad \mathrm{e}^{+} \mathrm{e}^{-}$annihilation fixes quantum numbers of initial state $\mathrm{JPC}^{\mathrm{PC}}=1^{--}$
- Other states by decays leading to moderate mass resolution

States directly formed in $\mathrm{p} \overline{\mathrm{p}}$ annihilation

- Excellent mass resolution given by beam

$$
p \bar{p} \rightarrow \chi_{c 1} \rightarrow \gamma J / \Psi \rightarrow \gamma e^{+} e^{-}
$$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Psi^{\prime} \rightarrow \gamma \chi_{c 1} \rightarrow \gamma \gamma \mathrm{~J} / \Psi \rightarrow \gamma \gamma \mathrm{e}^{+} \mathrm{e}^{-}
$$

Cross Section

Experimental Requirements

$p_{\text {beam }}=15 \mathrm{GeV} / \mathrm{c}, \mathrm{s}=30 \mathrm{GeV}^{2}$

Estimates for pbeam $=15 \mathrm{GeV} / \mathrm{c}$

- Photon kinematics:

$$
E_{Y}=15.5 \ldots 0.5 \mathrm{GeV} @ 0^{\circ} \ldots 180^{\circ}
$$

- Photon angle in CMS and transverse momentum are 'large' for wide angle Compton:
$\mathrm{p}_{\mathrm{T}}=$ few 100 MeV ... 2.7 GeV
- Interesting range in Lab around $\mathrm{E}_{\mathrm{Y}}=8 \mathrm{GeV}$ and $\theta=20^{\circ}$
$\Rightarrow 4 \pi$ calorimeter needed !
- Background suppression by
- Large acceptance charged particle detector veto
- Good resolution calorimeter for check of exclusivity (momentum balance)
- Large acceptance neutral particle veto (neutrons)

Transition Distribution Amplitudes

$\bar{p} p \rightarrow \gamma^{*} \pi^{0} \rightarrow e^{+} e^{-} \gamma \gamma \quad$ proton-pion
$\bar{p} p \rightarrow \gamma^{*} \gamma \rightarrow e^{+} e^{-} \gamma \quad$ proton - photon
-TDAs extend the GPD concept further, to nondiagonal matrix elements [B.Pire, L.Szymanowski, PLB 622 (2005) 83]

- Impact parameter space interpretation as for GPDs
- Fourier transform gives a
 transverse picture of the pion cloud in the proton

Time-like Proton Form Factors

Crossed channel

$$
p \bar{p} \rightarrow e^{+} e^{-}
$$

$$
\frac{\mathbf{d} \sigma}{\mathbf{d} \cos \theta}=\frac{\pi \alpha^{2}}{2 \mathbf{x s}}\left[\left|\mathbf{G}_{\mathbf{M}}\right|^{2}\left(1+\cos ^{2} \theta^{*}\right)+\frac{4 \mathbf{m}_{\mathbf{p}}^{2}}{\mathbf{s}}\left|\mathbf{G}_{\mathbf{E}}\right|^{2} \sin ^{2} \theta^{*}\right]
$$

- PANDA:
- Wide kinematical range
- Large solid angle coverage
- Large statistics
- Goals:
- To measure time-like FF from threshold up to high $s=q^{2}$ in one experiment (reduced systematic error)
- To compare with space-like FFs (pQCD at large s?)
\Rightarrow High-quality measurement of both G_{E} and G_{M}

PANDA range

Hard Exclusive Reactions at PANDA

First Simulation Results (G.Serbanut)

	$\gamma \gamma$	$\pi^{0} \gamma$	$\pi^{0} \pi^{0}$
generated events	10000	10000	100000
events with 2 clusters	7081	982	1404
events after all cuts	5675	91	17
surviving yield	56.7%	0.9%	0.017%
estimated cross section (pb)	15	420	17500
accepted cross section after cuts (pb)	8.5	3.78	2.98
relative contributions	55%	25%	20%

PANDA Magnet Design

- Superconducting solenoid, inner radius 80 cm , length of 2.5 m , max field 2 T .
- The length forward of the target allows a reasonable momentum resolution even at the smallest polar angles $\left(5^{\circ}\right)$ detected only in the solenoid.
- Forward Spectrometer dipole magnet at 3.5 m to 5.5 m downstream of the target, with a 1 m gap and a maximum bending power of 2 Tm .

Micro Vertex Detector

- good vertex reconstruction mandatory for wide variety of physics channels
- need to cover large momentum range and high rates
- low material budget and $100 \mu \mathrm{~m}$ resolution

- go for pixel detectors

Central Tracking System

- large volume central tracker: 11 double layers Straw Tubes
- parallel and stereo layers for space point reconstruction
- small radiation length and reasonable resolution
- high rate capability
- possible alternative: TPC

Hypernuclei

- Hypernuclei $=$ nuclei containing hyperons

- Strangeness \Rightarrow study nuclear spectroscopy with and additional degree of freedom
- \wedge lifetime $2.6 \times 10^{-10} \mathrm{~S}$
- $\sim 35 \wedge$ and $6 \wedge \wedge$ hypernuclei experimentally established

O. Hashimoto, H. Tamưra (Tohoku U.) . 2006. 90pp.

Published in Prog.Part.Nucl.Phys.57:564-653,2006.

Production of $\wedge \wedge$ Hypernuclei at PANDA

3. γ-spectroscopy
Expected Event Rate ~ 500/day

Generalised Parton Distributions

e functions of three variables:
$\mathrm{x}, \xi, \mathrm{t}$
e H_{q} : nucleon spin preserved, E_{q} : nucleon spin flipped
e H_{q} : unpolarised \tilde{H}_{q} : polarised
Q 4 (chirality conserving) quark GPDs: $H_{q}(x, \xi, t), \tilde{H}_{q}(x, \xi, t)$, $E_{q}(x, \xi, t), \tilde{E}_{q}(x, \xi, t)$
e parton distribution functions $q(x)=H_{q}(x, 0,0)$
$\Delta q(x)=\tilde{H}_{q}(x, 0,0)$

- $q(-x)=-\bar{q}(x)$
$\Delta q(-x)=\Delta \bar{q}(x)$
e form factors
$F_{1}^{q}(t)=\int_{-1}^{1} d x H^{q}(x, \xi, t)$
$F_{2}^{q}(t)=\int_{-1}^{1} d x E^{q}(x, \xi, t)$
$g_{a}^{q}(t)=\int_{-1}^{1} d x \tilde{H}^{q}(x, \xi, t)$
$h_{a}^{q}(t)=\int_{-1}^{1} d x \tilde{E}^{q}(x, \xi, t)$
e quark orbital angular momentum

$$
\begin{aligned}
J_{q} & =\frac{1}{2} \int_{-1}^{1} x d x\left[H_{q}+E_{q}\right] \\
& =\frac{1}{2} \Delta \Sigma+L_{q} \quad[\text { X.Ji 1997] }
\end{aligned}
$$

Calculated cross section

GPDs - How it all fits together

Deeply Virtual
 Compton Scattering

Crossed Compton Scattering

Hadron Tomography

- GPDs at $\xi=0$ can be used to obtain quark densities in the mixed representation of longitudinal momentum and transverse position in the infinite momentum frame

$$
q\left(x, b_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}^{2}}{(2 \pi)^{2}} H\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \Delta_{\perp} \cdot b_{\perp}}
$$

- M.Burkhardt, PRD62 071503 (2000)
- J.R.Ralston, B.Pire, PRD66 111501 (2002)
- M.Burkhardt, hep-ph/0611256, 20.Nov. 2006

Hadron Tomography

-GPD Model restricted by form factor data exists: [P.Kroll, hep-ph/0612026, 4.Dec.2006]

u-quark (left) and d-quark (right) density in impact parameter plane. Proton polarised in x-direction

PANDA Detector Requirements

- multi purpose modular detector for wide physics program
- capable of high reaction rates
- precise vertex reconstruction for fast decaying particles
high momentum resolution in magnetic field
- Identification of charged particles in a large momentum range
- Energy reconstruction for neutral particles
- large angular and momentum acceptance (cover full solid angle)

Full PANDA Detector Simulation

- relevant channel for Charmonium studies or exotics searches
- produced on resonance
- full detector simulation plus background
- large acceptance and reconstruction efficiency
 $\mathrm{Etac} \rightarrow \mathrm{KOs} \mathrm{k} \pi$
- clear signal with good resolution

$$
\mathrm{p} \overline{\mathrm{p}} \rightarrow \eta_{\mathrm{c}} \rightarrow \mathrm{~K}_{\mathrm{s}}^{0} \mathrm{~K}^{ \pm} \pi^{\mp}
$$

Sivers Function from HERMES Data

Fits to the Hermes data

"Prediction" of the Compass data

Assuming $f_{1 T}^{\perp, u}(x)=S_{u} x(1-x) u(x) ; \quad f_{1 T}^{\perp, d}(x)=S_{d} x(1-x) u(x)$

$$
S_{u}=-0.81 \pm 0.07, \quad S_{d}=1.86 \pm 0.28
$$

Vogelsang and Yuan, Phys.Rev.D72(2005)054028 [hep-ph/0507266] Striking flavor dependence of the Sivers function

Different Sivers Function Extractions

M.Anselmino et al, hep-ph/0511017

Ref.[20] M.Anselmino et al, Phys.Rev.D72(2005)094007[hep-ph/0507181] Ref.[21] W.Vogelsang \& F.Yuan, Phys.Rev.D72(2005)054028[hep-ph/0507266] Ref.[23] J.C.Collins et al, hep-ph/0510342

Satisfactory agreement between different models to fit HERMS data.

Comparing Boer-Mulders Function Models

Z. Lu, B.Q. Ma and I. Schmidt, Phys. Lett. B639(2006)494.

(a)
(b)
(c)
(a)MIT bag model: F. Yuan, Phys. Lett. B575,45(2003).
(b)Spectator model with axial-vector diquark: Bacchetta, Schaefer \& Yang, Phys. Lett. B578,109(2004).
(c)Large- N_{c} limit, P.V. Pobylitsa, hep-ph/0301236

Knowledge of the Boer-Mulders functions is very poor.

