

1942-49

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

High-energy hadron physics at J-PARC.

S. Kumano *KEK* Japan

High-Energy Hadron Physics at J-PARC

Shunzo Kumano High Energy Accelerator Research Organization (KEK) Graduate University for Advanced Studies (GUAS)

shunzo.kumano@kek.jp
http://research.kek.jp/people/kumanos/

Sixth International Conference on Perspectives in Hadronic Physics ITCP, Trieste, Italy

> May 12 – 16, 2008 (Talk on May 16)

Contents

- **1. Introduction to high-energy hadron physics at J-PARC**
 - Introduction to the J-PARC facility
 - Possible projects with 30 50 GeV proton beam
- 2. Structure functions
 - **Possible roles of J-PARC projects in**
 - Unpolarized and Polarized parton distribution functions (PDFs), Nuclear PDFs Topics related to my studies
 - Fragmentation functions
 - Tensor structure functions

Part I

Introduction to High-Energy Hadron Physics at J-PARC

J-PARC Facility

J-PARC Location

J-PARC (Japan Proton Accelerator Research Complex)

http://j-parc.jp/index-e.html

Joint facility of JAEA and KEK.

JAEA (Japan Atomic Energy Agency) KEK (High Energy Accelerator Research Organization)

Bird's-eye view

Particle and Nuclear Physics

High-Intensity Frontier of Proton Accelerator

High-intensity proton beam → High-intensity secondary beams (Neutrino, Kaon, Pion, Neutron ...)

Power map of worldwide proton accelerators

New nuclei with strangeness

New hadronic many-body system by extending the flavor degrees of freedom.

Aerial photograph on January 28, 2008

Hadron facility

Hadron Facility in May 2007 and <u>a possible</u> schedule for beam lines

Hadron Facility on April 11, 2008

High-Momentum Beam Line (30, 50 GeV Proton)

This beam line should be interesting for the audience of this workshop.

General comments on J-PARC projects with 30 – 50 GeV proton beam

J-PARC workshops on hadron physics

• J-PARC-HS05,

http://www-conf.kek.jp/J-PARC-HS05/program.html

• J-PARC-NP07,

http://www-conf.kek.jp/NP_JPARC/program.html

• J-PARC-NP08, http://j-parc.jp/NP08/

Refs. My talks on "Possible Hadron Physics at J-PARC"

in Trieste (2006) http://www.pg.infn.it/hadronic06/

in Ghent (2007) http://inwpent5.ugent.be/workshop07/

in Mito (2008) http://j-parc.jp/NP08/

Haron Physics at J-PARC

Act project

- Strangeness nuclear physics (1st experiment) Kaon and pion beams
- Exotic hadrons
- Hadrons in nuclear medium Proton beam
- Hard processes (50 GeV recovery)
- Nucleon spin (proton polarization)
- Quark-hadron matter (heavy ion) My talk is related to

Hadron physics with 30 – 50 GeV proton beam

30 GeV • J/ψ production

- Transition: Hadron → Quark degrees of freedom
- Hadron interactions in nuclear medium
- Short-range NN interactions
- GPDs

• ...

50 GeV • **Drell-Yan** (unpolarized PDFs)

- Single spin asymmetries
- Tensor structure at 50 GeV (Spin-1 hadrons)
- Fragmentation functions (Hadron productions)

• •••

...

Proton-beam polarization

- Drell-Yan: Double asymmetries (Polarized PDFs)
- Complimentary to RHIC-Spin (large-x physics)

Flavor asymmetric antiquark distributions: $\overline{\mathbf{u}}$ / d

J.-C. Peng's talk

J-PARC proposal, M. Bai et al. (2007)

This project is suitable for probing "peripheral structure" of the nucleon.

http://www.acuonline.edu/academics /cas/physics/research/e906.html

SK, Phys. Rep. 303 (1998) 183;G. T. Garvey and J.-C. Peng,Prog. Part. Nucl. Phys. 47 (2001) 203.

Elastic Scattering: $A+B \rightarrow C+D$ at large p_T

Brodsky@J-PARC-HS05

Transition from hadron degrees of freedom to quark-gluon d.o.f.

Constituent counting rule

$$\frac{d\sigma}{dt}(AB \to CD): s^{2-n} f(\theta_{c.m.})$$

 $n = n_A + n_B + n_C + c_D$ (total number of interacting elementary particles)

J-PARC:
$$p + p \rightarrow p + p$$

L.Y. Zhu et al., PRL 91 (2003) 022003

Color Transparency

"Probe of dynamics of elementary reactions"

At large momentum transfer, a small-size component of the hadron wave function should dominate. This small-size hadron could freely pass through nuclear medium. (Transparent)

Generalized Parton Distributions (GPDs)

 $q \sim \frac{\gamma^*}{k+q} \qquad \gamma \sim \frac{q-\Delta}{k+q} P = \frac{p+p'}{2}, \ \Delta = p'-p$ of off-forward matrix. $k \rightarrow \frac{q}{2p \cdot q}$ **GPDs are defined as correlation Momentum transfer squared** $t = \Delta^2$ $p'=p+\Delta$ Skewdness parameter $\xi = \frac{p^+ - p'^+}{p^+ + p'^+} = -\frac{\Delta^+}{2P^+}$ р $t = \Lambda^2$ $\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p' \left| \overline{\psi}(-z/2)\gamma^{+}\psi(z/2) \right| p \right\rangle \Big|_{z^{+}=0, \overline{z}_{\perp}=0} = \frac{1}{2P^{+}} \left[H(x,\xi,t)\overline{u}(p')\gamma^{+}u(p) + E(x,\xi,t)\overline{u}(p')\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2M}u(p) \right]$ $\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p' | \bar{\psi}(-z/2)\gamma^{+}\gamma_{5}\psi(z/2) | p \rangle |_{z^{+}=0, \bar{z}_{\perp}=0} = \frac{1}{2P^{+}} \left[\hat{H}(x,\xi,t)\bar{u}(p')\gamma^{+}\gamma_{5}u(p) + \hat{E}(x,\xi,t)\bar{u}(p')\frac{\gamma_{5}\Delta^{+}}{2M}u(p) \right]$ **Forward limit:** PDFs $H(x,\xi,t)|_{\xi=t=0} = f(x)$, $H(x,\xi,t)|_{\xi=t=0} = \Delta f(x)$ There is no analog in E and $E'_{?}$ **First moments: Form factors** Dirac and Pauli form factors $F_{1,}F_{2}$ $\int dx H(x,\xi,t) = F_{1}(t), \quad \int dx E(x,\xi,t) = F_{2}(t)$ Axial and Pseudoscalar form factors G_A , $G_P \int dx H(x,\xi,t) = G_A(t)$, $\int dx H(x,\xi,t) = G_P(t)$ Second moments: Angular momenta Sum rule: $J_q = \frac{1}{2} \int dx \, x \left[H_q(x,\xi,t=0) + E_q(x,\xi,t=0) \right], \quad J_q = \frac{1}{2} \Delta q + L_q$

GPDs in different *x* regions and GPDs at J-PARC

 $-1 < x < \xi \quad (x + \xi < 0, \ x - \xi < 0) \qquad \xi < x < 1 \quad (x + \xi > 0, \ x - \xi > 0) \\ -\xi < x < \xi \quad (x + \xi > 0, \ x - \xi < 0)$

Quark distribution

Emission of quark with momentum fraction $x + \xi$ Absorption of quark with momentum fraction $x - \xi$

Meson distribution amplitude

Emission of quark with momentum fraction $x + \xi$ Emission of antiquark with momentum fraction ξ -x

Antiquark distribution

Emission of antiquark with momentum fraction ξ -x Absorption of antiquark with momentum fraction -x- ξ

GPDs at J-PARC: SK, M. Strikman, K. Sudoh, in progress.

Short-range NN interaction

Ciofi degli Atti@J-PARC-NP07 Strikman@INPC07

E. Piasetzky et al., PRL97 (2006) 162504 • Short-range repulsive core, Tensor force

- Quark degrees of freedom
- Cold dense nuclear matter, Neutron star

 $V(\mathbf{r})$

0.4 fm

Nuclei do not collapse \rightarrow Short-range repulsive core

Nucleon size r ≈ 0.8 fm
Average nucleon separation in a nucleus: R ≈ 2 fm ~ 2r
→The short-range part is important as the density becomes larger (neutron star).

A(p, 2pN)X experiment for short range correlation

• Higher-twist Qiu, Sterman; Koike@J-PARC-HS05

Part II

Parton Distribution Functions and

Fragmentation Functions

in connection with J-PARC

Unpolarized Parton Distribution Functions (PDFs) in the nucleon

The PDFs could be obtained from http://durpdg.dur.ac.uk/hepdata/pdf.html

Nuclear

Parton Distribution Functions

http://research.kek.jp/people/kumanos/nuclp.html

Experimental data: total number = 1241

Functional form Nuclear PDFs "per nucleon"

If there were no nuclear modification

 $Au^{A}(x) = Zu^{p}(x) + Nu^{n}(x), \quad Ad^{A}(x) = Zd^{p}(x) + Nd^{n}(x) \qquad p = \text{proton}, \quad n = \text{neutron}$

Isospin symmetry : $u^n = d^p \equiv d$, $d^n = u^p \equiv u$

$$\rightarrow u^{A}(x) = \frac{Zu(x) + Nd(x)}{A}, \qquad d^{A}(x) = \frac{Zd(x) + Nu(x)}{A}$$

Take account of nuclear effects by $w_i(x, A)$

$$u_{v}^{A}(x) = w_{u_{v}}(x,A) \frac{Zu_{v}(x) + Nd_{v}(x)}{A}, \quad d_{v}^{A}(x) = w_{d_{v}}(x,A) \frac{Zd_{v}(x) + Nu_{v}(x)}{A}$$

$$\overline{u}^{A}(x) = w_{\overline{q}}(x,A) \frac{Z\overline{u}(x) + N\overline{d}(x)}{A}, \quad \overline{d}^{A}(x) = w_{\overline{q}}(x,A) \frac{Z\overline{d}(x) + N\overline{u}(x)}{A}$$

$$\overline{s}^{A}(x) = w_{\overline{q}}(x,A)\overline{s}(x)$$

$$at \ Q^{2} = 1 \ \text{GeV}^{2}(\equiv Q_{0}^{2})$$

Functional form of $w_i(x, A)$

$$f_i^A(x,Q_0^2) = w_i(x,A)f_i(x,Q_0^2)$$
 $i = u_v, d_v, \bar{u}, \bar{d}, \bar{s}, g$

Note: The region *x* > 1 cannot be described by this parametrization.

A simple function = cubic polynomial

Three constraints

Nuclear charge:
$$Z = A \int dx \left[\frac{2}{3} \left(u^{A} - \overline{u}^{A} \right) - \frac{1}{3} \left(d^{A} - \overline{d}^{A} \right) - \frac{1}{3} \left(s^{A} - \overline{s}^{A} \right) \right] = A \int dx \left[\frac{2}{3} u_{v}^{A} - \frac{1}{3} d_{v}^{A} \right]$$

Baryon number: $A = A \int dx \left[\frac{1}{3} \left(u^{A} - \overline{u}^{A} \right) + \frac{1}{3} \left(d^{A} - \overline{d}^{A} \right) + \frac{1}{3} \left(s^{A} - \overline{s}^{A} \right) \right] = A \int dx \left[\frac{1}{3} u_{v}^{A} + \frac{1}{3} d_{v}^{A} \right]$
Momentum: $A = A \int dx \left[u^{A} + \overline{u}^{A} + d^{A} + \overline{d}^{A} + s^{A} + \overline{s}^{A} + g \right]$
 $= A \int dx \left[u_{v}^{A} + d_{v}^{A} + 2 \left(\overline{u}^{A} + \overline{d}^{A} + \overline{s}^{A} \right) + g \right]$

Analysis conditions

- Nucleonic PDFs: **MRST98** [Λ_{OCD} = 174 MeV (LO), 300 MeV (NLO)]
- Total number of parameter : 12
- Total number of data : 1241 (Q²≥1 GeV²)

896 (F_2^A/F_2^D) + 293 (F_2^A/F_2^A') + 52 (Drell-Yan)

• Subroutine for χ^2 analysis : CERN-Minuit

or
$$\chi^2$$
 analysis : CERN-Minuit
 $\chi^2 = \sum_i \frac{\left(R_i^{data} - R_i^{theo}\right)^2}{\left(\sigma_i^{data}\right)^2}$
 $R = \frac{F_2^A}{F_2^D}, \quad \frac{F_2^A}{F_2^{A'}}, \quad \frac{\sigma^{pA}}{\sigma^{pA'}}$
 $\sigma_i^{data} = \sqrt{\left(\sigma_i^{sys}\right)^2 + \left(\sigma_i^{stat}\right)^2}$

 χ^2_{min} (/d.o.f.) = 1653.3 (1.35) LO = 1485.9 (1.21) NLO

• Error estimate : Hessian method

$$\left[\delta F(x)\right]^2 = \Delta \chi^2 \sum_{i,j} \frac{\partial F(x)}{\partial \xi_i} H_{ij}^{-1} \frac{\partial F(x)}{\partial \xi_j}$$

 H_{ii} = Hessian $\xi_i = \text{parameter}$

Comparison with F_2^{Ca}/F_2^{D} & $\sigma_{DY}^{pCa}/\sigma_{DY}^{pD}$ data

(Rexp-Rtheo)/Rtheo at the same Q² points

Polarized Parton Distribution Functions

http://spin.riken.bnl.gov/aac/

Nucleon Spin

Naïve Quark Model

 $\Delta \Sigma = \Delta u_{v} + \Delta d_{v} = 1$

Electron / muon scattering $\Delta\Sigma\approx 0.1\sim 0.3$

Almost none of nucleon spin is carried by quarks!

QCD Sea-quarks and gluons? Gluon: ΔG

Sea-quarks: Δq_{sea}

Recent data indicate ΔG is small at $x \sim 0.1$.

Orbital angular momenta ?

 L_{q}, L_{g}

Future experiments

Nucleon Spin:
$$\frac{1}{2} = \frac{1}{2} \left(\Delta u_{\mu} + \Delta d_{\mu} + \Delta q_{\mu} \right) + \Delta G + L_{q} + L_{g}$$
$$\Delta \Sigma$$

General strategies for determining polarized PDFs

Spin asymmetry
$$A_1$$
; $g_1 \frac{2x(1+R)}{F_2}$
 $R \equiv \frac{F_L}{2xF_1} = \frac{F_2 - 2xF_1}{2xF_1}$
 $g_1(x,Q^2) = \frac{1}{2} \sum_q e_q^2 \int_x^1 \frac{dy}{y} \left[\Delta q(x/y,Q^2) + \Delta \overline{q}(x/y,Q^2) \right] \left[\delta(1-y) + \frac{\alpha_s(Q^2)}{2\pi} \Delta C_q(y) + \cdots \right]$
 $+ \frac{1}{2} \langle e_q^2 \rangle \int_x^1 \frac{dy}{y} \Delta g(x/y,Q^2) \left[n_f \frac{\alpha_s(Q^2)}{2\pi} \Delta C_g(y) + \cdots \right] \langle e_q^2 \rangle = \frac{1}{n_f} \sum_q e_q^2$

Leading Order (LO)Next to Leading Order (NLO) ΔC_q (ΔC_g) = quark (gluon) coefficient function

$$F_{2}(x,Q^{2}) = x \sum_{q} e_{q}^{2} \int_{x}^{1} \frac{dy}{y} \left[\frac{q(x/y,Q^{2}) + \overline{q}(x/y,Q^{2})}{\sum_{q}^{2} \overline{q}(x/y,Q^{2})} \right] \left[\delta(1-y) + \frac{\alpha_{s}(Q^{2})}{2\pi} C_{q}^{(2)}(y) + \cdots \right]$$
$$+ x \left\langle e_{q}^{2} \right\rangle \int_{x}^{1} \frac{dy}{y} \frac{g(x/y,Q^{2})}{\sum_{q}^{2} \overline{q}(x/y,Q^{2})} \left[n_{f} \frac{\alpha_{s}(Q^{2})}{2\pi} C_{g}^{(2)}(y) + \cdots \right]$$

Unpolarized PDFs

 $g + g \rightarrow q(g) + X$ processes are dominant at small p_T $q + g \rightarrow q(g) + X$ at large p_T

The π^0 production process is suitable for finding the gluon polarization Δg .

Fragmentation Functions

http://research.kek.jp/people/kumanos/ffs.html

Purposes of investigating fragmentation functions

Semi-inclusive reactions have been used for investigating

- origin of proton spin
 - $\vec{e} + \vec{p} \rightarrow e' + h + X$ (e.g. HERMES), $\vec{p} + \vec{p} \rightarrow h + X$ (RHIC-Spin)

Quark, antiquark, and gluon contributions to proton spin (flavor separation, gluon polarization)

• properties of quark-hadron matters $A + A' \rightarrow h + X$ (RHIC, LHC)

Nuclear modification

(recombination, energy loss, ...)

$$\sigma = \sum_{a,b,c} f_a(x_a, Q^2) \otimes f_b(x_b, Q^2)$$

 $\otimes \ddot{\boldsymbol{\varpi}}(ab \rightarrow cX) \otimes D_c^{\pi}(z, Q^2)$

Fragmentation Function

e⁻

Fragmentation: hadron production from a quark, antiquark, or gluon

$$z \equiv \frac{E_h}{\sqrt{s/2}} = \frac{2E_h}{Q} = \frac{E_h}{E_q}, \quad s = Q^2$$

Fragmentation function is defined by

γ, Z

 $F^{h}(z,Q^{2}) = \frac{1}{\sigma_{tot}} \frac{d\sigma(e^{+}e^{-} \to hX)}{dz}$ $\sigma_{tot} = \text{total hadronic cross section}$

Variable z • Hadron energy / Beam energy • Hadron energy / Primary quark energy

A fragmentation process occurs from quarks, antiquarks, and gluons, so that F^h is expressed by their individual contributions:

 $F^{h}(z,Q^{2}) = \sum_{i} \int_{z}^{1} \frac{dy}{y} C_{i}\left(\frac{z}{y},Q^{2}\right) D_{i}^{h}(y,Q^{2})$

 \overline{q}

q

Calculated in perturbative QCD

 $C_i(z,Q^2) = \text{coefficient function}$

Non-perturbative (determined from experiments)

 $D_i^h(z,Q^2)$ = fragmentation function of hadron h from a parton i

Comparison with pion data

$$F^{\pi^{\pm}}(z,Q^2) = \frac{1}{\sigma_{tot}} \frac{d\sigma(e^+e^- \to \pi^{\pm}X)}{dz}$$

Our fit is successful to reproduce the pion data.

The DELPHI data deviate from our fit at large z.

Rational difference between data and theory

 $F^{\pi^{\pm}}(z,Q^2)_{\text{data}} - F^{\pi^{\pm}}(z,Q^2)_{\text{theory}}$ $F^{\pi^{\pm}}(z,Q^2)$ theory

Exotic hadron search by fragmentation functions $f_0(980)$ as an example

Criteria for determining f_0 structure by its fragmentation functions

Discuss 2nd moments and functional forms (peak positions) of the fragmentation functions for f_0 by assuming the above configurations, (1), (2), (3), and (4).

Tensor Structure at High-Energies For Spin-1 Hadrons

Note: Proton-beam polarization is not needed. Polarized deuteron target is enough at J-PARC!

http://www-conf.kek.jp/J-PARC-HS05/program.html

Tensor Structure in High-energy Reactions

(Note: No polarized proton beam is needed!)

L. L. Frankfurt and M. I. Strikman, NP A405 (1983) 557. P. Hoodbhoy, R. L. Jaffe, and A. Manohar, NP B312 (1989) 571.

Structure Functions (in e scattering)

Parton Model

 $F_1 \propto \langle d\sigma \rangle$ $g_1 \propto d\sigma(\uparrow,+1) - d\sigma(\uparrow,-1)$ $b_1 \propto d\sigma(0) - \frac{d\sigma(+1) + d\sigma(-1)}{2}$ $F_1 = \frac{1}{2} \sum_{i} e_i^2 \left(q_i + \overline{q}_i \right)$ $q_i = \frac{1}{2} \left(q_i^{+1} + q_i^{0} + q_i^{-1} \right)$ $g_1 = \frac{1}{2} \sum e_i^2 \left(\Delta q_i + \Delta \overline{q}_i \right) \qquad \Delta q_i = q_{i\uparrow}^{+1} - q_{i\downarrow}^{+1}$ $\delta q_i = q_i^{\ 0} - \frac{q_i^{\ +1} + q_i^{\ -1}}{2}$ $\left[q_{\uparrow}^{H}\left(x,Q^{2}\right)\right] \qquad b_{1} = \frac{1}{2}\sum e_{i}^{2}\left(\delta q_{i} + \delta \bar{q}_{i}\right)$

Tensor Structure in Proton-Deuteron Drell-Yan

1st measurement of b₁: only in S-wave $b_1 = 0$ (HERMES) A. Airapetian et al., PRL 95 (2005) 242001. **Polarized proton-deuteron Drell-Yan** Spin asymmetries (Theory) S. Hino and SK, PR D 59 (1999) 094026, $A_{LL} = \frac{\sum_{a} e_{a}^{2} \left[\Delta q_{a}(x_{A}) \Delta \overline{q}_{a}(x_{B}) + \Delta \overline{q}_{a}(x_{A}) \Delta q_{a}(x_{B}) \right]}{\sum_{a} e_{a}^{2} \left[q_{a}(x_{A}) \overline{q}_{a}(x_{B}) + \overline{q}_{a}(x_{A}) q_{a}(x_{B}) \right]}$ D 60 (1999) 054018. (Experiment) None \rightarrow J-PARC $A_{TT} = \frac{\sin^2 \theta \cos(2\phi)}{1 + \cos^2 \theta} \frac{\sum_a e_a^2 \left[\Delta_T q_a(x_A) \Delta_T \overline{q}_a(x_B) + \Delta_T \overline{q}_a(x_A) \Delta_T q_a(x_B) \right]}{\sum_a e_a^2 \left[q_a(x_A) \overline{q}_a(x_B) + \overline{q}_a(x_A) q_a(x_B) \right]} \qquad \delta q_i = q_i^0 - \frac{q_i^{+1} + q_i^{-1}}{2}$ Note: $\delta \neq$ transversity in my notation $A_{UQ_0} = \frac{\sum_a e_a^2 \left[q_a(x_A) \delta \overline{q}_a(x_B) + \overline{q}_a(x_A) \delta q_a(x_B) \right]}{\sum_a e_a^2 \left[q_a(x_A) \overline{q}_a(x_B) + \overline{q}_a(x_A) q_a(x_B) \right]}$ Unpolarized proton + Tensor polarized deuteron $\int dx \, b_1^D(x) = 0 + \frac{1}{9} \left(\delta Q + \delta \overline{Q} \right)_{\text{sea}}$

(Note: No polarized proton beam is needed!)

Unique advantage of J-PARC ($\delta \overline{q}$ measurement)

b₁ for spin-1 particles

Our works related to this talk

- (1) Overview on "Possible Hadron Physics at J-PARC" SK, Nucl. Phys. A782 (2007) 442.
- (2) ubar/dbar SK, Phys. Rep. 303 (1998) 183.
- (3) Nuclear PDFs
 - M. Hirai, SK, and M. Miyama, Phys. Rev. D 64 (2001) 034003; M. Hirai, SK, and T.-H. Nagai, Phys. Rev. C 70 (2004) 044905; C 76 (2007) 065207.
- (4) Polarized PDFs, Asymmetry Analysis Collaboration (AAC)
 Y. Goto *et al.*, Phys. Rev. D 62 (2000) 034017;
 M. Hirai, SK, N. Saito, Phys. Rev. D 69 (2004) 054021; D 74 (2006) 014015.
- (5) Global analyses for FFs of π, K, and p + their uncertainties M. Hirai, SK, T.-H. Nagai, and K. Sudoh, Phys. Rev. D75 (2007) 094009; Exotic hadron search by using FFs e.g. for f₀(980) M. Hirai, SK, M. Oka, and K. Sudoh, Phys. Rev. D77 (2008) 017504.
- (6) Sum rule for $b_1(x)$
 - F. E. Close and SK, Phys. Rev. D 42 (1990) 2377.
 General formalism for polarized proton+deuteron Drell-Yan
 S. Hino and SK, Phys. Rev. D 59 (1999) 094026; D 60 (1999) 054018.

Summary

J-PARC will be an important facility in hadron and nuclear physics communities.

In high-energy hadron physics

- Structure functions of hadrons
- Fragmentation
- Hadron interactions in nuclear medium
- Short-range NN interactions
- Hadron → Quark degrees of freedom
- Hadron spin

I introduced some topics. More contributions are needed for the hadron project at J-PARC!

Need to discuss possible topics with 30 GeV, 50 GeV, and 50 GeV polarized proton beams.

The End

The End