

1942-45

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

The FAIR project.

K. Peters KPIII/HPI, GSI Darmstadt & IKF JWGU Frankfurt Germany

Klaus Peters KPIII/HPI, GSI Darmstadt & IKF, JWGU Frankfurt

Sixth International Conference on Perspectives in Hadronic Physics

The Abdus Salam International Centre for Theoretical Physics

May 16, 2008

Nov. 7, FAIR Start-Event – last week

Offical Start Signed By 12 Partners

Volume in Phase A 940 M€

16 Countries

• Strong and weak interaction critically determine the structure of matter at the microscopic level

Goal: Comprehensive and quantitative understanding

• Many-body aspects play an important role at all levels of the hierarchical structure of matter

Goal: Investigate many-body effects at all scales

Accelerator Chain

The Nuclear Landscape

Schottky Frequency Spectrum

Klaus Peters - Hadronphysics @ FAIR

Schottky Frequency Spectrum

Phase diagram of strongly interacting matter

- In-medium modifications of hadrons onset of chiral symmetry restoration at high ρ_B measure: ρ , ω , $\phi \rightarrow e^+e^-$ and open charm (D mesons)
- Strangeness in matter (strange matter?) enhanced strangeness production ? measure: K, Λ, Σ, Ξ, Ω
- Indications for deconfinement at high ρ_B anomalous charmonium suppression ? measure: J/ ψ , D
- Critical point

event-by-event fluctuations

• Color superconductivity precursor effects ?

CBM @ FAIR

- Radiation hard Silicon Tracking System (pixel/strip) in a magnetic dipole field
- Electron detectors: RICH & TRD & ECAL: pion suppression better 10⁴
- Hadron identification: TOF-RPC
- Measurement of photons, π, η, and muons: electromagnetic calorimeter (ECAL)
- High speed data acquisition and trigger system

The Potential – A Guide

Exotic Quantum Numbers with Simple Hybrids

- S-Wave + Gluon $(q\bar{q})_8 g$ with $()_8 =$ colored
- ${}^{1}S_{0} \uparrow \downarrow {}^{3}S_{1} \uparrow \uparrow$ combined with 1⁺ or 1⁻ gluon

X(3872) and Confirmation Klaus Peters - Hadronphysics @ FAIR hep-ex/0312021 hep-ex/0405004 3000 CDF II 1400 2 800-DØ 1300 X(3872) Candidates / 10 MeV/c 30 2500-1200 Candidates/ 5 MeV/c² 1000-0001 0001 1100 ψ**(2S)** 600 1000 Events/5 MeV/c² 0 9.4σ 900 3.80 3.85 3.90 3.95 400 2 10 ndidate 200 11.6 σ 500 2.9 3 3.1 3.2 3.3 $M_{\mu^{\star}\mu^{\star}}$ (GeV/c²) 0 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 $J/\psi\pi^{*}\pi^{-}\,\text{Mass}~(\text{GeV/c}^2)$ 3840 3860 3880 3900 3820 $M(\pi^{\dagger}\pi^{-}J/\psi)$ (MeV/c²) Phys. Rev. Lett. 91(2003)262001 152 Mill. BB នា XI3872) BABAR 10Events' 5 MeV/c² Mary Mary Marken 10 hep-ex/0406022 3.53.754.254.54.754

state	mass (MeV)	width (MeV)	production/decay mode	comments	ref
h_c	$3524.4 \pm 0.6 \pm 0.4$		$\psi(2S) \to \pi^0 h_c \to (\gamma \gamma)(\gamma \eta_c)$	\approx CQM / tests spin dependence	CLEO[85]
η_c'	$3654\pm6\pm8$	< 55	$B \to K \eta_c^\prime \to K K_S K \pi$	\approx CQM / tests hyperfine splitting	Belle[88]
	$3642.9 \pm 3.1 \pm 1.5$	$6.3\pm12.4\pm4.0$	$e^+e^- ightarrow \eta_c' J/\psi$		CLEO[91]
	$3630.8 \pm 3.4 \pm 1.0$	$17.0\pm8.0\pm2.5$	$\gamma\gamma ightarrow\eta_c^\prime ightarrow K_SK\pi$		BaBar[92]
X(3872)	$3872.0 \pm 0.6 \pm 0.5$	< 2.3 95% C.L.	$B ightarrow KX ightarrow K\pi\pi J/\psi$	molecule, cusp, tetraquark	Belle[32]
	3873.4 ± 1.4	100	$B ightarrow KX ightarrow K\pi\pi J/\psi$		BaBar[35]
		555 c	$B ightarrow X ightarrow \pi \pi \pi J/\psi$		Belle[43]
		-	$B o X o \gamma J/\psi$		Belle[43]
	$3871.3 \pm 0.7 \pm 0.4$	-	$p \overline{p} ightarrow X ightarrow \pi \pi J/\psi$		CDF[33]
	$3871.8 \pm 3.1 \pm 3.0$	22	$par{p} o X o \pi\pi J/\psi$		DØ[34]
	$\mathrm{avg} = 3871.9 \pm 0.5$				
X(3940)	$3943\pm 6\pm 6$	< 52	$e^+e^- ightarrow J/\psi X ightarrow J/\psi D ar{D}^*$	χ_{c1}', η_c'' / needs confirmation	Belle[94]
Y(3940)	$3943 \pm 11 \pm 13$	$87\pm22\pm26$	$B ightarrow KY ightarrow K\pi\pi\pi J/\psi$	needs confirmation	Belle[103]
Z(3930)	$3931 \pm 4 \pm 2$	$20\pm8\pm3$	$\gamma\gamma ightarrow Z ightarrow Dar{D}$	$\chi_{c2}' / pprox { m CQM}$	Belle[105]
Y(4260)	$4259\pm8\pm4$	$88\pm23\pm5$	$e^+e^- ightarrow \gamma_{ISR} Y ightarrow \gamma_{ISR} J/\psi\pi\pi$	hybrid?/ needs confirmation	BaBar[107]
$D_s(2317)$	$2317.3 \pm 0.4 \pm 0.8$	< 10	$e^+e^- ightarrow D_s(2317) ightarrow D_s \pi^0$	molecule, tetraquark, shifted $c\bar{s}$	BaBar[118]
	$2319.8 \pm 2.1 \pm 2.0$	pprox 0	$B ightarrow ar{D} D_s(2317) ightarrow ar{D} D_s \pi^0$		Belle[136]
	$2318.5 \pm 1.2 \pm 1.1$		$D_s(2317) ightarrow D_s \pi^0$		CLEO[129]
$D_s(2460)$	$2463.6 \pm 1.7 \pm 1.2$	<790% C.L.	$D_s(2460) ightarrow D_s^* \pi^0$	molecule, tetraquark, shifted $c\bar{s}$	CLEO[129]
	$2458.0 \pm 1.0 \pm 1.0$	resolution	$D_s(2460) ightarrow D_s \pi^0 \gamma$		BaBar[131]
	$2459.2 \pm 1.6 \pm 2.0$	pprox 0	$B \to \bar{D}D_s(2460) \to \bar{D}D_s^*\pi^0, \ \bar{D}D_s\gamma$		Belle[136]
$D_s(2630)$	2632.6 ± 1.6	< 17 90% C.L.	$D_s \to D^0 K^+$ and $D_s \eta$	artefact	SELEX[163]
B_c	$6285.7 \pm 5.3 \pm 1.2$	$0.474 \pm 0.07 \pm 0.33~{\rm ps}$	$par{p} ightarrow B_c ightarrow J/\psi \pi^{\pm}$	$\approx CQM$	CDF[175]

Why Antiprotons for Heavy Flavour Spectroscopy

Klaus Peters - Hadronphysics @ FAIR

- high resolution spectroscopy with \bar{p} -beams in formation experiments: $\Delta E \approx \Delta E beam \rightarrow Precision Frontier$
- high yield of gluonic and radial excitations in pp glueballs, charmed hybrids → Discovery Potential
- event tagging by pair wise associated production, (particle, anti-particle) e.g. pp→DD
- large \sqrt{s} at low momentum transfer

important for in-medium "implantation" of hadrons: study of in-medium effects of charmed states

HESR – Storage Ring for Antiprotons

Klaus Peters - Hadronphysics @ FAIR

Parameters of HESR

- Injection of p at 3.7 GeV
- Slow synchrotron (1.5-14.5 GeV/c)
- Storage ring for internal target operation
- Luminosity up to L~ 2x10³² cm⁻²s⁻¹
- Beam cooling (stochastic & electron)

Resonance scan

- Energy resolution ~50 keV
- Tune E_{CM} to probe resonance
- Get precise mass and width

p cross sections – exclusive final states

p cross sections – exclusive final states

SUP

p

- High luminosity mode
- Luminosity = $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

- $\delta p/p \sim 10^{-4}$ (stochastic cooling)
- High resolution mode
 - $\delta p/p \sim \text{few } 10^{-5} \text{ (+electron cooling)}$ Luminosity > $10^{31} \text{ cm}^{-2}\text{s}^{-1}$
- Gas-Jet/Pellet/Wire Target

Ultimate Resolution: neutral atom traps and laser cooling to milli-Kelvin temperatures - Long Term Project - FAIR

G S I 33

FLAIR – Facility for Low-energy Antiproton and Ion Research

