

1942-44

Sixth International Conference on Perspectives in Hadronic Physics

12 - 16 May 2008

Baryon Resonances and Strong Decays

W. Plessas University of Graz Austria

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

GBE CQM OGE CQM II CQM

Spectra

Ew Structur PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics OM Classif. Wave Function Decays

Summary

Baryon Resonances and Strong Decays

Willibald Plessas

Theoretical Physics / Institute of Physics University of Graz, Austria

Trieste, May 12, 2008

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Outline

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

Ew Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

Theoretical Framework

Point form QM and relativistic CQM

Baryon Spectroscopy

Electroweak Nucleon and Hyperon Structure

Hadronic Decays

Multiplet Classification of Baryons

Formalism

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

Ew Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Function Decays

Summary

Relativistic quantum mechanics (RQM)

i.e. **quantum theory** respecting **Poincaré invariance** (theory on \mathcal{H} corresponding to a finite number of particles, not a field theory)

Invariant mass operator

$$\hat{M} = \hat{M}_{ extsf{free}} + \hat{M}_{ extsf{int}}$$

Eigenvalue equations

$$\hat{M} \ket{P, J, \Sigma} = M \ket{P, J, \Sigma}$$
, $\hat{M}^2 = \hat{P}^{\mu} \hat{P}_{\mu}$
 $\hat{P}^{\mu} \ket{P, J, \Sigma} = P^{\mu} \ket{P, J, \Sigma}$, $\hat{P}^{\mu} = \hat{M} \hat{V}^{\mu}$

・ロト・日本・日本・日本・日本・日本

Relativistic Constituent Quark Model (RCQM)

Interacting mass operator

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

Ew Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

$$\hat{M} = \hat{M}_{free} + \hat{M}_{int}$$

$$\hat{M}_{free} = \sqrt{\hat{H}_0^2 - \hat{\vec{P}}_{free}^2}$$

$$\hat{M}_{int} = \sum_{i < j}^3 \hat{V}_{ij} = \sum_{i < j} [\hat{V}_{ij}^{conf} + \hat{V}_{ij}^{hf}]$$

fulfilling the **Poincaré algebra**

$$\begin{split} & [\hat{P}_i, \hat{P}_j] = 0, \qquad [\hat{J}_i, \hat{H}] = 0, \qquad [\hat{P}_i, \hat{H}] = 0, \\ & [\hat{K}_i, \hat{H}] = -i\hat{P}_i \qquad [\hat{J}_i, \hat{J}_j] = i\epsilon_{ijk}\hat{J}_k \qquad [\hat{J}_i, \hat{K}_j] = i\epsilon_{ijk}\hat{K}_k, \\ & [\hat{J}_i, \hat{P}_j] = i\epsilon_{ijk}\hat{P}_k, \qquad [\hat{K}_i, \hat{K}_j] = -i\epsilon_{ijk}\hat{J}_k, \qquad [\hat{K}_i, \hat{P}_j] = -i\delta_{ij}\hat{H} \end{split}$$

 \hat{H}, \hat{P}_i ... time and space translations, \hat{J}_i ... rotations, \hat{K}_i ... Lorentz boosts

GBE CQM

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

Ew Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Function

Summary

Goldstone-Boson-Exchange CQM

$$H_0 = \sum_{i=1}^3 \sqrt{\vec{p}_i^2 + m_i^2}$$

$$V_{conf}(\vec{r}_{ij}) = V_0 + Cr_{ij}$$

$$\begin{split} V_{hf}(\vec{r}_{ij}) &= \left[\sum_{F=1}^{3} V_{\pi}(\vec{r}_{ij})\lambda_{i}^{F}\lambda_{j}^{F} + \sum_{F=4}^{7} V_{K}(\vec{r}_{ij})\lambda_{i}^{F}\lambda_{j}^{F} \\ &+ V_{\eta}(\vec{r}_{ij})\lambda_{i}^{8}\lambda_{j}^{8} + \frac{2}{3}V_{\eta'}(\vec{r}_{ij})\right]\vec{\sigma}_{i}\cdot\vec{\sigma}_{j} \end{split}$$

L.Ya. Glozman, W. Plessas, K. Varga, and R.F. Wagenbrunn: Phys. Rev. D 58, 094030 (1998)

・ロト・日本・日本・日本・日本・日本

OGE CQM

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

EW Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Function Decays

Summary

One-Gluon-Exchange CQM

(Relativistic version of the Bhaduri-Cohler-Nogami OGE CQM)

$$H_0 = \sum_{i=1}^3 \sqrt{\vec{p}_i^2 + m_i^2}$$

 $V_{conf} = V_0 + Cr_{ij}$

$$V_{hf} = -\frac{2b}{3r_{ij}} + \frac{\alpha_s}{9m_im_j}\Lambda^2 \frac{e^{-\Lambda r_{ij}}}{r_{ij}}\vec{\sigma}_i \cdot \vec{\sigma}_j$$

L. Theussl, R.F. Wagenbrunn, B. Desplanques, and W. Plessas: Eur. Phys. J. A 12, 91 (2001)

II CQM

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

EW Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Function

Summary

Instanton-Induced CQM

(Relativistic CQM by the Bonn group)

$$H_0 = \sum_{i=1}^3 \sqrt{\vec{p}_i^2 + m_i^2}$$
$$V_{conf} = V_0 + Cr_{ij}$$
$$V_{hf} = V_{t \, Hooft}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Relativistic framework: Bethe-Salpeter equation

U. Löring, B.Ch. Metsch, and H.R. Petry: Eur. Phys. J. A 10, 395 (2001); ibid. 447 (2001)

GBE CQM OGE CQM II CQM

Spectra

- Ew Structure PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

Eigenvalue Spectra

of

Invariant Mass Operator

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ ⊙ < ⊙

N and A Excitation Spectra

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

- Ew Structur PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Function
- Summary

W. Plessas: Few-Body Syst. Suppl. 15, 139 (2003)

- GBE CQM OGE CQM II CQM
- Spectra

Ew Structure

- PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

Electromagnetic and Axial Nucleon Form Factors

as well as

Electric Radii and Magnetic Moments of Hyperons

- GBE CQM OGE CQM II CQM
- Spectra

Ew Structure

- PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Function
- Decays

Summary

- Electron scattering on the nucleons G_E^p , G_M^p , r_E^p , μ^p ; G_E^n , G_M^n , r_E^n , μ^n
- Neutrino scattering on the nucleon
 G_A, G_P
- Electron scattering on the hyperons r_E^{Y} , μ^{Y}

GBE CQM OGE CQM II CQM

Spectra

Ew Structure

PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Function

Summary

Poincaré algebra

$$\begin{array}{ll} [P_i, P_j] = 0, & [J_i, H] = 0, & [P_i, H] = 0, \\ [K_i, H] = -iP_i & [J_i, J_j] = i\epsilon_{ijk}J_k & [J_i, K_j] = i\epsilon_{ijk}K_k, \\ [J_i, P_j] = i\epsilon_{ijk}P_k, & [K_i, K_j] = -i\epsilon_{ijk}J_k, & [K_i, P_j] = -i\delta_{ij}H \end{array}$$

Point form

 J_i and K_i interaction-free (6 out of 10 generators) $P^{\mu} = (H, \vec{P})$ interaction-dependent

Instant form

 J_i and P_i interaction-free (6 out of 10 generators) $P^0 = H$ and K_i interaction-dependent

Electromagnetic Form Factors of the Nucleons

Covariant predictions of the GBE CQM:

GBE PFSA

0.82

-0.13

0.72

Experiment

 0.7569 ± 0.0139

 -0.1161 ± 0.0022

 $0.61 \pm 0.12 \pm 0.09$

Baryon

р

n Σ-

ROM & COMs

Spectra Ew Struc PF ew FFs

Magnetic moments

Electric radii

Bary	on G	BE PFS	Experiment
р		2.70	2.792847351
n		-1.70	-1.91304273
Λ		-0.64	-0.613 ± 0.004
Σ^+		2.38	$\textbf{2.458} \pm \textbf{0.010}$
Σ^{-}		-0.93	-1.160 ± 0.025
\equiv^0		-1.25	-1.250 ± 0.014
Ξ-		-0.70	-0.6507 ± 0.0025
Δ^+		2.08	$2.7^{+1.0}_{-1.3}\pm1.5\pm3$
Δ^{++}		4.17	3.7 - 7.5
Ω^{-}		-1.59	-2.020 ± 0.05

K. Berger, R.F. Wagenbrunn, and W. Plessas: Phys. Rev. D 70, 094027 (2004)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Axial Nucleon Form Factors

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

Ew Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Function Decays

Summary

Covariant predictions of the GBE CQM:

・ロト・日本・日本・日本・日本・日本

Electromagnetic Form Factors of the Nucleons

RQM & CQMs

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structur PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Function Decays
- Summary

Different Quark Model Predictions:

GBE CQM OGE CQM II CQM

Spectra

Ew Structur PF ew FFs Diff. RCQMs

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

Different Quark Model Predictions:

solid: GBE CQM

dashed: OGE CQM

dotted: II CQM

Comparison of PF to IF

RQM & CQMs

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structur PF ew FFs Diff. RCQMs PF vs. IF
- D
- pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

Point Form vs. Instant Form Calculations of

Nucleon Electromagnetic Form Factors

UNI GRAZ

Electromagnetic Form Factors of the Nucleons

Point-Form vs. Instant-Form Spectator Approximation:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 めん⊙

Point-Form vs. Instant-Form Spectator Approximation:

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

Ew Structur PF ew FFs Diff. RCQMs

PF vs. IF

Decays pi, eta, K

Multiplets

Systematic:

QM Classif.

Wave Function

Decays

Summary

 r_{E}^{2} [fm²]

	(
	IFSM	PFSM	NRIA	Experiment
Proton	0.156	0.824	0.102	0.7569 ± 0.0139
Neutron	-0.020	-0.135	-0.009	-0.1161 ± 0.0022

 μ [n.m.]

GBE CQM							
	IFSM	PFSM	NRIA	Experiment			
Proton	1.24	2.70	2.74	2.792847351			
Neutron	-0.79	-1.70	-1.82	-1.91304273			

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structur PF ew FFs Diff. RCOMs PF vs. IF

Decays

- pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Functions Decays
- Summary

π , η , and K Decay Modes of N^* , Δ^* , Λ^* , Σ^* , Ξ^* Resonances

π Decay Widths of N^* and Δ^*

	N^*, Δ^* Experiment		Re	Relativistic			Nonrel. EEM	
	$ ightarrow$ $N\pi$	[MeV]	GBE	OGE	II	GBE	OGE	
	N(1440) N(1520)	$(227\pm18)^{+70}_{-59}\(66\pm6)^{+9}$	30 21	59 23	38 38	7 38	27 37	
	N(1535)	$(67 \pm 15)^{+28}_{-17}$	25	39	33	559	1183	
	N(1650)	$(109 \pm 26)^{+36}_{-3}$	6.3	9.9	3	157	352	
	N(1675)	$(68\pm8)^{+14}_{-4}$	8.4	10.4	4	13	16	
	N(1700)	$(10 \pm 5)^{+3}_{-3}$	1.0	1.3	0.1	2.2	2.7	
pi, eta, K	N(1710)	$(15\pm5)^{+30}_{-5}$	19	21		8	6	
	∆(1232)	$(119 \pm 1)^{+5}_{-5}$	35	31	62	89	85	
	∆(1600)	$(61 \pm 26)^{+26}_{-10}$	0.5	5.1		93	86	
	∆(1620)	$(38\pm8)^{+}_{-}$	1.2	2.8	4	76	177	
	Δ(1700)	$(45\pm15)^{+20}_{-10}$	3.8	4.1	2	10.4	9.1	

With theoretical masses

T. Melde, W. Plessas, and R.F. Wagenbrunn: Phys. Rev. C 72, 015207 (2005); ibid. 74, 069901 (2006)

◆ロ> ◆母> ◆ヨ> ◆ヨ> ・ヨ ・ 少々で

π Decay Widths of N^* and Δ^*

	Ν *, Δ*	Experiment	Relat	Relativistic		I. EEM
	$\rightarrow N\pi$	[MeV]	GBE	OGE	GBE	OGE
RQM & CQMs	N(1440)	$(227 \pm 18)^{+70}_{-50}$	28	39	6	14
GBE CQM OGE CQM II CQM	N(1520)	$(66 \pm 6)^{+ 9}_{- 5}$	22	23	38	36
Spectra	N(1535)	$(67\pm15)^{+28}_{-17}$	24	38	579	1231
Ew Structure	N(1650)	$(109 \pm 26)^{+36}_{-~3}$	6.3	10.5	158	327
PF ew FFs Diff. RCQMs	N(1675)	$(68\pm8)^{+14}_{-4}$	9.1	9.9	15	15
PF vs. IF	N(1700)	$(10 \pm 5)^{+}_{-3}{}^{3}_{-3}$	1.1	1.3	2.9	2.9
pi, eta, K	N(1710)	$(15\pm5)^{+30}_{-5}$	15	<u>12</u>	6.0	3.2
Multiplets	∆(1232)	$(119 \pm 1)^{+}_{-} {}^{5}_{5}$	33	31	81	85
Systematics OM Classif	∆(1600)	$(61 \pm 26)^{+2ar{6}}_{-10}$	0.2	<u>2.4</u>	56	31
Wave Functions	Δ(1620)	$(38\pm8)^{+}_{-}{}^{8}_{6}$	1.4	2.8	74	176
Summary	Δ(1700)	$(45\pm15)^{+20}_{-10}$	4.6	5.4	14	14

With experimental masses

T. Melde, W. Plessas, and R.F. Wagenbrunn: Phys. Rev. C 72, 015207 (2005); ibid. 74, 069901 (2006)

π Decay Widths of Λ^*

RQM & CQMs

GBE CQM OGE CQM II CQM

Spectra

Ew Structur PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Functio

Decays

Summary

Λ^*	Experiment	riment Relativistic		Nonrel. EEN	
$ ightarrow \Sigma \pi$	[MeV]	GBE	OGE	GBE	OGE
Λ(1405)	(50 ± 2)	55	78	320	611
Λ(1520)	$(6.55\pm0.16)^{+0.04}_{-0.04}$	5	9	5	8
Λ(1600)	$(53\pm 38)^{+60}_{-10}$	3	33	2	34
Λ(1670)	$(14.0 \pm 5.3)^{+8.3}_{-2.5}$	69	103	620	1272
Λ(1690)	$(18\pm 6)^{+4}_{-2}$	19	25	24	28
Λ(1800)	seen	68	101	473	1175
Λ(1810)	$({f 38\pm23})^{+40}_{-10}$	3.8	2.1	55	150
Λ(1830)	$(52\pm19)^{+11}_{-12}$	14	19	16	24

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

With theoretical masses

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. C 76, 025204 (2007)

Spectra

Ew Structur PF ew FFs Diff. RCOMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Function Decays

Summary

	Experiment	Relativistic		Nonrel. EEM	
$N ightarrow N\eta$	[MeV]	GBE	OGE	GBE	OGE
N(1520)	$(0.28\pm0.05)^{+0.03}_{-0.01}$	0.1	0.1	0.04	0.04
N(1535)	$(64 \pm 19)^+_{-28}$	27	35	127	236
N(1650)	$(10 \pm 5)^+_{-1}$	50	74	283	623
N(1675)	$(0\pm1.5)^+_{-0.1}$	1.5	2.4	1.1	1.8
N(1700)	$(0\pm1)^+_{-0.5}$	0.5	0.9	0.2	0.3
N(1710)	$(6\pm1)^+$ $^{+11}$ $^{+11}_4$	0.02	0.06	2.9	9.3

With theoretical masses

T. Melde, W. Plessas, and R.F. Wagenbrunn: Phys. Rev. C 72, 015207 (2005); ibid. 74, 069901 (2006)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - のへで

K Decay Widths of Λ^* and Σ^*

	Λ^*, Σ^* Experiment		Relat	Relativistic		I. EEM
	$\rightarrow NK$	[MeV]	GBE	OGE	GBE	OGE
RQM & CQMs	Λ(1520)	$(7.02\pm0.16)^{+0.46}_{-0.44}$	12	24	23	63
GBE CQM OGE CQM	Λ(1600)	$(33.75 \pm 11.25)^{+30}_{-15}$	15	35	4.1	23
II CQM	Λ(1670)	$(8.75 \pm 1.75)^{+4.5}_{-2}$	0.3	pprox 0	45	86
Spectra	Λ(1690)	$(15\pm3)^{+3}_{-2}$	1.2	1.0	4.2	6.5
PF ew FFs	Λ(1800)	$(97.5 \pm 22.5)^{+40}_{-25}$	4.2	6.4	3.1	8.6
PF vs. IF	Λ(1810)	$(52.5 \pm 22.5)^{+\overline{50}}_{-20}$	4.1	12	23	44
Decays pileta K	Λ(1830)	$(6.18 \pm 3.33)^{+1.05}_{-1.05}$	0.1	0.9	0.1	0.1
Multiplets	Σ(1660)	$(20\pm10)^{+30}_{-~6}$	0.9	0.9	0.4	pprox 0
PDG Systematics	Σ(1670)	$(6.0 \pm 1.8)^{+2.6}_{-1.4}$	1.1	1.0	1.9	2.0
QM Classif.	Σ(1750)	$(22.5 \pm 13.5)^{+28}_{-3}$	pprox 0	1.4	10	48
Decays	Σ(1775)	$(48.0 \pm 3.6)^{+6.5}$	11	15	20	41
Summary	Σ(1940)	$(22\pm22)^{+16}$	1.1	1.5	3.3	6.8

With theoretical masses

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D 76, 054008 (2007)

	multiplet	(LS)J ^P				
	octet	$(0\frac{1}{2})\frac{1}{2}^+$	N(939)	Λ(1116)	Σ(1193)	Ξ(1318)
	octet	$(0\frac{1}{2})\frac{1}{2}^+$	N(1440)	Λ(1600)	Σ(1660)	Ξ(?)
	octet	$(0\frac{1}{2})\frac{1}{2}^+$	N(1710)	Λ(1810)	Σ(1880)	Ξ(?)
	octet	$(1\frac{1}{2})\frac{1}{2}^{-}$	N(1535)	Λ(1670)	Σ(1620)	Ξ(?)
	octet	$(1\frac{3}{2})\frac{1}{2}^{-}$	N(1650)	Λ(1800)	Σ(1750)	Ξ(?)
	octet	$(1\frac{1}{2})\frac{3}{2}^{-}$	N(1520)	Λ(1690)	Σ(1670)	Ξ(1820)
	octet	$(1\frac{3}{2})\frac{3}{2}^{-}$	N(1700)	Λ(?)	Σ(?)	Ξ(?)
	octet	$(1\frac{3}{2})\frac{5}{2}^{-}$	N(1675)	Λ(1830)	Σ(1775)	Ξ(?)
	decuplet	$(0\frac{3}{2})\frac{3}{2}^+$	Δ(1232)	-	Σ(1385)	Ξ(1530)
	decuplet	$(0\frac{3}{2})\frac{3}{2}^+$	$\Delta(1600)$	-	Σ(?)	Ξ(?)
	decuplet	$(1\frac{1}{2})\frac{1}{2}^{-}$	Δ(1620)	-	Σ(?)	Ξ(?)
	decuplet	$(1\frac{1}{2})\frac{3}{2}^{-}$	Δ(1700)	-	Σ(?)	Ξ(?)
	singlet	$(1\frac{1}{2})\frac{1}{2}^{-}$	-	Λ(1405)	-	-
	singlet	$(1\frac{1}{2})\frac{3}{2}^{-}$	-	Λ(1520)	-	-

Classification of baryon resonances by the PDG (2008)

・ロト・日本・日本・日本・日本・日本

Decay Widths of Octet Baryon Resonances

RQM & CQMs

- GBE CQM OGE CQM II CQM
- Spectra
- EW Structur PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG
- QM Classif. Wave Function: Decays
- Summary

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D, to appear

Hyperon Excitation Spectra

RQM & CQMs

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structur PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG
- Classif. QM Classif. Wave Functions
- Summary

For Σ with $J^P = \frac{1}{2}^-$ we have $\Sigma[1560]$, $\Sigma[1620]$, and $\Sigma(1750)$ For Σ with $J^P = \frac{3}{2}^-$ we have $\Sigma(1670)$, $\Sigma[1940]$, and a third $\Sigma\{\approx 1770\}$ not yet seen (dashed)

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ 今へ⊙

Systematics of Decays

RQM & CQMs

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structure PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics OM Classif. Wave Functions

Summary

- Consider spectral and decay data
- Sort results according to flavor multiplets
- Examine the spin, flavor, and space symmetries of the various states

For the latter consider: Spatial probability density distribution

$$\rho(\xi,\eta) = \xi^2 \eta^2 \int d\Omega_{\xi} d\Omega_{\eta}$$
$$\Psi^{\star}_{M\Sigma M_{\Sigma} TM_{T}}(\xi,\Omega_{\xi},\eta,\Omega_{\eta}) \Psi_{M\Sigma M_{\Sigma} TM_{T}}(\xi,\Omega_{\xi},\eta,\Omega_{\eta})$$

where $\vec{\xi}$ and $\vec{\eta}$ are the usual Jacobi coordinates

Pictures of Baryons (rest frame)

GBE CQM OGE CQM II CQM

Spectra

EW Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

◆ロ> ◆母> ◆母> ◆母> → 母 → の々で

Spectra

EW Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics OM Classif. Wave Function

Summary

multiplet	(LS)J ^P				
octet	$(0\frac{1}{2})\frac{1}{2}^+$	N(939) ¹⁰⁰	Λ(1116) ¹⁰⁰	$\Sigma(1193)^{100}$	Ξ(1318) ¹⁰⁰
octet	$(0\frac{1}{2})\frac{1}{2}^+$	N(1440) ¹⁰⁰	Λ(1600) ⁹⁶	Σ(1660) ¹⁰⁰	Ξ(1690) ¹⁰⁰
octet	$(0\frac{1}{2})\frac{1}{2}^+$	N(1710) ¹⁰⁰		Σ(1880) ⁹⁹	
octet	$(1\frac{1}{2})\frac{1}{2}^{-}$	N(1535) ¹⁰⁰	۸(1670) ⁷²	Σ(1560) ⁹⁴	
octet	$(1\frac{3}{2})\frac{1}{2}^{-}$	N(1650) ¹⁰⁰	Λ(1800) ¹⁰⁰	Σ(1620) ¹⁰⁰	
octet	$(1\frac{1}{2})\frac{3}{2}^{-}$	N(1520) ¹⁰⁰	Λ(1690) ⁷²	Σ(1670) ⁹⁴	Ξ(1820) ⁹⁷
octet	$(1\frac{3}{5})\frac{3}{5}^{-}$	N(1700) ¹⁰⁰		Σ(1940) ¹⁰⁰	
octet	$(1\frac{5}{2})\frac{5}{2}^{-}$	N(1675) ¹⁰⁰	Λ(1830) ¹⁰⁰	$\Sigma(1775)^{100}$	Ξ(1950) ¹⁰⁰
decuplet	$(0\frac{3}{2})\frac{3}{2}^+$	$\Delta(1232)^{100}$	$\Sigma(1385)^{100}$	Ξ(1530) ¹⁰⁰	Ω(1672) ¹⁰⁰
decuplet	$(0\frac{5}{2})\frac{5}{2}^+$	$\Delta(1600)^{100}$	Σ(1690) ⁹⁹		
decuplet	$(1\frac{1}{2})\frac{1}{2}^{-}$	$\Delta(1620)^{100}$	Σ (1750) ⁹⁴		
decuplet	$(1\frac{1}{2})\frac{5}{2}^{-}$	$\Delta(1700)^{100}$			
singlet	$(1\frac{1}{2})\frac{1}{2}^{-}$	Λ(1405) ⁷¹			
singlet	$(1\frac{1}{2})\frac{3}{2}^{-}$	Λ(1520) ⁷¹			
singlet	$(0\frac{1}{2})\frac{1}{2}^+$	Λ(1810) ⁹²			

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D, to appear

Spatial Probability Density Distributions

 $\rho(\xi, \eta)$ for the $\frac{1}{2}^+$ octet baryon ground states N(939), $\Lambda(1116)$, $\Sigma(1193)$, $\Xi(1318)$:

GBE CQM OGE CQM II CQM

Spectra

Ew Structur PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Functions

Summary

 $\rho(\xi, \eta)$ for the $\frac{1}{2}^+$ octet baryon states $N(1440), \Lambda(1600), \Sigma(1660), \Xi(1690)$:

◆ロ> ◆母> ◆ヨ> ◆ヨ> → ヨ → ◆のへで

Spatial Probability Density Distributions

 $\rho(\xi, \eta)$ for the $\frac{3}{2}^+$ decuplet baryon states $\Delta(1232)$, $\Sigma(1385)$, $\Xi(1530)$, $\Omega(1672)$:

GBE CQM OGE CQM II CQM

Spectra

Ew Structur PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

 $\rho(\xi, \eta)$ for the $\frac{3}{2}^+$ decuplet baryon states $\Delta(1600), \Sigma(1690)$:

Decay Widths of Octet Baryon Resonances

RQM & CQMs

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structur PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Function
- Decays
- Summary

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D, to appear

UNI GRAZ

Decay Widths of Decuplet Baryon Resonances

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D, to appear

Decay Widths of Singlet Baryon Resonances

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structur PF ew FFs Diff. RCQMs PE vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Functions
- Decays

Summary

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D, to appear

Summary

RQM & CQMs

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structure PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Functions
- Summary

- Relativistic CQMs allow for a unified description of light and strange baryon spectra for E \le 2 GeV, especially in the case of the GBE CQM
 - mass-operator eigenvalues in relatively good order
- Covariant point-form predictions for the elastic <u>electroweak nucleon structure</u> in surprisingly good agreement with available data for q² ≤ 4 GeV² (in contrast to the instant-form spectator-model results)
 - ground-state wave functions appear reasonable
- Strong decays cannot yet be described in agreement with phenomenology
 - refinements necessary, both with respect to resonance wave functions and decay mechanism.

Summary ctd.

RQM & CQMs

- GBE CQM OGE CQM II CQM
- Spectra
- Ew Structure PF ew FFs Diff. RCQMs PF vs. IF
- Decays pi, eta, K
- Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

- Spectra, decay widths, and spin-flavor-space symmetries of states allow for a new (extended) classification of baryon resonances into flavor multiplets
 - to be confirmed by more experiments

Thank you very much

for

your attention!

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Collaborators

ROM & COMs

GBE CQM OGE CQM II CQM

Spectra

Ew Structure PF ew FFs Diff. RCQMs PF vs. IF

Decays pi, eta, K

Multiplets PDG Systematics QM Classif. Wave Functions Decays

Summary

K. Berger, L. Glozman, T. Melde, B. Sengl, R.F. Wagenbrunn (Theoretical Physics, University of Graz)

Pavia

Graz

S. Boffi and M. Radici (INFN, Sezione di Pavia)

Padova

L. Canton (INFN, Sezione di Padova)

Iowa City

W. Klink

(Department of Physics, University of Iowa, USA