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Definition/ SMR Story

Small Reactor: < 300 MW(e)
Medium Sized Reactor: 300 – 700 MW(e)

In the early decades, civil nuclear power essentially borrowed from the 
experience of reactors for nuclear submarines, which came first and were 
essentially small-capacity reactors 

Since 1970’s, the major focus for nuclear power was on the design and 
construction of nuclear plants of increasing size, with average size levelling 
out at about 1000 MWe with a tendency for further increase. 

In the end of 2007, of the 439 operating NPPs, 134 were with small and 
medium sized reactors (SMRs)

Of the 23 newly constructed NPPs, 9 were with SMRs

In 2008, not less than 35 concepts and designs of innovative SMRs are
analyzed or developed in Argentina, Brazil, China, Croatia, India, Indonesia, Italy, 
Japan, the Republic of Korea, Lithuania, Morocco, Russian Federation, South 
Africa, Turkey, USA, and Vietnam
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Project “Common Technologies and Issues for SMRs” 
P&B 2008-2009: 1.1.5.4 Recurrent Project, Ranking 1

Objective:

To facilitate the development of key enabling technologies 
and the resolution of enabling infrastructure issues common to 
future SMRs of various types

Expected outcome:

Increased international cooperation for the development of 
key enabling technologies and resolution of enabling 
infrastructure issues common to future SMRs of various types
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Project “Common Technologies and Issues for
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Definition

Small or Medium Sized Reactor Does not Mean a Low Capacity 
Nuclear Power Station!

The majority of SMRs provide for power station  configurations with 2, 4, or 
more NPPs or reactor modules . 

FIG. II-10. Perspective view of IRIS multiple twin-unit site layout. 

Fig. XVIII-1. Schematic view of the FAPIG-HTGR 4-module plant.
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Definition

Small reactor does not necessarily mean low-output NPP!

Clustered modular nuclear steam supply system SVBR-
1600 with 16 SVBR-75/100 modules (IPPE-Gidropress, 

Russian Federation) 

. 6
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Incentives for SMRs

Today, the progress of SMRs is defined by their capability to address 
the needs of those users that for whatever reason cannot benefit from 
economy-of-scale large NPP deployments 

Countries with small or medium electricity grids (< 7000 - 10000 

MW(e) peak load)

Settlements and energy intensive industrial sites in remote off-grid 

locations (permanent frost, islands, remote draught area, etc.)

Countries with limited investment capability (incremental capacity 

increase)

In the future, utilities (worldwide) and, possibly, merchant plants for 

non-electric energy services (look at aircraft, car and other mature 

industries)
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Incentives for SMRs

Looking into the future:

Primary energy (in developed countries) is utilized in three 
roughly equal fractions [*]:

A third is used to generate electricity;

A third is used in the transportation sector;

A third is used for domestic and industrial heating.

[*] World Energy Book 2005, World Energy Council: 
http://www.worldenergybook.com/
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Incentives for SMRs

Looking into the future:
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Definitions (IAEA-TECDOC-1451, May 2005; 
IAEA-TECDOC-1485, March 2006)

Small and Medium Sized Reactors:

Reactors with conventional refuelling schemes (partial core 
refuelling in batches, on-line refuelling, pebble bed 
transport)

Small reactors without on-site refuelling (SRWOR)
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Definitions (IAEA-TECDOC-1451, May 2005; 
IAEA-TECDOC-1485, March 2006)

SRWOR are reactors designed for infrequent replacement of well-
contained fuel cassette(s) in a manner that impedes clandestine 
diversion of nuclear fuel material 

Small reactors without on-site refuelling could be:

(a) Factory fabricated and fuelled transportable reactors or

(b) Reactors with once-at-a-time core reloading on the site performed 
by an external team that brings in and takes away the core load 
and the refuelling equipment

SRWOR incorporate increased refuelling interval (from 5 to 30+ years) 
consistent with plant economy and considerations of energy security
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SRWOR – Summary of Design Approaches

Design approaches to ensure long-life core operation include:

Reduced core power density;

Burnable absorbers (in thermal reactors);

High conversion ratio in the core (in fast reactors)

Refuelling performed without opening the reactor vessel 

cover

SRWORs end up at the same or less values of fuel burn-up 

and irradiation on the structures, although achieved over a longer 

period than in conventional reactors
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Deployment potential of innovative SMRs

Time 

Conventional refuelling schemes 
IAEA-TECDOC-1485

Small Reactors w/o On-site refuelling 
IAEA-TECDOC-1536
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Reactor Types/ 
Distinct Groups 

(Examples)
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Reactor Types/ Distinct Groups (Examples) 
Pressurized Water Reactors/ Marine Reactor Derivatives

Modular layout of the KLT-40S reactor plant (OKBM, Russian 
Federation).
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Reactor Types/ Distinct Groups (Examples) 
High Temperature Gas Cooled Reactors/ Pebble Bed Fuel

Passive heat removal paths of PBMR 
(PBMR (Pty), Ltd., South Africa)
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Reactor Types/ Distinct Groups (Examples) 
High Temperature Gas Cooled Reactors/ Direct gas turbine Brayton

cycle

FIG. XIV-2. Conceptual layout of the PBMR primary system [XIV-3]. 
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Reactor Types/ Distinct Groups (Examples) 
High Temperature Gas Cooled Reactors/ Pin-in-block fuel

FIG. XV-11. GT–MHR fuel element. 
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Reactor Types/ Distinct Groups (Examples) 
Sodium Cooled Fast Reactors/ SRWOR

4S sodium cooled reactor with a 10  30-year refuelling interval for a 50 MW(e) plant 

(Toshiba  CRIEPI, Japan) 
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Reactor Types/ Distinct Groups (Examples) 
Lead-Bismuth Cooled Reactors/ SRWOR

Pb-Bi cooled SVBR-75/100 reactor of 100 MW(e) with 6-
9 EFPY refuelling interval (IPPE-“Gidropress”, Russia) 
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Reactor Types/ Distinct Groups (Examples)
Non-conventional Very High Temperature SRWOR/ CHTR (BARC, India)
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Reactor Types/ Distinct Groups (Examples) 
Non-conventional Very High Temperature Reactor/ AHTR (ORNL and MIT, 

USA)

Reactor
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Nuclear Data for Calculations of Advanced SMRs

Some designs may include unusual neutron spectra/ material 
combinations

Point-wise Monte-Carlo calculations with different evaluated nuclear 

data libraries may be recommended (i) as a reference, and (ii) to make 

initial assessment of possible magnitude of the errors related to 

uncertainties in nuclear data

SRWOR: Lump fission product models need to be checked, 
because:

versus ( will be  different in a SRWOR 
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Economics and Investments

There is no case when a single small plant needs to be 
compared to a single large plant:

Either a single SMR goes where there is no option to 

accommodate a large NPP (and then the competition are 

non-nuclear options available there)

Addressed explicitly in the activities on energy planning by 
IAEA/NE/PESS

A series of SMRs is considered against fewer larger plants 

of the same total capacity
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Economics and Investments

Economics:

G4-ECONS Model: angelique.servin@oecd.org

LUEC = LCC +[(FUEL+O&M+D&D)/E]

LUEC – Levelized Unit Electricity Cost

LCC – Levelized Cost of Capital

E – Average annual electricity production MWh

Assumption: Constant annual expenditures and production

Investments:

Cash flow profile

Capital-at Risk

Factors: Expenditure 

and Production Profiles                 

               Years

Cash flow profile for construction/ operation of four SMRs versus  
a single large plant (Westinghouse, USA) 
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Economics and InvestmentsEconomics and Investments

Present Value Capital Cost (PVCC) Model Present Value Capital Cost (PVCC) Model –– Westinghouse, USAWestinghouse, USA
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Economics and Investments

Increased energy conversion efficiency and use of reject 
reject heat for cogeneration reduce LCC for the plant

GT-MHR Desalination Process Diagram, GA(USA) 
– OKBM(Russia)  

Targeted plant efficiency – 48%
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Economics and InvestmentsEconomics and Investments

Economy of ScaleEconomy of Scale

• Based on the OECD/NEA study “Reduction of Capital Costs of Nuclear Power 
Plant”,  case of France for 300, 650,1000, and 1350 MW(e)
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Economics and InvestmentsEconomics and Investments

Learning Curve Learning Curve –– Capital Cost Reduction; Example (OKBM, Russia)Capital Cost Reduction; Example (OKBM, Russia)
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Economics and InvestmentsEconomics and Investments

Learning Curve Learning Curve –– ApplicabilityApplicability

• Only valid within a country

• Assumes no substantial changes to regulations over time

• Cannot be extrapolated to new sites with new reactors

• Depends on continuity in reactor build-up
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Economics and InvestmentsEconomics and Investments

Learning Curve Learning Curve –– ContinuityContinuity

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 1 2 3 4 5 6 7 8 9

Num be r in the  s e rie s

L
a

b
o

r 
in

te
n

s
it

y
, 

re
l.
 u

n
it
s

ye ar 1

ye ar 2

ye ar 4

ye ar 4

ye ar 5

ye ar 6

ye ar 7

ye ar 82 ye ars

Production continuity vs. specific labour intensity in the production of marine 
propulsion reactors (OKBM, Russian Federation) 



ICTP-IAEA Workshop on Nuclear 
Reaction Data, 19-30 May 2008, 
Trieste, Italy

International Atomic Energy Agency

Economics and Investments

SMRs could be much cheaper if produced in a developing country 
with higher purchasing power of a hard currency 

Is it a solution for less developed countries?

• Indian PHWRs - 220,540 & 700 MWe 

The Indian experience has shown that the reactors of 220 MWe and 540 MWe 
have been set up with completion cost (inclusive of escalation till completion and 
interest during construction) of US $1200 to 1400 per kWe. The 700 MWe 
reactors to be set up in future are expected to cost about US $1200  per kWe.
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Economics and investments

Incremental capacity increase reduces the required front end 

investment and the Capital-at-Risk

                

Years

Cash flow profile for construction/ operation of four SMRs versus  
a single large plant (Westinghouse, USA) 
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Economics and investments
Attractive investment profile may make SMRs attractive for private investors –

Example from Rosenergoatom (Russia)

2. Investor requirements for SMRs (continued 2) 
GOVERNMENT PRIVATE SECTOR

ECONOMICS AND INVESTMENTS 

Public-Private Partnership 

Product

Investment

Investment 
Agreement 

«Rosenergoatom»
operator 

customer 

investor 

State 
Investment 

Private 
Investment 

1Directorate for floating nuclear power plant construction



ICTP-IAEA Workshop on Nuclear 
Reaction Data, 19-30 May 2008, 
Trieste, Italy

International Atomic Energy Agency

Economics and Investments

Ongoing IAEA activity 1.1.5.4/2: Case Studies on SMR 
Competitiveness in Different Applications

Combined application of the PVCC model Westinghouse (USA) and G4-

ECONS model (EMWG GIF) to selected deployment scenarios
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Economics and InvestmentsEconomics and Investments
PVCC Example PVCC Example -- Cumulative ExpendituresCumulative Expenditures

(36 months between each of 4 SMRs)(36 months between each of 4 SMRs)

Lower “Capital at Risk” with 
longer spacing between SMRs
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ECONOMICS AND INVESTMENTS

Models to Support Decision Making of Public and Private Investors

AN OPEN MODEL FOR THE EVALUATION OF SMRs ECONOMIC 
OPPORTUNITIES (Politecnico di Milano and ENEA, Italy)

A framework for coherent use of available models 

Provisions to ass new models as they become available
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SAFETY

A QUESTION OFTEN ASKED: IS SMALLER REACTOR MORE 
SAFE THAN A LARGER ONE?

Typical Answers Appear Black and White: 

- A decisive YES! , or 

- Not less decisive NO!

WHAT COULD BE A BALANCED AND OBJECTIVE ANSWER?
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SAFETY

Current Safety Approach:

IAEA Safety Standard NS-R-1 “Safety of the Nuclear Power 
Plants: Design Requirements”

Main ‘pillars’:

Qualitative Safety Objectives of the general nuclear safety, the 
radiation safety, and the technical safety;

Fundamental Safety Functions, which are the confinement of 
radioactive material, control of reactivity, and the removal of heat 
from the core;

The application of Defence in Depth, which requires several 
levels of protection to be provided (multiple barriers to the 
release of radioactive materials + safety systems to ensure 
safe shutdown of the reactor) 

The application of Probabilistic Safety Assessment techniques,
which complements deterministic methods
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SAFETYSAFETY

Level of safety goals should, logically, increase with the size Level of safety goals should, logically, increase with the size of the nuclear of the nuclear 

powerpower programmeprogramme (BARC, India)(BARC, India)

Number of reactors in operation 

Safety
Goals

Current Siting 
Criteria
Dose Criteria

Reactors
under 
operation
(existing 
technology)

Evolutionary 
reactors
under 
construction

Current/Special
Siting Criteria; 
CDF, LERF

Innovative future 
reactor systems

Special Siting 
Criteria, Risk-
informed
approach
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SAFETY

Proposal for a Technology-Neutral Safety Approach for New 
Reactor Designs (IAEA-TECDOC-1570, September 2007)

Main ‘pillars’:

Quantitative Safety Goals, correlated with each level of Defence
in Depth;

Fundamental Safety Functions

Defence in Depth (generalized), which includes probabilistic 
considerations
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SAFETY IAEA-TECDOC-1570
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FIG. 2. Quantitative Safety Goal and Correlation of Levels of Defence  

(FIG. 5 from reference [13]). 
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The role of passive safety features and reactor power The role of passive safety features and reactor power 
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Source Term – the amount and isotopic composition of material released 
(or postulated to be released) from a facility

Used in modelling releases of radionuclides to the environment, particularly in 

the context of accidents at nuclear installations…

Smaller reactors may have smaller source terms owing to:

Smaller fuel inventory;

Smaller stored non-nuclear energy

Smaller cumulative decay heat rate

Larger margins to fuel failure owing to smaller power density

Smaller number of accident initiators provided by design

Benefits of the smaller source-term could be recognized in full 
when a technology-neutral and risk informed approach is 
established

Smaller source terms of SMRs could help justify their licensing 
with a reduced or eliminated emergency planning zone (EPZ)



ICTP-IAEA Workshop on Nuclear 
Reaction Data, 19-30 May 2008, 
Trieste, Italy

International Atomic Energy Agency

Safety

IAEA activity 1.1.5.4/10: Coordinated Research Project “Small 
Reactors without On-site Refuelling” (2004 – 2008)

Group 1: “Revising the Need for Relocation and Evacuation Measures Unique 
to NPPs with Innovative SMRs”

F*

EP

EPZ Redefinition Methodology 
• Step1 

PRA accident sequences re-categorization 
and release scenario definition 

• Step2 
Deterministic dose vs distance 
evaluation for relevant release scenarios 

• Step3 (Limiting dose, D*) 

• Step4 (Limiting frequency, f*)

• Step5 (EPZ definition) 
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IN SOME COUNTRIES RISK-INFORMED REGULATORY APPROACH IS 
ALREADY IN PLACE

Argentina’s regulations (severe accidents) 
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A QUESTION OFTEN ASKED: IS SMALLER REACTOR MORE 
SAFE THAN A LARGER ONE?

A BALANCED AND OBJECTIVE ANSWER COULD BE THAT 
BOTH LARGE AND SMALL REACTORS MAY HAVE A HIGH 
SAFETY LEVEL FOR THEIR SPECIFIC CONDITIONS OF USE

For smaller reactors these conditions may include EPZ 
reduced against that needed for a large reactor

Reduced or eliminated EPZ allows NPP location closer to the 
user, which could be a process heat application plant or a 
consumer of heat, potable water, etc.
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Conditions of use may include Operational Complexity

OC =  {DEPix (DYN1i.DYN2i.VSi) x [MRj.Efj.PASSj.REVjx(1+Esj+Cuj+DMj)]}
NF NMi

Total number of 

safety functions (SF)

to manage

Number of technical means

M j dedicated to the objective i

Intrinsic and dynamic 
complexity of the Safety

Function N° i and 
associated process

Intrinsic and dynamic
complexity of the mean N° j 
assigned to the function N° i

Interactions and constraints 
for the mean N° j

Time constant

of the physical 

process i

Dynamic

Complexity

Of the 

process i

Visibility

Of the 

process i

Setting mode 

complexity

of Mj

Efficiency

of Mj

Passivity

of Mj

Reversibility

of Mj
Number of 

side effects

of Mj 

Number of 

Utilisation 

Constraints

For Mj

Number of 

Technical 

Dependancies

For Mj

Number of 

physical 

interactions with 

other SF

Quantification of complexity – Operational Complexity Index (OC) 

Courtesy of CEA (France) 
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Example of comparative analysis using Operational Complexity Index

Operational complexity index
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Operational complexity vs. safety functions for the integral design 
SCOR and a standard PWR; CEA (France) – IAEA-TECDOC-1485 

Systems dedicated to: INV – coolant inventoty; SGIN – steam generator integrity; RCO – reactor cooling; S/K – 
Subcriticality, etc. 



ICTP-IAEA Workshop on Nuclear 
Reaction Data, 19-30 May 2008, 
Trieste, Italy

International Atomic Energy Agency

SAFETY

The enveloping design strategy for most of SMR concepts is to:

Eliminate or de-rate as many accident initiators and/ or prevent or de-rate 

as many accident consequences as possible by design, and 

Then, to deal with the remaining accidents/ consequences using 

reasonable combinations of active and passive safety systems and

consequence prevention measures.

THIS STRATEGY IS TYPICAL OF MANY ADVANCED REACTOR DESIGNS, 
SPECIFICALLY, GENERATION IV DESIGNS, IRRESPECTIVE OF THEIR SIZE

TO ENABLE RISK-INFORMED APPROACH IN REACTOR DESIGN AND 
LICENSING, RELIABILITY OF PASSIVE SAFETY SYSTEMS NEEDS TO BE 
ASSESSED AND QUANTIFIED

THEN, BOTH ACTIVE AND PASSIVE SAFETY SYSTEMS COULD BE 
TREATED EQUALLY IN A PSA
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Reliability of Passive Safety Systems

Passive systems should, by definition, be able to carry out their mission 
with minimum or no reliance on external sources of energy and should 
operate only on the basis of fundamental natural physical laws, such as 
gravity.

It may be stipulated that a passive system may fail to fulfil its mission 
because of a consequence of the following two failures:

- Component failure: Classical failure of a component or components 
(passive or active) of the passive system;

- Phenomenological failure: Deviation from expected behaviour due to 
physical phenomena, e.g., related to thermal hydraulics or due to different 
boundary or initial conditions. 

The reliability of components of a passive system can be evaluated by 
means of well-proven classical methods. 
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Reliability of Passive Safety Systems

Lack of data on some phenomena, missing operating experience 
over the wide range of conditions, and the smaller driving forces make 
the reliability evaluation of passive system phenomena a challenging 
one.

For evaluating the failure probability of passive systems, the 
methodology may move from the classical methods used for 
Probabilistic Risk Analysis (PRA) and consider, in addition to real 
components (valves, pumps, instrumentation, etc), virtual 
components, that represent the natural mechanism upon which the 
system operation is based (natural circulation, gravity, internal stored 

energy, etc.).

The contribution of real components can be easily assessed by 
resorting to the reliability databases available, whereas for evaluating 
the virtual component contribution (process condition related) it is 
necessary to develop a procedure that allows such assessment 
despite the lack of failure data. 
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Flowchart of a Generic Reliability Assessment Methodology for PaFlowchart of a Generic Reliability Assessment Methodology for Passivessive

Safety Systems Safety Systems –– BARC (India)BARC (India)

I. Passive System for which reliability assessment is considered

II. Identification of its operational 
mechanism and  failure

III. Parameters affecting the operation

IV. Key parameters causing the failure

V. Identification of active 
components causing 
the key parameters’ 

VI.

V. Identification of passive 
components causing the key 
parameters’ deviation

VII. Evaluation of core damage frequency (CDF)

I. Passive System for which reliability assessment is considered

II. Identification of its operational 
mechanism and  failure

III.Parameters affecting the operation

IV. Key parameters causing the failure

V.

VI.

V.

VII. Evaluation of core damage frequency (CDF)

Identification of passive components 

causing the key parameters’ deviation 

for causing the failure

Identification of active 

components causing the key 

parameters’ Deviation for 

causing the failure

Evaluation of probability of failure of active/passive 

components causing the deviation in the key 

parameters for causing ultimate failure of system 
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Methodologies for Reliability Assessment of Passive Safety Systems

French (CEA) L and Indian (BARC) R Approaches

FIG. 13. Schematics of the RMPS methodology. 
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FIG. 15. APSRA methodology: flowchart of the programme for  

benchmarking of the failure surface based on experimental data. 
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Reliability Assessment of Passive Safety Systems

Alternative approaches
Example from ENEA (Italy)
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IAEA Activities Ongoing

Nuclear Energy Series Report “Passive Safety Design Options for
SMRs”

Due in 2008

10 representative SMR concepts reviewed against the requirements
of the IAEA Safety Standards and Guides, with a focus on Defence
in Depth Strategy

KLT-40S, IRIS, CAREM-25, SCOR, MARS, AHWR, GT-MHR, 4S-LMR, 

SSTAR & STAR-LM, CHTR
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IAEA Activities Started in 2008-2009 (2)

1.1.5.4/11: Coordinated Research Project “Development of 
Methodologies for the Assessment of Passive Safety System 

Performance in Advanced Reactors”; P&B Codes 2008 1.1.5.4/11-
leads, 1.1.5.1/16, 1.1.5.2/15, and J.3.2.3.3/04

First Research Coordination Meeting is due in 2009.

The objective is to determine a common analysis-and-test method 
for reliability assessment of passive safety system performance.

Such a method would facilitate application of risk-informed approaches in 
design optimization and safety qualification of the future advanced 
reactors, contributing to their enhanced safety levels and improved 

economics.
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