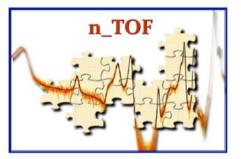


1944-8


Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

19 - 30 May 2008

Fission cross-section measurements for Minor Actinides.

N. Colonna Istituto Nazionale di Fisica Nucleare Sez. di Bari Italy Fission cross-section measurements for Minor Actinides

An informal discussion on new needs, experimental techniques, latest results and related uncertainties

Nicola Colonna

Istituto Nazionale Fisica Nucleare, Sez. di Bari V. Orabona 4, 70126 Bari, Italy <u>nicola.colonna@ba.infn.it</u>

Nuclear Data for Science, Technology and ... Society (Hans Blix, ND 2007)

ICTP-IAEA, Trieste, 19-28 May, 2008

Outline – Part I

- Motivations
- Neutron facilities for fission measurements
- The fission detectors
- Analysis techiques

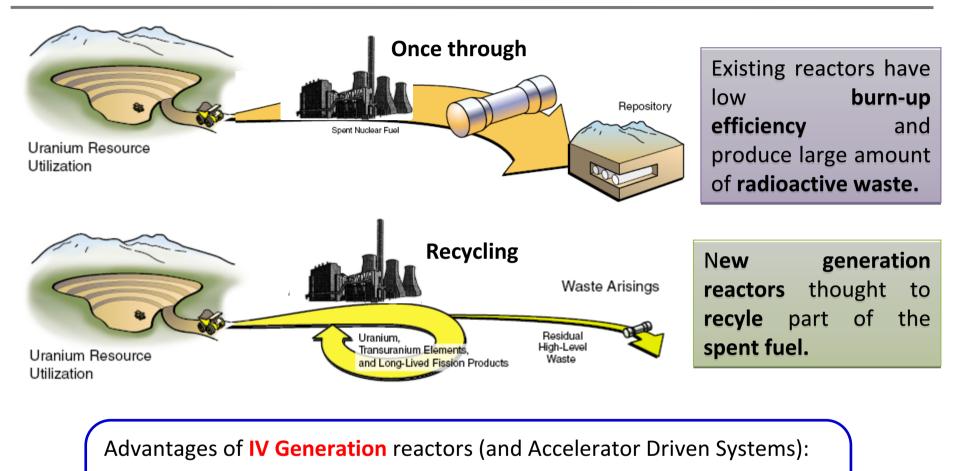
Outline – Part II

- Current status of fission crosssections on Minor Actinides
- New results
- Other methods

Motivations

Nuclear waste composition (1 GW_e LWR)

The Th/U fuel cycle

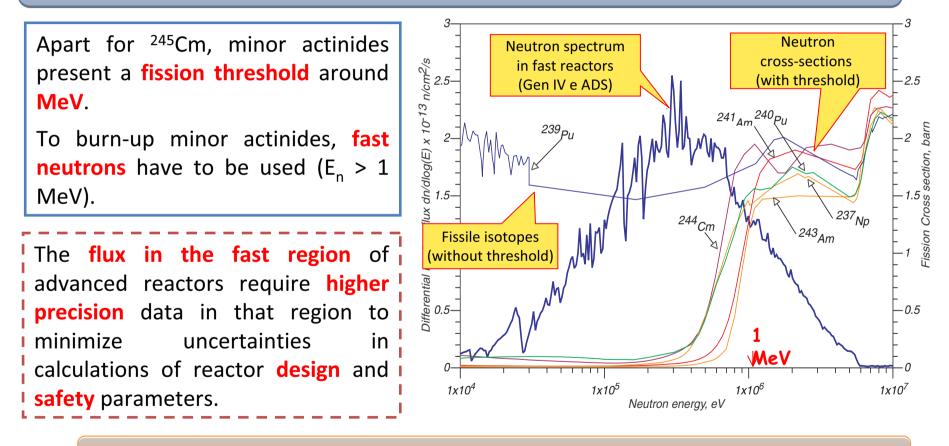

	Cm 238	Cm 239	Cm 240	Cm 241	Cm 242	Cm 243	Cm 244	Cm 245	Cm 246 4730 a
	2,4 h 	3 n 7 188 9	27 d = 6291;6298 9	32,8 d 5,335. 7,472,431;132 9	sf #162,94 d sf #112.6.009 sto 7(44).0" 0"-20 m-5	29,1 a sf a 5.765 5.742 c st g 1 278: 228; 210 sr a 130: a 520	sf *5400;5.700 *5400;5.700 *5400;5.700 *5400;5.700 *5400;5.700 *5400;5.700	51	4730 a a 5.386; 5,343 st; g γ (45); e' σ 1,2; σ 0,16
Am 236 ? 3,7 m	Am 237 73,0 m * 0.042 * 0.042 * 0.042 * 0.042 * 0.042 * 0.042 * 0.042 * 0.042 * 0.042	Am 238 1,63 h * 4.5.34 y 503; 519,561 0 0	Am 239 11,9 h st * 5774. * 2776 228. *	Am 240 .50,8 h 	Am 241 432,2 a a 5.400, 5.443 of; y 50; 25 of; y 50; 25 of; y 50; 50; of 10	Am 242	Am 243 7370 a *5375,5231 st. y75,44 y1,074	Am 244 26 m 10,1 h 51 0° 1.2. 0° 0.4 0° 1.2. 0° 0.4 0° 1.2. 0° 0.4 0° 0.4	Am 245 2,05 h st # ^{-0.3} . (241;296) *:#
Pu 235 25,3 m	Pu 236 2,858 a st st, Mg M r142,108ter ry 160	Pu 237 45,2 d sf *5,334 *6;e ⁻ *9,2300	Pu 238 87,74 a st + 5,400, 5,406 + 55.Mg + 510, m 17	Pu 239 2,411 + 10 ⁴ a u 5,157; 5,144 d1; y (57) a; at r 270; m; 702.	Pu 240 6563 a st strife: 5.134 strife: 5.134 strife: 5.134 strife: 5.134 strife: 5.134 strife: 5.134	Pu 241 14,35 a st st obe a 4 debi- y (140 _ Let e 370, e) 1010	Pu 242 3,750 · 10 ⁵ a 4,101; 4,855. H; y 143.) e; g 718. cq < 0,2	Pu 243 4,956 h sf #4.00 #40 #4 100; #200	Pu 244 8,00 - 107 a st st st st st st st st st st
Np 234 4,4 d ^{s, β+} γ 1559; 1528; 1602 σι * 900	Np 235 396,1 d 4, e 5,025, 5,007 9(26,84); e 9; e 160 + 7	Np 236 255 154 10 ³ 154 10 ³	Np 237 2,144 - 10 ⁶ a = 4,7% - 4,7% 7,20: 67, 9 = 150 0.025	Np 238 2,117 d ^{β-1,2} 984; 1029; 1026; 924e- g: er 2100	Np 239 2,355 d ^{B⁺ 0.4; 0,7} 7 106; 278; 228 e ⁻ ; g 7 32 + 19; <i>a</i> 7 < 1	Np 240 7,22 m 65 m 9 7,22 m 55 m 9 7,555 9 7,555 907 907 67 001 17	Np 241 13,9 m ^{β-1,3} ^{γ 175; (133)}	Np 242 2,2 m 5,5 m 17 2,7 17 7 736 7786 746 445 1471 158 0	Np 243 1,85 m ³⁷ 288 9
U 233 1,592 · 10 ⁵ a Ne2: ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴	U 234 0,0055 4775 4722	U 235 0,7200 7,46 0 4 3984 5 3984 5 3984	U 236 120 ns 2,342 10°a 1,440 1,440 1,162 1153	U 237 6 75 d 9 60. 208 e ^r 9 - 100; m < 0.35	U 238 99,2745 270 fr 1,456 10°a 1,251 15,176 10°a	U 239 23,5 m β ⁻¹ .2; 1.3 γ 75; 44 π 22: m 15	U 240 14,1 h \$^0,4 7 44: (190) e		U 242 16,8 m 7 68; 58; 585; 573 m
F a 232 1,31 d β ⁻ 0.3, βε γ 189; ξ 34; 15 α. 80; ε 700	Sa 233 2, 0 d β ⁻ 0,3,0,5 y312,300 341;e ⁻ u 20+19; m < 0	Pi 234 1,17 n 5,70 h 1,17 n 5,70 h 1,22 1,00 1 2, 1,31,181 1,17,17,181 1,17	Pa 235 24,2 m ^{β⁻1,4} ^{γ 128 - 659}	Pa 236 9,1 m 8 2,0; 3,1 9,642; 587; 1763; 9 8517	Pa 237 8,7 m 8 ^{-1,4; 2,3} 9854; 865; 529; 541	Pa 238 2,3 m β ^{-1,7;2,9} γ 1015; 635; 448; 680 9	148		150
Th 1231 25, i h 26, 84	Th 232 100 1,405 TO a # 4.013 3,950 sf y [94]; e # 7,37 9,000005	7 h 2 33	Th 234 24,10 d # 0.2 763;92;93 e ^r ;m o 1.8; ot < 0,01	Th 235 7,1 m ^{p=1,4} 7417:727: 696	Th 236 37,5 m ^(b^{-1,0}) ^{y 111; (647; 196)}	Th 237 5,0 m			
		LLFP							

6

N. Colonna – INFN Bari

INFN

New generation reactors

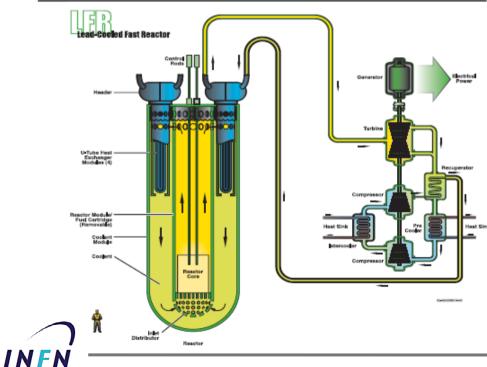


- Higher burn-up **efficiency** and lower production of waste
- Greater safety and non-proliferation
- lower costs and construction time

NFN

Reactor physics in Gen IV and ADS

The main innovation concerns the possibility to produce energy by burning the nuclear waste with higher radiotoxicity (minor actinides) : Np, Am, Cm



The development of Gen IV reactors fast reactors requires data on minor actinides

NFN

The Generation IV forum

Generation IV System	Acronym
Gas-Cooled Fast Reactor System	GFR
Lead-Cooled Fast Reactor System	LFR
Molten Salt Reactor System	MSR
Sodium-Cooled Fast Reactor System	SFR
Supercritical-Water-Cooled Reactor System	SCWR
Very-High-Temperature Reactor System	VHTR

A Technology Roadmap for Generation IV Nuclear Energy Systems

Ten Nations Preparing Today for Tomorrow's Energy Needs

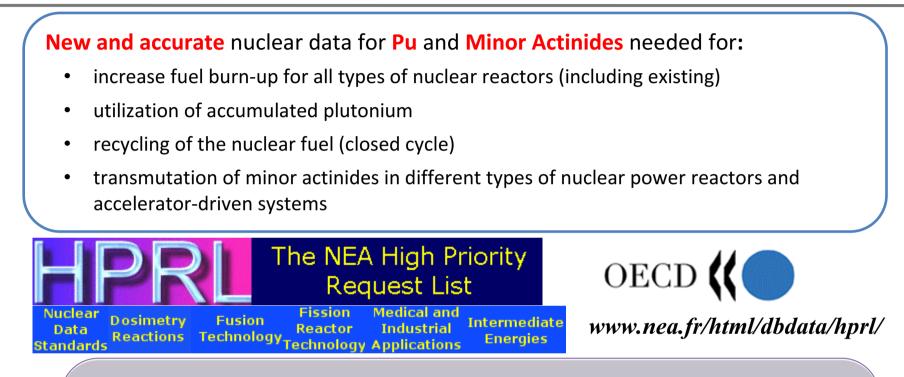
10 Nations Preparing Today for Tomorrow's Energy Needs

			Energy Range	Current Accuracy (%)	Target Accuracy (%)	
ſ	11220	inel	0.5 ÷6.1 MeV	10 ÷20	2 ÷ 3	
	U238	capt	2.04 ÷24.8 keV	3 ÷9	1.5 ÷ 2	
<	Pu241	fiss	454. eV ÷1.35 MeV	8 ÷ 20	2 ÷ 5	
	Pu239	capt	2.04 ÷498 keV	7 ÷15	4 ÷ 7	Necessary accuracy better than 3 % for
	Pu240	fiss	0.498 ÷1.35 MeV	6	1+3	most Pu isotopes and
$\left(\right)$	Pu242	fiss	0.498 ÷2.23 MeV	19 ÷21	3 ÷5	Minor Actinides, in
	Pu238	fiss	0.183 ÷1.35 MeV	17	3 ÷5	the energy range
	Am242m	fiss	67.4 keV ÷1.35 MeV	17	3 ÷4	from a few keV to
	Am241	fiss	2.23 ÷6.07 MeV	9	2	several MeV
	Am243	fiss	0.498 ÷6.07 MeV	12	3	
	Cm244	fiss	0.498 ÷1.35 MeV	50	5	
	Cm245	Fiss	67.4 ÷183 keV	47	7	
	Fe56	Inel	0.498 ÷2.23 MeV	16 ÷25	3 ÷ 6	
	Na23	inel	0.498 ÷1.35 MeV	28	4 ÷10	
	Pb206	inel	1.35 ÷2.23 MeV	14	3	
	Pb207	Inel	0.498 ÷1.35 MeV	11	3	
	Si28	inel	1.35 ÷6.07 MeV	14 ÷50	3 ÷ 6	
	3120	capt	6.07 ÷19.6 MeV	53	6	

Table 1. Summary Target Accuracies for Fast Reactors

e

Source: Aliberti, Palmiotti, Salvatores, NEMEA-4 workshop, Prague 2007


Experimental challenges

²⁴¹Pu(n,f) ($\tau_{1/2}$ =14.4 years) 500 eV < E_n < 2 MeV •Data needed for SFR, GFR, LFR •Current uncertainty: 10-20 % Target accuracy: 2-6 % •Similar needs for ²⁴⁰Pu ($\tau_{1/2}$ =6.5e3 years) and ²⁴²Pu ($\tau_{1/2}$ =3.75e5 years) ²⁴¹Am, ^{242m}Am, ²⁴⁴Cm, ²⁴⁵Cm(n,f) En < 2 MeV •Data needed for SFR and ADS Target accuracy: 2-6 % •Current uncertainty: 10-40 % There is a **strong need** for more accurate measurements. The various neutron facilities around the world can contribute to attack a large part of the still open nuclear data requests. However, the most difficult measurements require **improvements** on the experimental methods and on neutron facilities (but there is still a question whether some measurements will be feasible in the near future)

Some "impossible" measurements can at present be done with other methods (surrogate).

Needs for new data on fission cross-sections

Current compilation of neutron cross-sections (ENDF, JENDL, JEFF, BRONDL, etc...) are incomplete or discrepant among themselves or with experimental data, for many isotopes (Minor Actinides).

Clearly inadequate for the needs related to emerging nuclear technologies

Strong need of new and accurate fission cross-section data for several isotopes, many of which highly radioactive.

The neutron facilities

The different types of neutron sources

Thermal neutron beams:

- high fluxes available at nuclear reactors
- **moderated** neutrons produced with **accelerators** (see below)

Monoenergetic neutron sources: typically based on p- or d-induced reaction D(d,n), T(p,n), T(d,n), ⁷Li(p,n), ⁹Be(p,n), ec..., thin production targets based on low- and medium-energy accelerators (VdG, Pelletron, ...) accordable neutron energy (by changing energy of the primary beam) neutron energies up to 20 MeV

Time-of-flight facilities (ToF):

- wide energy spectrum, neutron energy determined from ToF
- choice of flight base trade-off between flux and energy resolution
- Requires pulsed accelerator

Time-of-flight facilities

Different types of neutron time-of-flight facilities

(p,n) and (d,n) reactions:

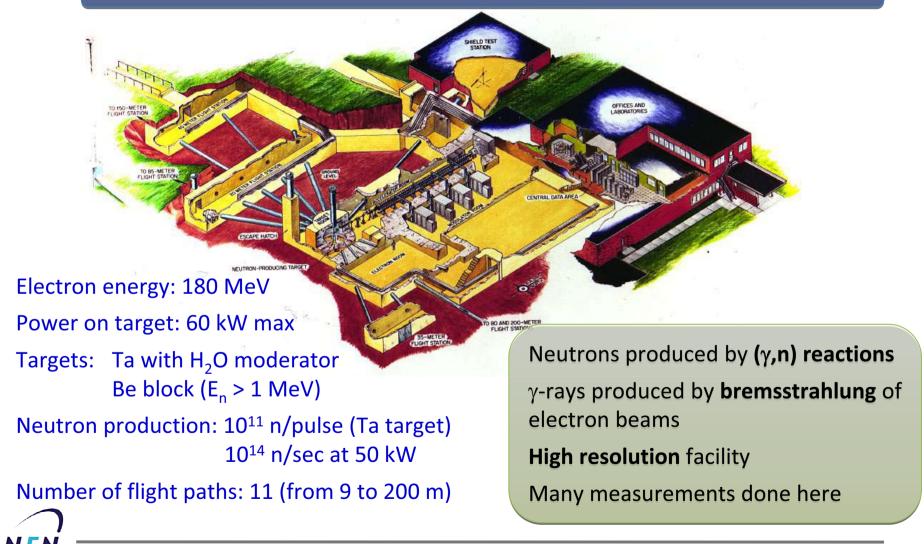
- Low and medium energy accelerator (pulsed)
- thick targets (for higher flux)
- moderated spectrum

High-intensity electron beams:

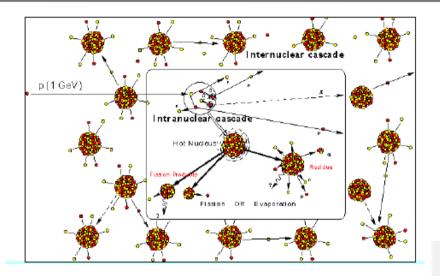
- neutron production though (γ,n) reactions
- target made of high-Z material (and U, in some cases)
- moderated spectra

Spallation neutron sources:

- based on high-energy (GeV) protons beams
- Large blocks of heavy material
- Moderated spectrum


The neutron facilities at JRC-IRMM

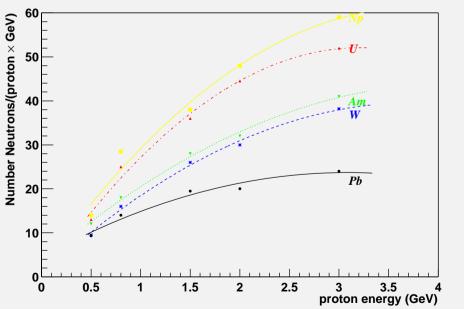
Already shown by P. Schillenbeeckx

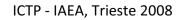


The ORELA neutron facility

The Oak Ridge Electron Linear Accelerator (Oak Ridge, Tennessee, USA)

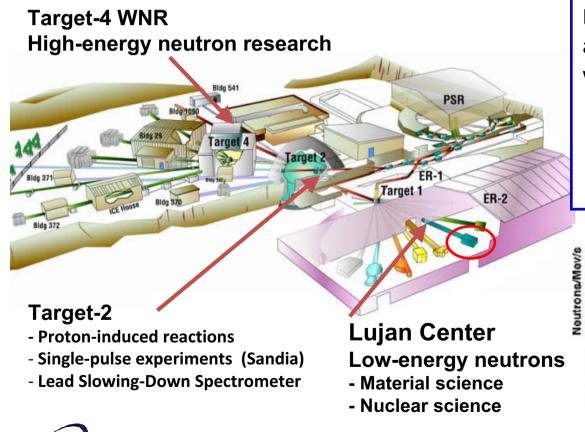
Spallation neutron sources


Neutron production depends on **atomic weight** and **density** of the material → high-Z material needed Depends on **proton energy**

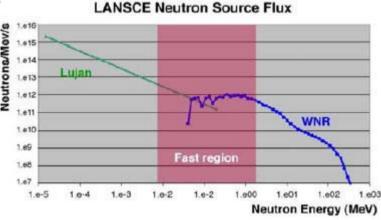

Choice of **target** depends also on other factors (radiation resistance, costs, etc...)

Neutrons produced by a **series of nuclear reactions** (intranuclear cascade, preequilibrium, evaporation, etc...)

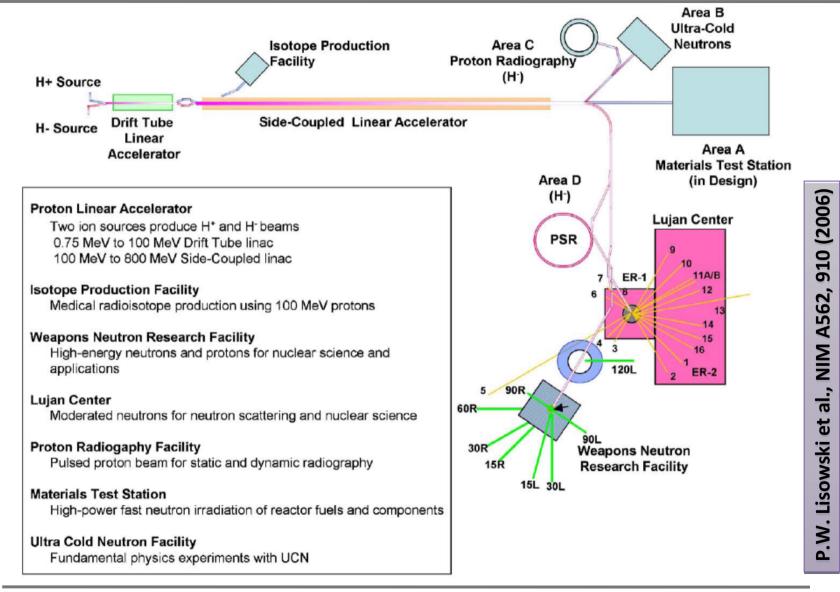
Need high-energy proton beams


Large volume spallation targets

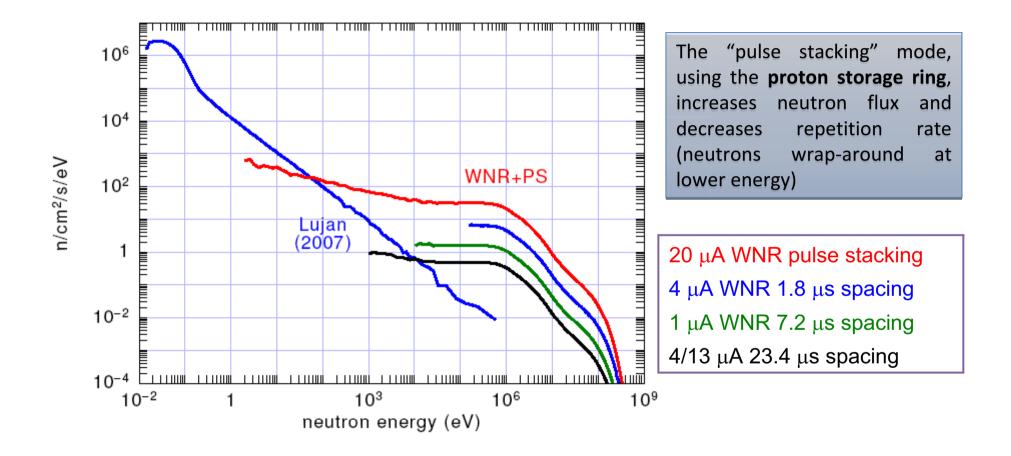
The Los Alamos Neutron Science Center (LANSCE)


Based on the **spallation** of 800 MeV proton beam on Tungsten **targets**

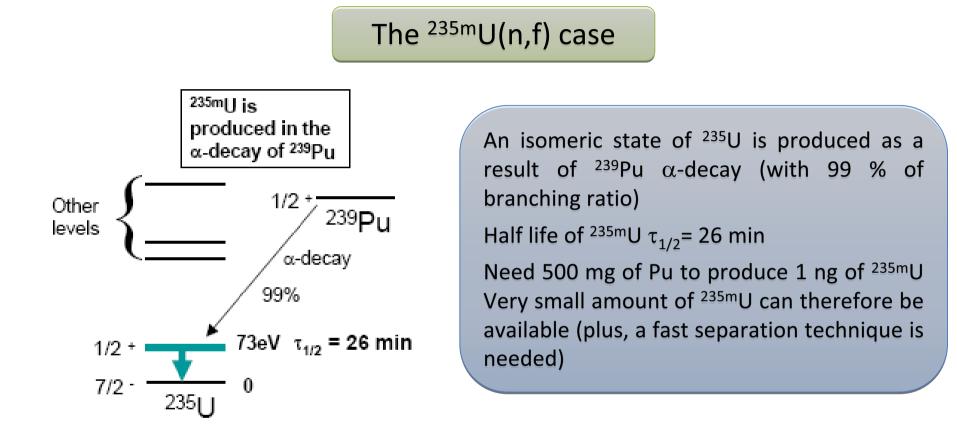
Use of the **proton storage ring** to increase proton beam current (and therefore, neutron flux)


Different target/moderator assembly allow measurements in a wide energy range:

- W target with moderator for low-energy measurements
- W target without moderator for measurements up to 200 MeV


19

The LANL neutron facilities

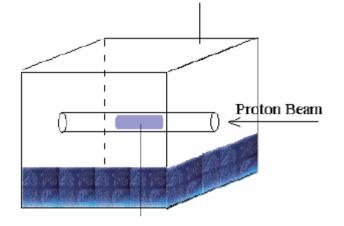


Neutron flux available at LANL

Fission cross-section for very small samples

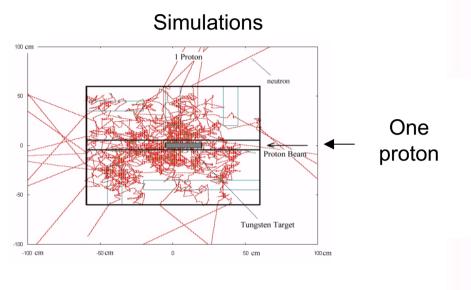
To meaured the ^{235m}U(n,f), necessary huge neutron flux (up to 10⁴ times those currently available)

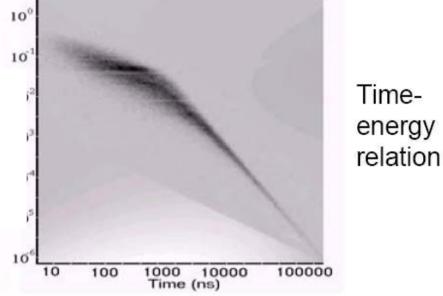
Lead Slowing Down Spectrometer


Neutrons interactions in Pb: only **inelastic** and **elastic** collisions (small capture crosssections)

In each interaction, little energy is lost

Neutrons are trapped inside Pb block

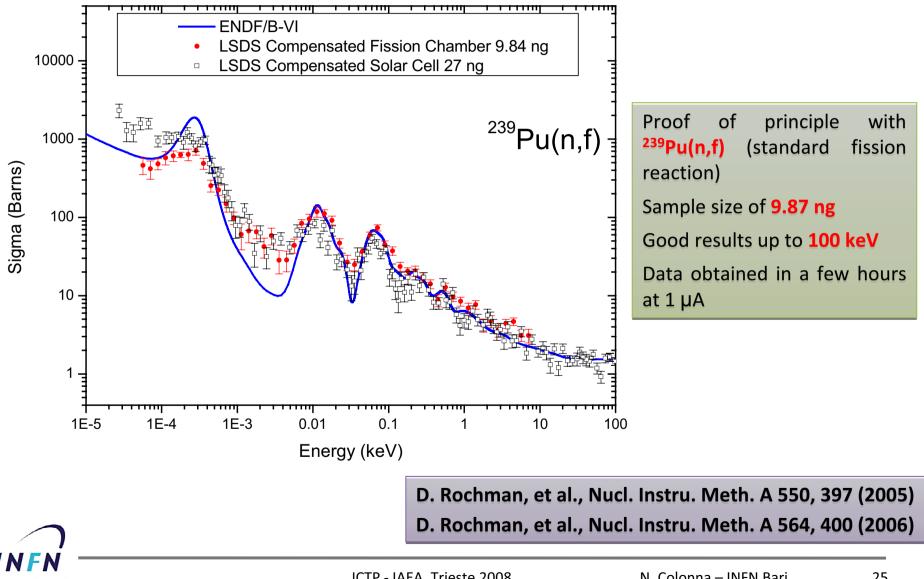

Fission cross section measurements for isotopes **highly radioactive** or available in small quantities need **extremely high** neutron flux The solution is the **"Lead Slowing**


Down Spectrometer"

At LANL, 800 MeV p on W, inside 1 m^3 Pb cube

Lead Slowing Down Spectrometer

LSDS @ LANL:


- 20 tons of high purity lead
- pulsed proton beam
 pulsed neutron source in center
- Different channels in the lead assembly
- Fission chamber (with sample) inserted in the channels

Properties:

- Some time-energy relation is retained, but relatively poor energy resolution
- Trapped neutrons allows measurements on extremely small samples (ng)

An example of fission measurement with LSDS

Neutron facilities in Japan and Russia

JAPAN

Reactors: JRR-3 (JAEA, 20MW), KURRI (Kyoto, 1MW)

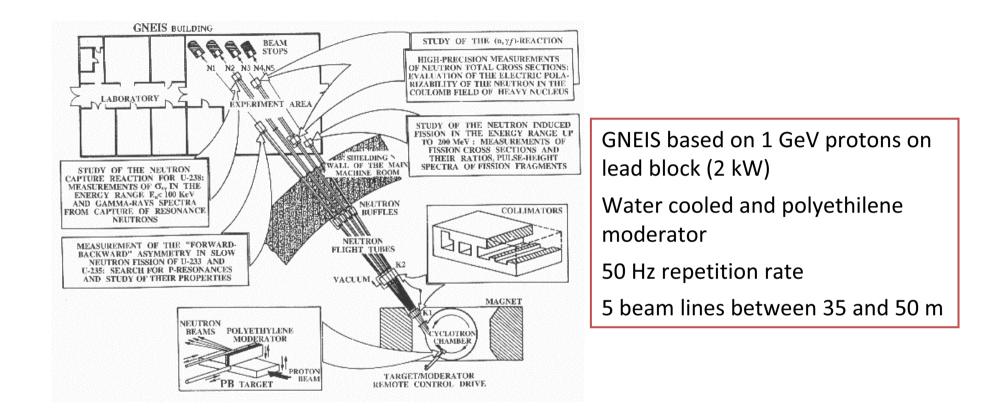
Time-of-flight facilities:

- Kyoto: 30 MV Electron LINAC
- Tokio Institute of Technology: 3 MV Pelletron
- JAEA: 4 MV Pelletron

Under construction at J-PARC (Japan Proton Accelerator Research Center):

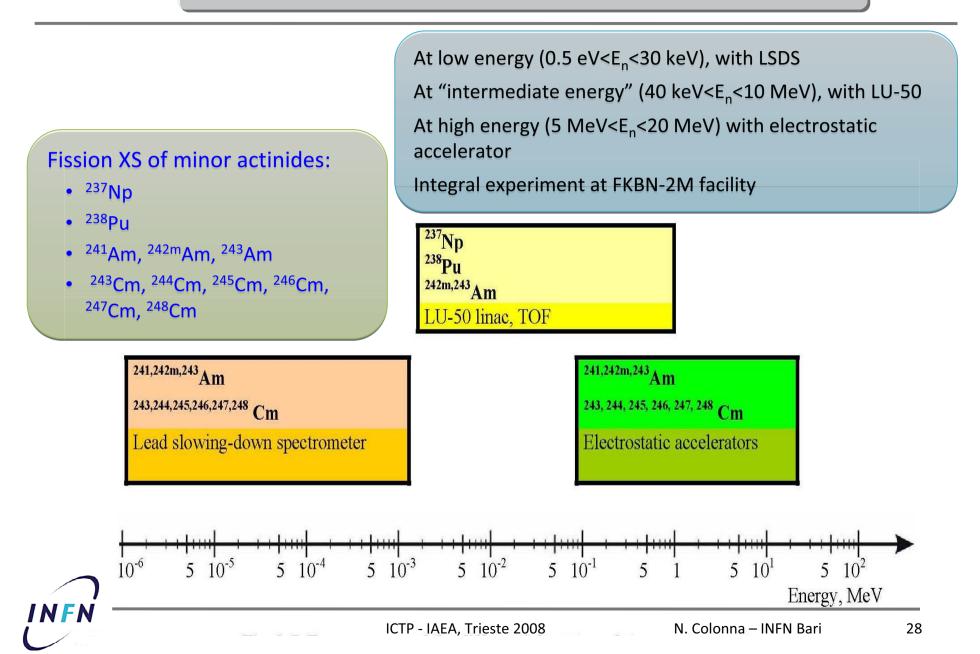
 Innovative high-intensity neutron beam facility based on 3 GeV proton beam (1 MW power)

RUSSIA

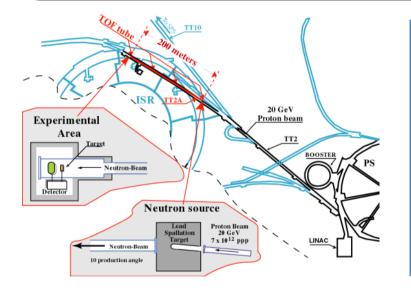

Monoenergetic neutrons (VdG, IPPE, Obninsk);

Time-of-Flight facility at LU-50 electron accelerator (Sarov);

Lead slowing down spectrometer (Troitsk)


GNEIS (PNPI, S. Petersbourg)

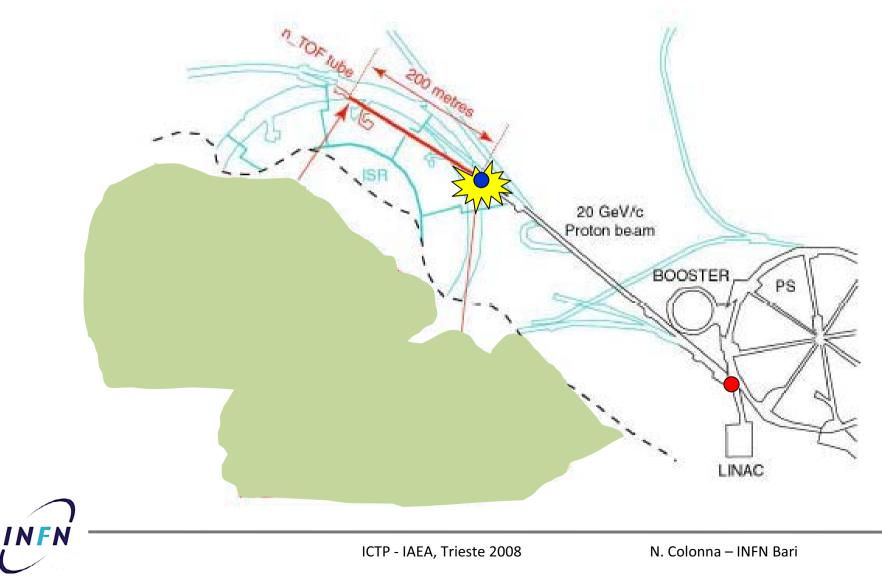
Neutron facilities in Japan and Russia



The fission measurements in Russia

The n_TOF facility

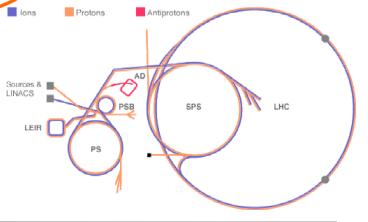
n_TOF is a **spallation** neutron source based on 20 GeV/c protons from the del ProtoSyncrotron of CERN (at this energy, produced ~360 neutrons per proton).


- Spallation target of Pb, 80x80x60 cm³, water-cooled (H2O also as moderator)
- Flight base ~200 m
- Two collimators, three schielding walls, one magnet
- Possibility to change beam profile in experimental hall (for capture or fission measurements).

Very high instantaneous flux	10 ⁵ n/cm ² /pulse		
Wide energy range	1 eV < E _n < 250 MeV		
Good energy resolution	Δ E/E ~ 10 ⁻⁴ (fino a 100 keV)		
Low repetition rate	1 pulse/2.4 s (0.8 Hz)		
Low background	10 ⁻⁵ (1 particle/cm ² /pulse)		

The neutron production at n_TOF

n_TOF at CERN


The facility started operation in 2001, after 1.5 years of construction

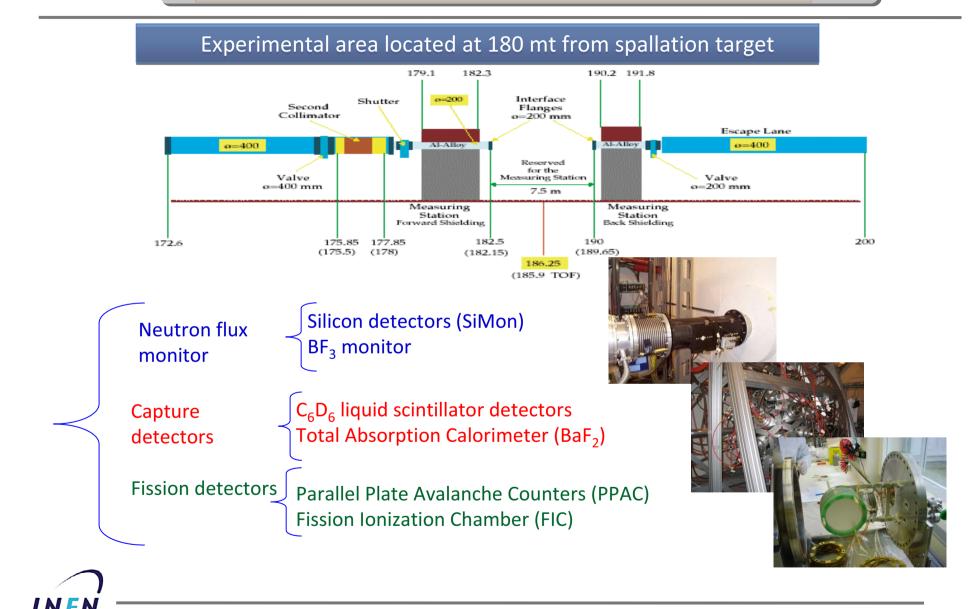
Experimental area located here

n_TOF dedicated to measurements of capture and fission cross-sections for:

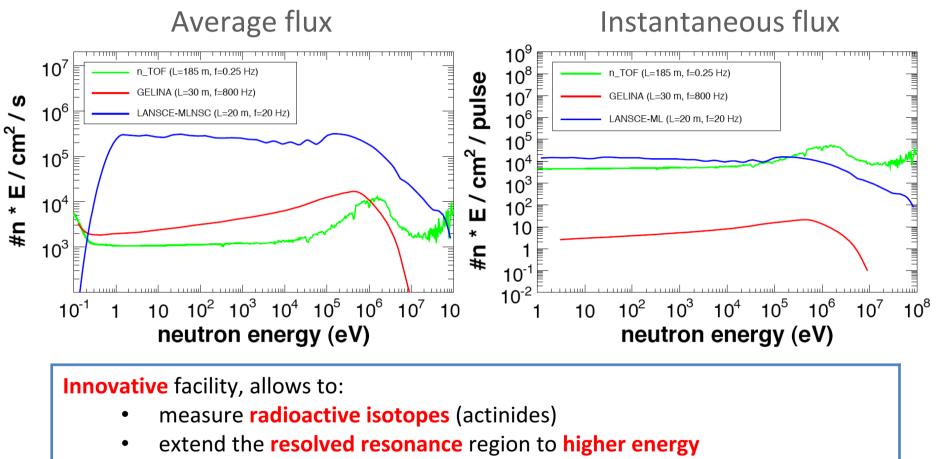
- Nuclear Astrophysics (capture)
- Emerging nuclear technologies (capture and fission)
- Fundamental nuclear physics (fission)

Some pictures

- Spallation target: block of Pb 80x80x40 cm³
- Moderator: 5 cm water (used also for neutron moderation, to produce isolethargic flux)
- 200 m time-of-flight tunnel
- Walls of iron and concrete for shielding n, γ , μ , etc...
- Deflecting magnet for charged particles
- Collimators (2 cm for capture, 6 cm for fission)

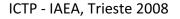

The experimental activity at n TOF

Capture Measurement campaign 2002-4 ¹⁵¹Sm ^{204,206,207,208}Pb. ²⁰⁹Bi ^{24,25,26}Mg **Misurements of capture reactions:** 90,91,92,94,96Zr, ⁹³Zr **25 Isotopes** (8 of which radioactive) • ^{186,187,188}Os, ¹³⁹La Often of double interest (AstroF and applications) • Most results already available • ²³²Th. ^{233,234}U Several publications and conference proceedings • ²³⁷Np,²⁴⁰Pu,²⁴³Am Measurements of fission cross-sections: **Fission 11 isotopes** (10 radioactive) 233,234,235,236,238 Mainly linked to Th/U cycle e transmutation ²³²Th. ²⁰⁹Bi strong interest to the data by International Nuclear Agencies ²³⁷Np


Results are now becoming available

^{241,243}Am, ²⁴⁵Cm

The n_TOF experimental set-ups



n_TOF vs other facilities

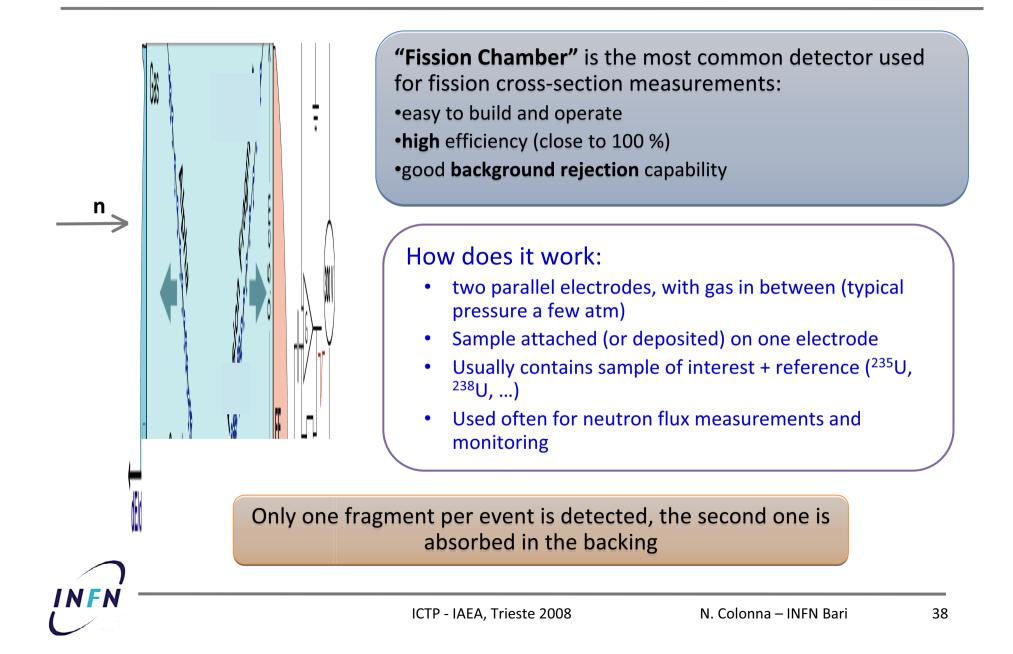
measure fission up to very high energies (at least 500 MeV)

Proposed the construction of a **second** experimental hall at **20 m** (flux x 100) !!

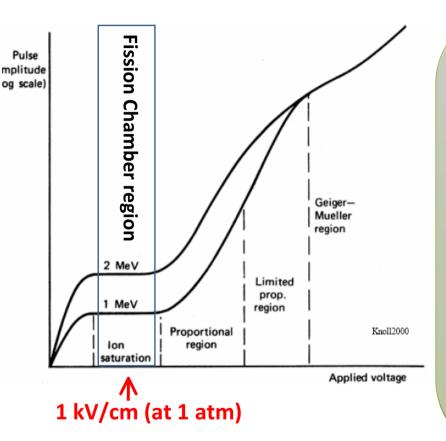
The fission detectors

General concepts:

- Fission cross-sections are measured by detecting **fission fragments**
- Two methods: **single** fragment or **coincidence**
- Several choices of detectors


Cross-sections measured relative to a reference:

- reaction with well-known cross-sections (some are "standard")
- ²³⁵U(n,f), ²³⁸U(n,f), ²⁰⁹Bi(n,f), ²³⁹Pu, H(n,n)


Ratio measurements minimize systematic uncertainties (in principle down to a few percent)

The fission chamber

The fission chamber

Electron and ion pairs produced inside the gas by **ionization** from FF and α -particles:

Charge produced depends on energy lost in gas, and on gas type

Voltage applied between the electrods to avoid recombination and **collect charge**.

Electric field such that no charge multiplication occurs:

- "ionization region"
- typical values of E/P = 1 kV/(cm·atm)

Drift of electrons and ions towards the electrodes depend on:

• applied voltage and type of gas

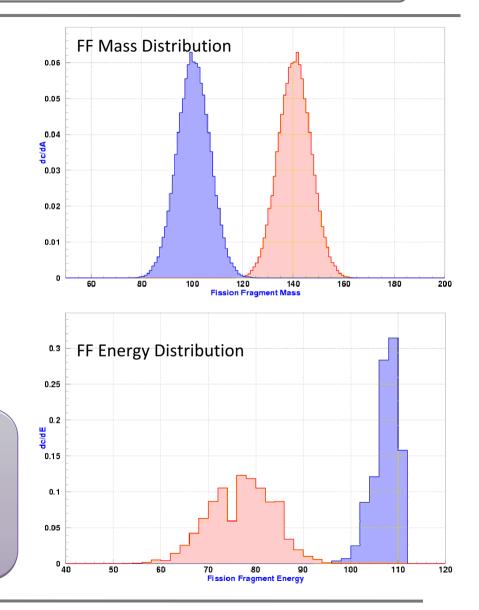
For measurements with actinides, extremely important to have a FAST gas, in order to avoid pile-up (mainly due to α -activity)

Electron mobility in gas (in mm/µs)

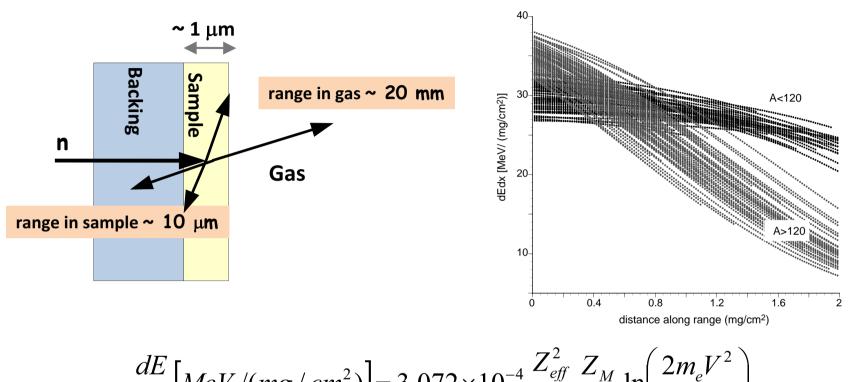
Cas	<i>Electric Field per unit pressure (E/p)/(V m N⁻¹)</i>											
Gas	0.075	0.15	0.3	0.45		0.75	1.5	3	4.5	6	7.5	15
H ₂	3.1	5	6.8	8.0	9.2	10	15	23	30	36	42	70
Не	2.7	4	6	7	8.5	9.6	15	36				
N ₂	3.1	3.9	5	6	7	8	14	22	30	36	43	80
Ne	4	5	7	10	12	16	26	52				
Ar	2.3	2.7	3.2	3.5	3.9	4.1	6.2	13	30			
Kr	1.5	1.8	2.1	2.4	2.5	3.1						
Хе	1.0	1.2	1.4	1.6	1.7	1.8						
CO2	0.56	1.1	2.3	3.4	4.6	5.7	11	33	66	94	109	137
СО	4.8	6.5	9.4	11	13	14	17	20	25	28	29	
BF ₃	0.13	0.25	0.5	0.75	1.0	1.3	2.5	5.0	7.5	10	12.5	25
Air	3.5	5	8	9.3	11	12	17	26	34	43	51	88
CH ₄	8	24	60	80	95	100	100					
CF ₄	30	51	74	87	96	101	117	140	141	129	116	95
Ar/CH ₄	49	55	45	36	32	30	26	24				
Ar/C ₂ H ₂	14.3	27.3	44.3	49.3	48.3	45.8	45.2					
Ar/CF ₄	34	63	100	120	120	111	66					
He/CF ₄	6	10.8	19.2	25.8	31.4	36						
Ar/CO ₂	5.0	10.6	26.5	37.3	43	42						

Energy deposition in fission chambers

α -particles:


- Energy ≈ 5-6 MeV
- Isotropically emitted over 2π
- Leave at most 5 MeV in the gas

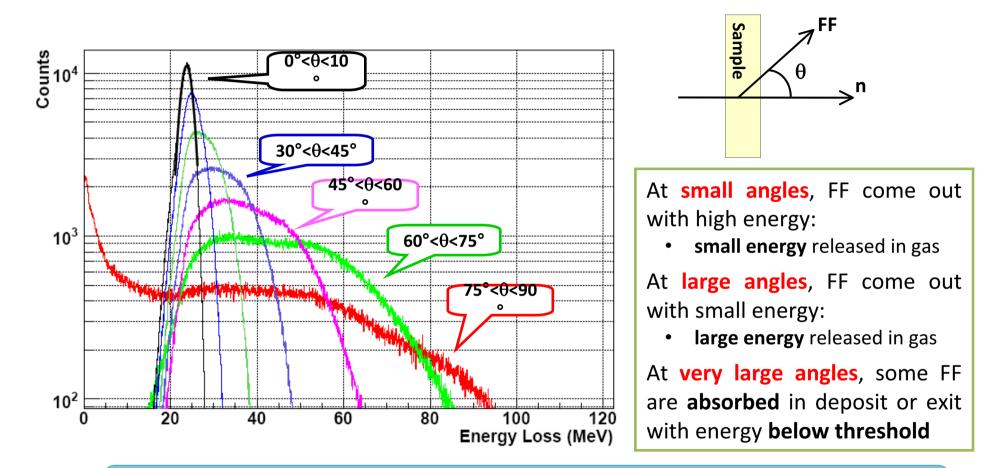
Fission Fragments:


- asymmetric mass distribution asymmetric (for low energy neutrons)
- total energy shared among fragments (inversely proportional to their mass)
- fraction of FF energy released inside the sample (depends on the emission angle and interaction point)

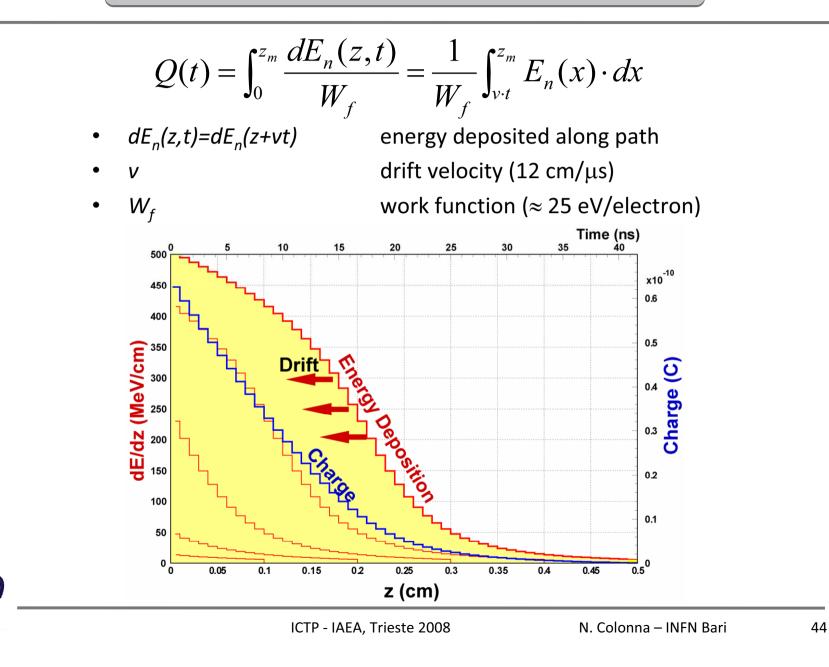
Energy deposition in sample and gas:
simple Bethe-Block formula not valid
depend on effective charge of fragments (fragment velocity)

use energy loss table and programs

Energy deposition in fission chambers


$$\frac{dE}{dx} \left[\frac{MeV}{(mg/cm^2)} \right] = 3.072 \times 10^{-4} \frac{Z_{eff}^2}{\beta^2} \frac{Z_M}{A_M} \ln\left(\frac{2m_eV^2}{I}\right)$$
$$Z_{eff} = \gamma Z \qquad \gamma = 1 - \left(a_0 + \frac{1}{E}\right) \exp\left(-b_0 V_R + b_1 V_R^2\right)$$

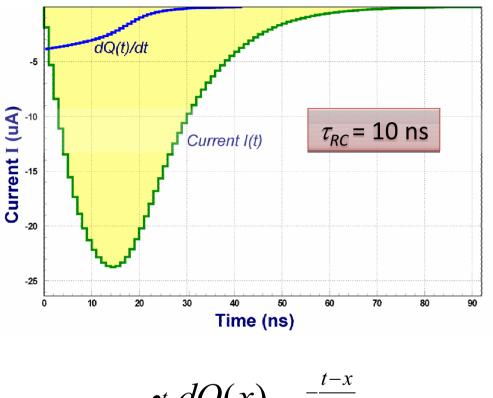
Typical efficiency very close to 100 %. Loss of efficiency due to FF emitted at large angles (absorbed in the sample)


INFN

Energy deposition in the gas

For very high accuracy (1-2 %), **very important** to estimate correctly the **efficiency**, which depends on sample thickness and threshold on energy deposited in the gas

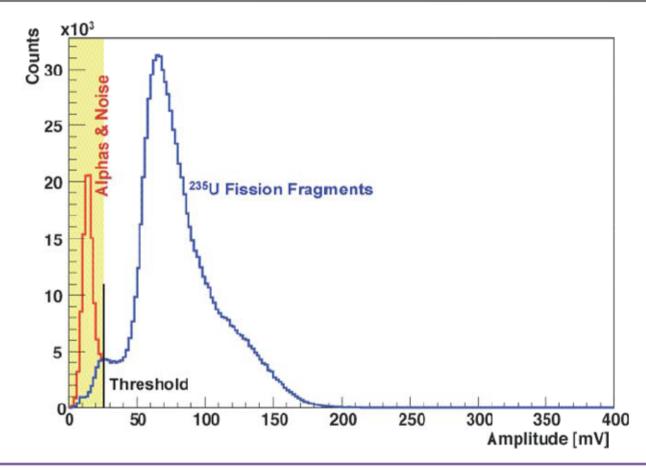
From energy deposition to charge



From charge to signal

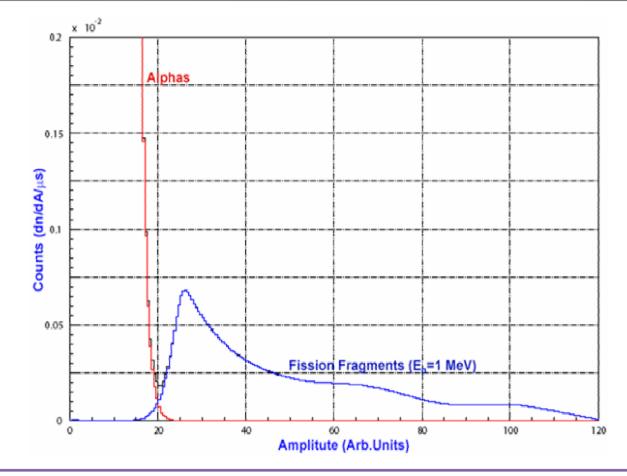
Signals generated by drift of e⁻ and ions

The charge collected on the electrode is processed through a preamplifier and a shaping amplifier.


The final signal is the convolution of the charge collected on the electrode with the RC of the electronic circuit (amplifier)

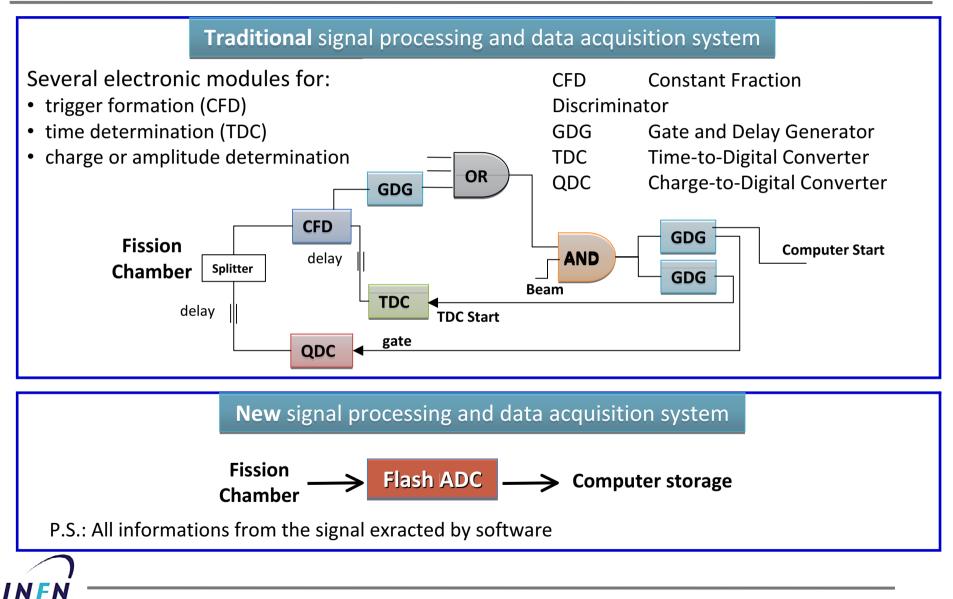
$$I(t) = \int_0^t \frac{dQ(x)}{dt} \cdot e^{-\frac{\tau_{RC}}{\tau_{RC}}} dx$$

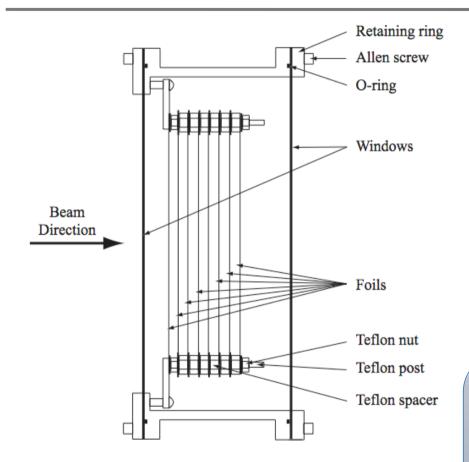
Amplitude distribution for ²³⁵U



Although fission produces two distinct groups of fission fragments, the energy deposited in gas shows only one peak due to absorption in sample.

For ²³⁵U, easy to reject α -background, simply with amplitude threshold


Simulated amplitude distribution for ²⁴¹Am


In theory, still good separation FF and a with 250 MBq ²⁴¹Am target However, problems with detector response and pile-up of signals.

Data acquisition

The Parallel Place Ionization Chamber (PPIC)

Important to **minimize material** in the beam (windows and electrodes)

Typically made of **several chambers** within a common volume of gas

Stack of samples (and electrodes) for beam-time optimization

Include **reference samples** for cross-section normalization:

• ²³⁵U, ²³⁸U, ²³⁹Pu, etc...

Gas circulation not necessary

• very convenient for MA, for safety reasons

Detector-related systematic uncertainties:

- target non-uniformity (with non-uniform beam)
- detection efficiency
- Background induced by neutron scattering
- cross-section of reference isotope

The reference reactions (cross-section standards)

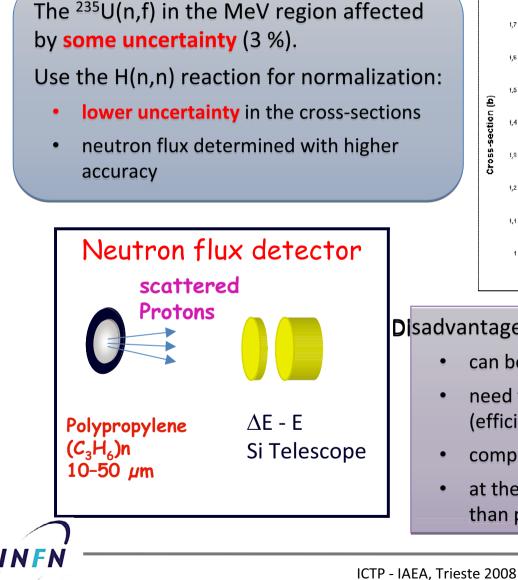
Neutron cross-section "standards" are very important, since avoid need of absolute measurements of neutron flux. Widely used to normalize cross-section data.

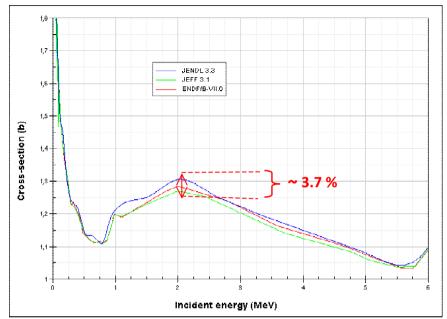
Some reactions **have gained** the status of "standards", since their cross-sections in the years have been determined **very accurately**.

Cross-section standards based on a large number of experimental data, and on evaluations (specific committee are set-up to this purpose IAEA-CRP, NEA-WPEC,

(ΞW	(G)	

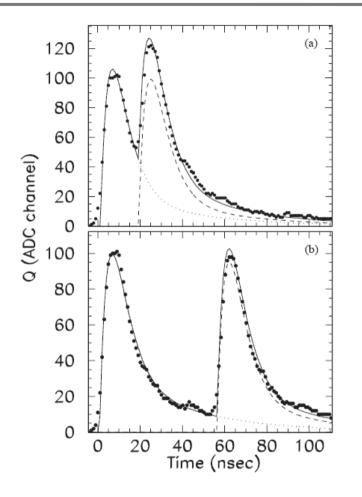
,	Reaction	Energy range	Comment			
	H(n,n)	1 keV – 20 MeV	Where it all starts			
	³ He(n,p)	25.3 meV – 50 keV				
	⁶ Li(n,t)	25.3 meV – 1 MeV	Relative to H(n,n)			
	¹⁰ Β(n,α)	25.3 meV – 250 keV	Relative to H(n,n) and ⁶ Li(n,a)			
	C(n,n)	up to 1.8 MeV				
	Au(n,γ)	25.3 meV and 0.2 – 2.5 MeV				
	²³⁵ U(n,f)	25.3 meV and 0.15 eV – 200 MeV				
	²³⁸ U(n,f)	2 – 200 MeV				
	· · ·					


Most common normalization methods, to **measure simultaneously** fission of ²³⁵U or ²³⁹Pu (reference samples):


- eliminates the need for many corrections (see later)
- minimizes uncertainties
- **easy** to measure (same detector)

Fundamental to measure with same experimental conditions
same area for same intercepted flux
approximately same count-rate, to minimize dead-time correction
if possible, same thickness, to minimize efficiency corrections

The reference reactions: the H(n,n)



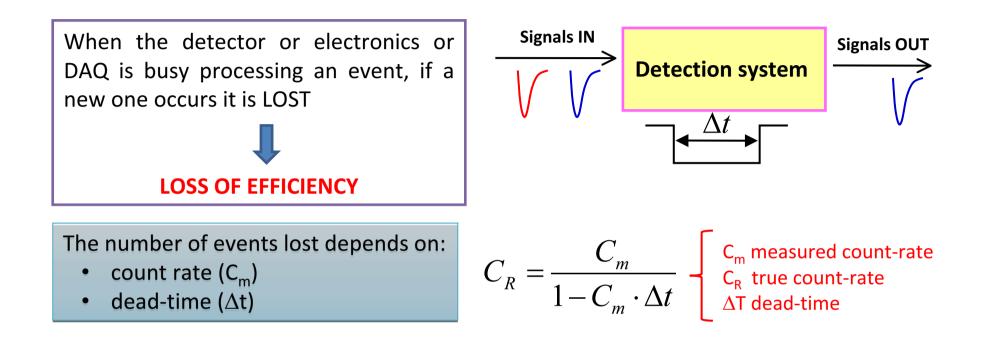
Disadvantages:

- can be used only for E_n above a few MeV
- need to consider many corrections in fission data (efficiency, flux interception, dead-time, etc...)
- complicates data analysis
- at the end, global uncertainty may not be smaller than previous normalization method

Signal pile-up

Two signals close in time give **pile-up**. If not minimized, pile-up may result in loss of events (one signal instead of two) LOSS OF EFFICIENCY

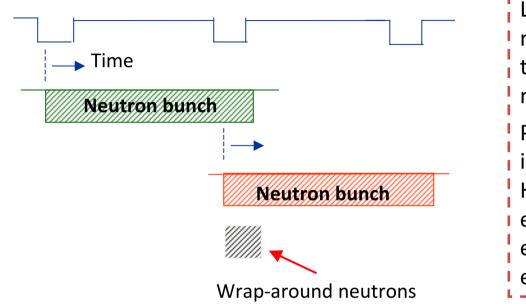
Pile-up probability function of **count-rate**. It depends on:


- sample thickness and cross-section
- neutron flux
- detector time-response

Even in ratio measurements, a **correction** is needed (pile-up may be different for sample and reference, if different count-rate).

Problem minimized by using **Flash ADC**

The problem of dead-time



In traditional data acquisition systems, the dead-time is typically of the order of μ s (or hundreds of μ s). In new systems, based on Flash ADC, much smaller (tens of ns).

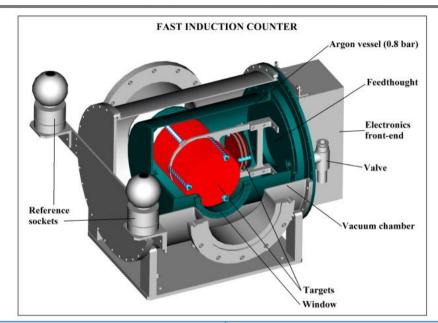
As for pile-up, the dead-time may be different for sample and reference (different count-rates). A correction needs to be applied !!

Background due to wrap-around

Low energy neutrons from one pulse may arrive at the fission detector at the same time as high energy neutrons from the next pulse. Pulse overlap causes background: important for some samples: High fission cross-section at low energy results in a large number of events contaminating the highenergy part

Two possibility:

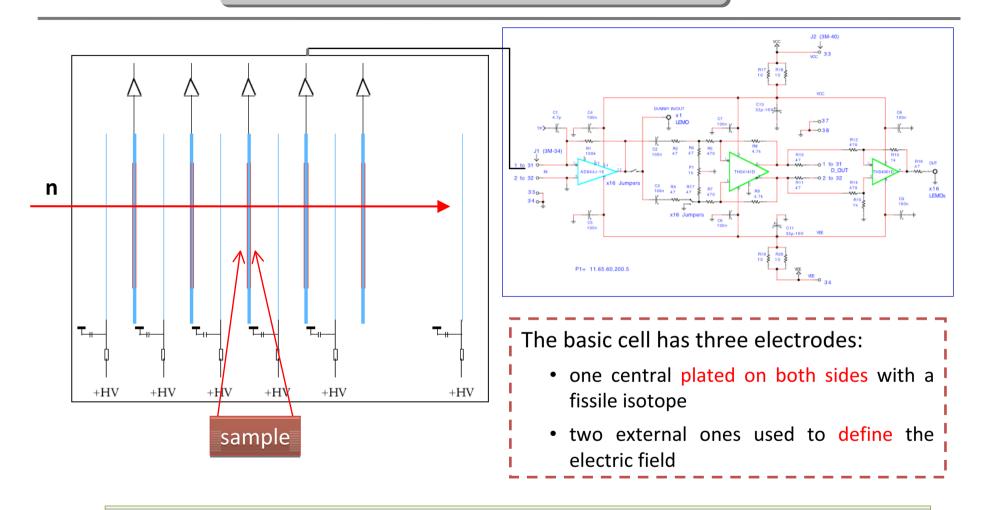
- measurements with filters (to cut low-energy neutrons)
- increase the spacing between pulses
- Determine the background with "threshold" isotopes (like ²³⁸U)


The n_TOF fission chamber (FIC)

The detector is a stack of **16 ionization chambers** mounted along the beam direction.

Mounted together to allow the simultaneous measurement of fission cross sections for various isotopes:

- 13 chambers in the beam
- 3 chambers normal to beam


Developed by CERN, JINR (Dubna), IPPE (Obninsk) and INFN

Gas	Ar (90%) + CF4 (10%)
Gas pressure	720 mbar
Electric field	600 V/cm
Sample diameter	8 cm
Sample thickness	4-450 μg/cm ²
Backing thickness	100 μm
Sample uniformity	5-10 %

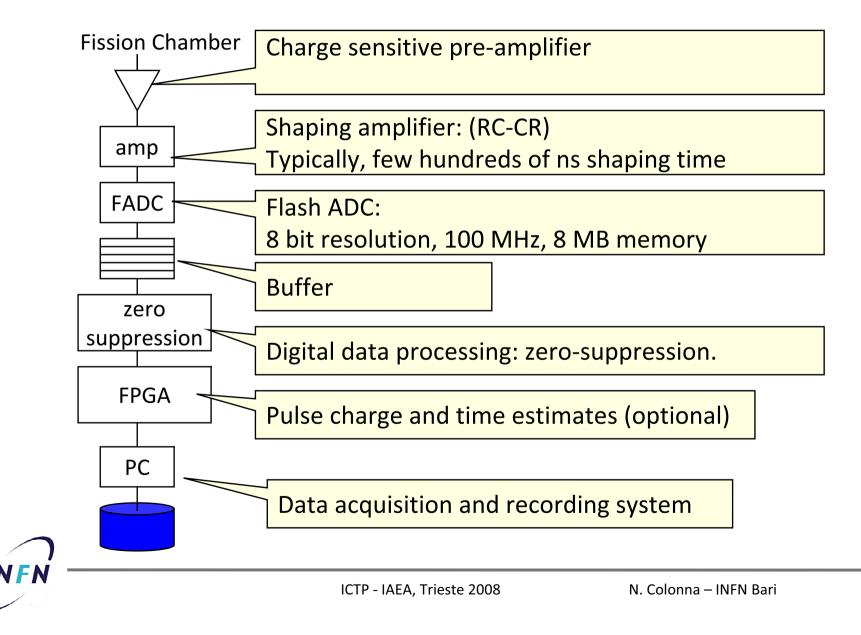
The n_TOF FIC

The signal is collected on the central electrode, processed with on-board electronic circuit (preamplifier and amplifier) and finally sent to a Flash ADC

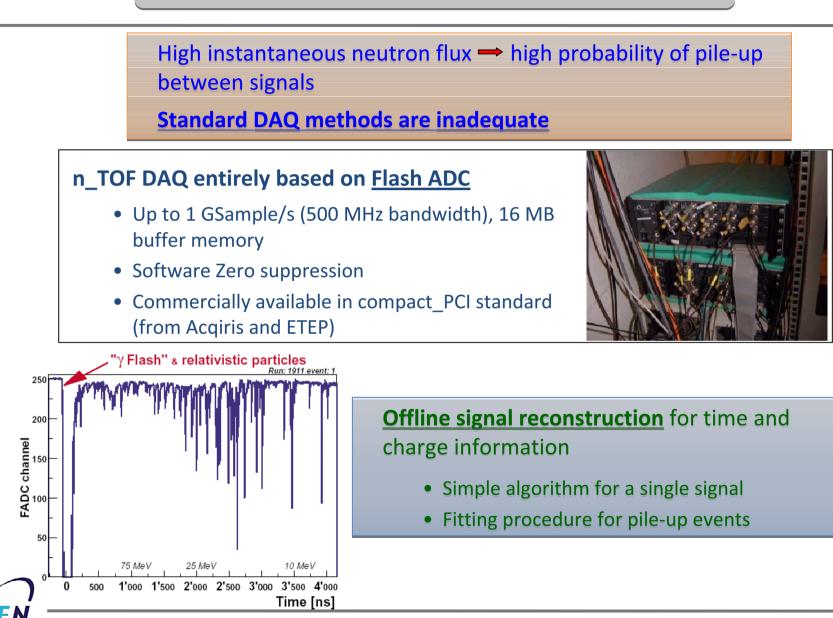
INFN

The n_TOF FIC

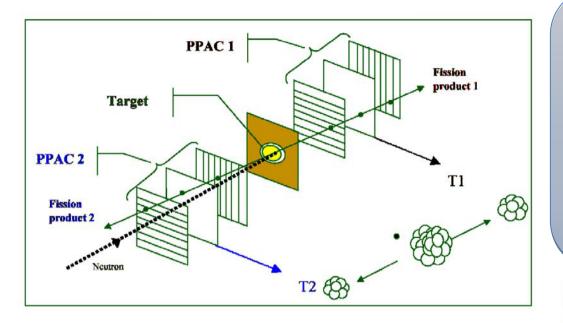
FIC1 – sealed source ISO2919 233,235,238U ,^{241,243}Am ²⁴⁵Cm



FIC2 – low activity isotopes 235,238U


Large collimator (8 cm diameter) for count-rate optimization Background from scattered neutrons measured with off-beam samples Background from α -decay measured with beam off

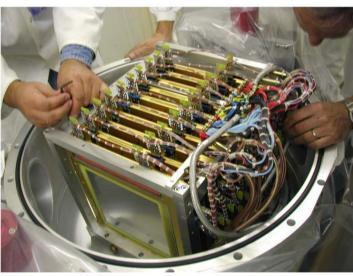
Signal processing and data acquisition


The n_TOF data acquisition system

(2005)A538 And Meth. Instr. et al R.Plag

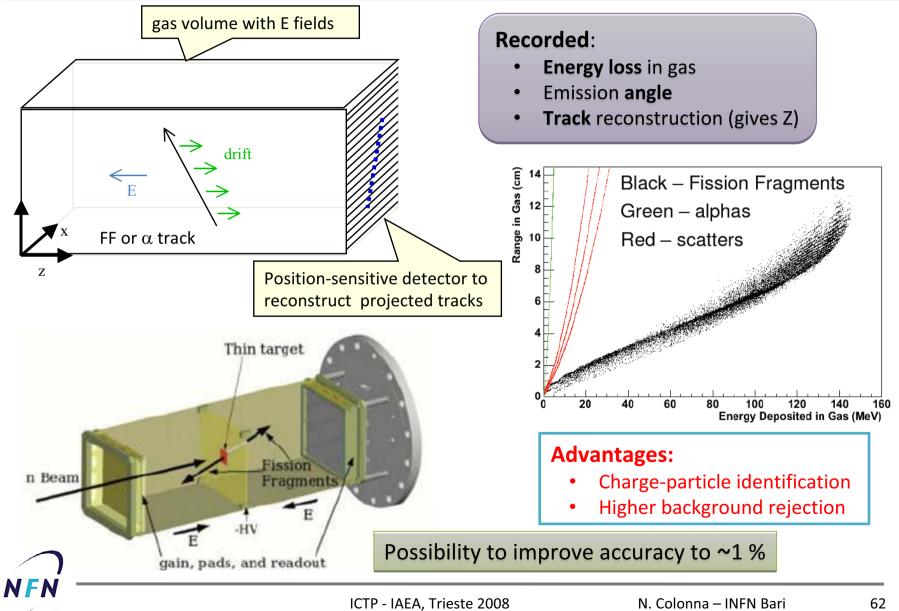
692

The coincidence method (PPAC)


Measured isotopes:

•²³⁵U, ²³⁸U (standard di misura)
•^{233,234}U, ²³²Th (ciclo Th/U)
•²³⁷Np (trasmutazione e Gen IV)
•²⁰⁹Bi, ^{nat}Pb (spallation target)

Parallel Plate Avalanche Counters: •both fission fragments detected, in coincidence

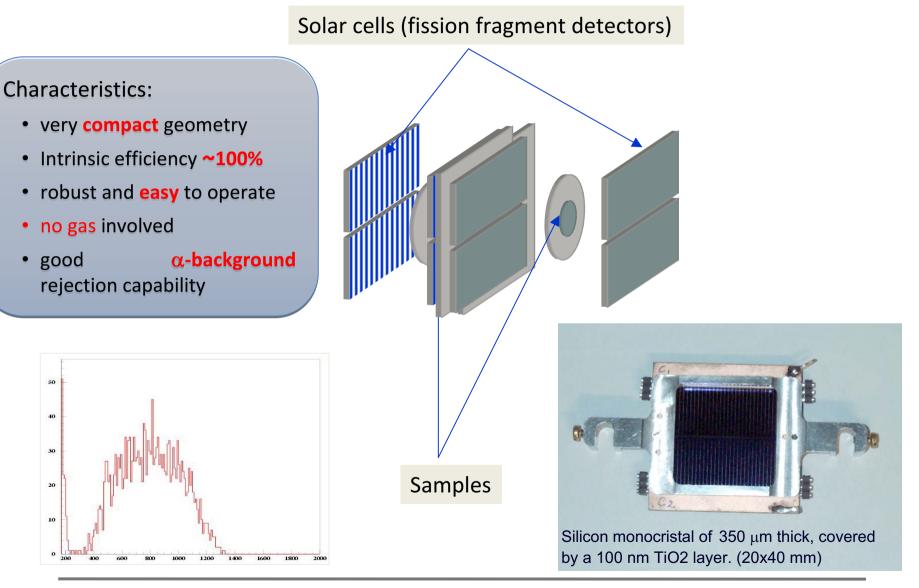

- •very good **rejection** of alpha background
- •fast timing (0.5 ns resolution)

•require very thin samples and very thin backing

The Time Projection Chamber

UNCLASSIFIED

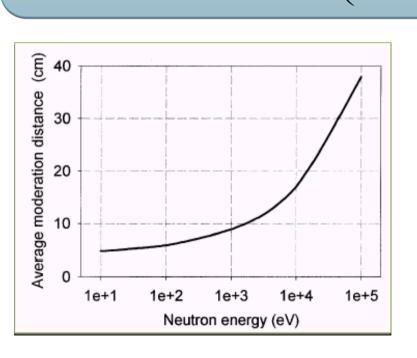
Detector for simultaneous σ_v/σ_f measurement


- Small fission detector (mainly PPAC), that can be operated in conjunction with a γ-ray detector (for example, inside calorimeter)
- Can be used to measure at the same time capture and fission ($\sigma_{\gamma}/\sigma_{\rm f}$) or as a veto for fission events
- Typical example at LANL, where PPAC used inside DANCE (4π Total Absorption Calorimeter)

Problem: the small dimensions of the chamber often imply a low counting rate (one cannot use thick samples as for pure capture measurements)

UNCLASSIFIED

The solar cell detectors


Data analysis

Time-of-flight reconstruction

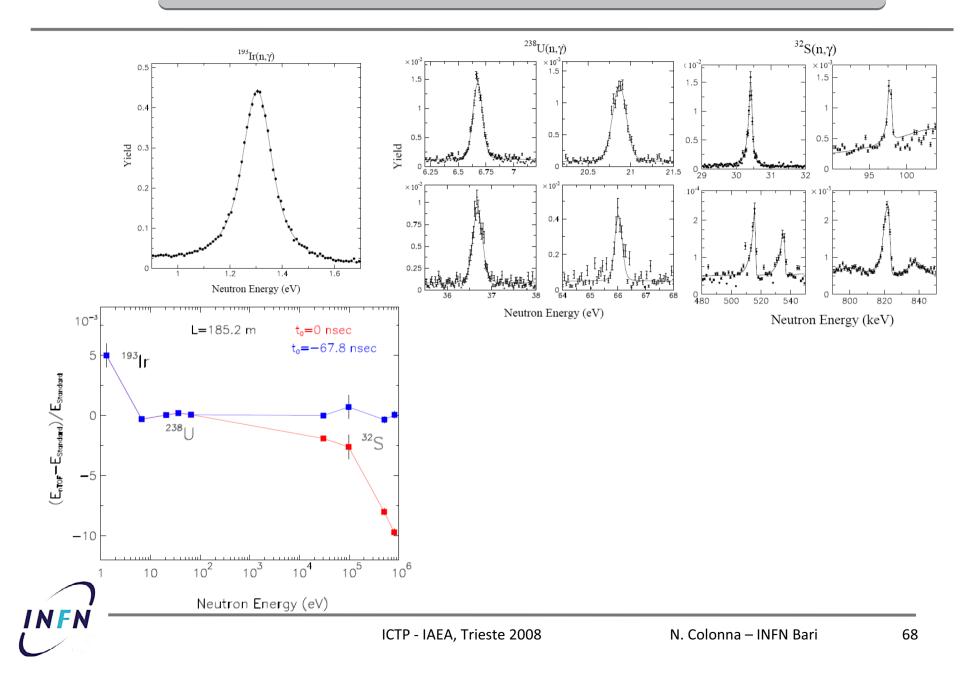
Calibration of neutron energy in ToF measurements

The neutron energy (at low energy) is determined from the time-of-flight according to: $\left(\frac{72.2977 \cdot L}{ToF - T_{c}}\right)^{2}$ L = flight path length ToF = time of flight T = correction torm

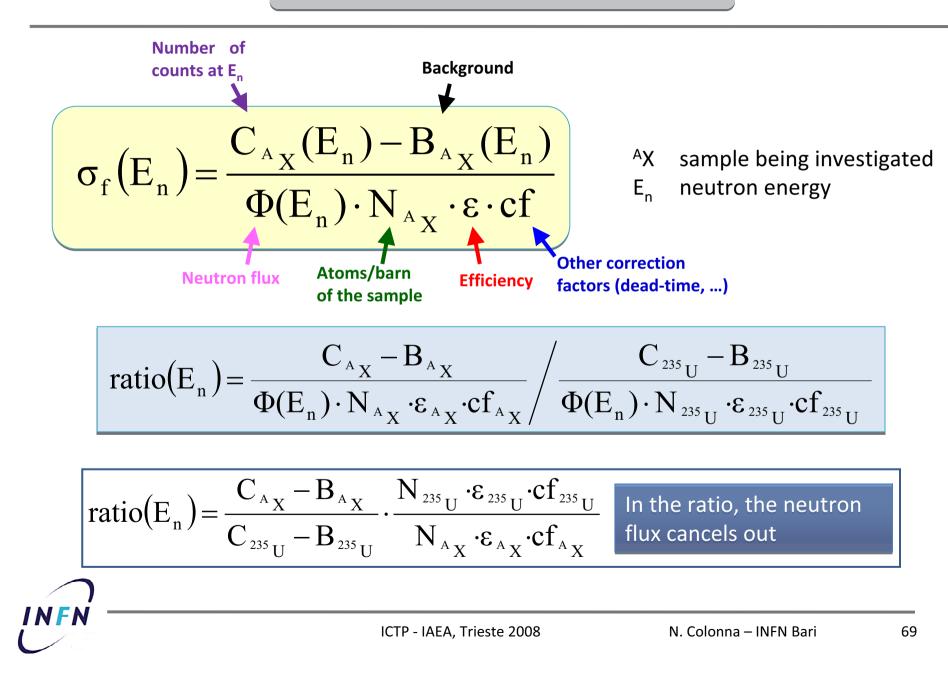
E =

The "time-start" (or **physical reference** t_0) for the time-of-flight is typically given by a **"prompt flash"** (γ-rays, high-energy charged particles, etc...).

T_c=correction term


In **moderated** neutron beams, L does not coincide with the **geometric distance** from neutron source, since neutrons travel some distance inside the target/moderator.

The "moderation distance" v-t depends on the neutron energy (t=moderation time).

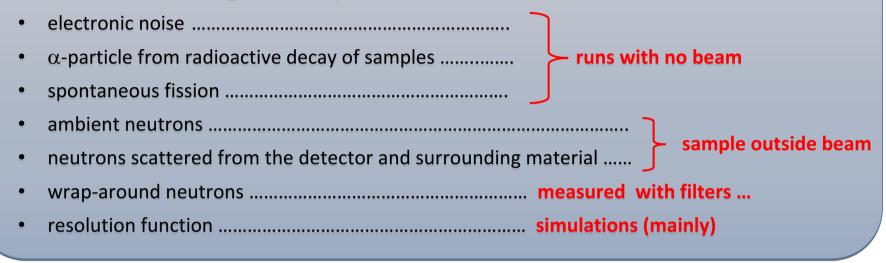

NFN

Necessary to calibratate the neutron energy with respect to energy standards

Calibration of neutron energy in ToF measurements

Data analysis

Data analysis


$$\sigma_{f} (^{A} X, E_{n}) = ratio (E_{n}) \cdot \sigma_{f} (^{235} U, E_{n})$$

Standard cross-section used as
reference (from evaluated data file)
$$ratio(E_{n}) = \frac{C_{A_{X}} - B_{A_{X}}}{C_{235_{U}} - B_{235_{U}}} \cdot \frac{N_{235_{U}} \cdot \varepsilon_{235_{U}} cf_{235_{U}}}{N_{A_{X}} \cdot \varepsilon_{A_{X}} cf_{A_{Y}}}$$

Things to **remember** about the use of ²³⁵U (or ²³⁹Pu) as reference samples:

- reference samples typically mounted inside the same chamber for same efficiency
- all samples with the **same area** to avoid correction for the flux interception
- if possible, same thickness, to minimize efficiency corrections (ε)
- approximately same count-rate, to minimize dead-time correction (cf)
- need to correct for **anysotropy** in angular distribution of fission fragments (particularly important at high energy). Included in the factor cf.

Possible sources of background

Several sources of background may affect the measurements of fission cross-sections:

It is preferable to try and **minimize** all possibile sources of background, to increase signal-to-background ratio and minimize uncertainty on background subtraction:

- high neutron flux (to minimize ambient background and natural radioactivity)
- minimize mass of the detector and surrounding material (for neutron scattering)

When extracting the fission cross-sections with ratio method, **uncertainties** related to:

mass of the sample and of the referencetypically, 1 %presence of other isotopes (contaminants) in the samplesdepends on the samplebackground subtractiondepends on the samplewrap-around neutronsdepends on the facilityefficiency and dead-time correctionsdepends on detectorneutron beam attenuationdepends on set-upevaluated cross-sections used as referencetypically, 1-3 %

In addition, other possible sources of uncertainty are:

- sample **non-uniformity** (combined with beam non-uniformity)
- **misallignement** between sample and reference (don't intercept the same neutron flux)

•

۰

٠