



1944-10

#### Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

19 - 30 May 2008

Heavy Water Reactors:
1. Physics, Concepts and History
(Appendix)

B.P. Bromley

AECL, Chalk River Laboratories

Canada

# Heavy Water Reactors: 1. Physics, Concepts and History (Appendix)

Reactor and Radiation Physics Branch
AECL – Chalk River Laboratories



Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 26/27, 2008







#### **Additional Information**

- Alternative Deuterium-Based Moderators
- Alternative Uses for D<sub>2</sub>O
- Alternative Coolants
- International Participation in HWR Technology
  - Historical
- Alternative HWR Reactor Designs
  - Historical
- Cancelled / Abandoned HWR Projects
  - Perhaps ahead of their time.



#### **Deuterium-Based Moderators**

- Heavy Water, D<sub>2</sub>O
  - Conventional, extracted from water (0.015 at%)
  - Cost of purification to > 99.75 wt%D<sub>2</sub>O
- Zirconium Deuteride, ZrD<sub>1.6</sub>
  - Chemically similar to ZrH<sub>1.6</sub>, more expensive.
  - High-temp operation with Na or gas coolant.
- Lithium-7 Deuteride, <sup>7</sup>LiD
  - Similar to LiH, but reduced neutron absorption.
  - Li-7 separation more costly.



#### **Deuterium-Based Moderators**

- Deuterated Diphenyl/Terphenyl, C<sub>x</sub>D<sub>y</sub>
  - Reduced neutron absorption.
  - More resistant to radiation and thermal decomposition.
  - Less corrosive.
  - High-temperature operation at low pressure feasible.
  - Expensive to produce.





- Coolant for fast reactors (1990's to present, Japan)
  - Low moderator-to-fuel ratio ensures hard spectrum.
  - Permits conventional technology for secondary side.
- Spectral Shift Reactors (1960's, Belgium, U.S.A.)
  - PWR with D<sub>2</sub>O/H<sub>2</sub>O moderator/coolant.
  - Beginning of cycle: D<sub>2</sub>O (faster spectrum)
  - As burnup progresses, dilute with H<sub>2</sub>O
  - End of cycle: H<sub>2</sub>O (thermal spectrum)
  - Reduce use of control rods, burnable poisons, and moderator poison.
    - Improved neutron economy, higher burnup
    - But, costly to re-upgrade D<sub>2</sub>O.



# Alternative Coolant Options (Past & Future)

- Boiling H<sub>2</sub>O at 5 to 7 MPa
  - SGHWR, FUGEN, Gentilly-1, CIRENE, AHWR
- Boiling D<sub>2</sub>O at 3 to 7 MPa
  - Marviken, Halden
- Gas coolant at 5 MPa to 10 MPa (400°C to 800°C)
  - -CO<sub>2</sub>, He/Ne, N<sub>2</sub>O<sub>4</sub> (dissociating coolant)
  - EL-4, KKN, KS-150, Lucens, GNEC Proposal(1961)



# Alternative Coolant Options (Past & Future)

- Organic coolant at 0.6 to 2 MPa
  - Diphenyl, terphenyl, HB-40, Santowax
  - WR-1, ORGEL, ESSOR, etc.
- Liquid Metal at ~ 0.1 MPa (1 atm)
  - − Pb, Pb-Bi, Pb-2wt%Mg, Na, <sup>7</sup>Li
  - Early patents by Leo Szilard (1940's)
  - Chugach/Alaska SDR Project (NDA study, 1950's)
- Molten Salt at ~ 0.1 MPa (1 atm)
  - <sup>7</sup>LiF-BeF<sub>2</sub>-ZrF<sub>4</sub>; Conceptual studies
  - Could also be used for fuel carrier (UF<sub>4</sub>, ThF<sub>4</sub>)





- Boiling D<sub>2</sub>O at 3 to 7 MPa
  - Similarities to boiling H<sub>2</sub>O.
  - Reduced neutron absorption; better neutron economy.
  - Higher capital costs because of D<sub>2</sub>O.
  - Extra tritium production.



- Gas coolant at 5 MPa to 10 MPa (400°C to 800°C)
  - Reduced D<sub>2</sub>O inventory cost savings.
  - Potential for direct cycle gas turbine.
  - High efficiencies possible, ~40% to 45%. (Eg. AGR ~ 41%)
  - Hydriding and coolant-voiding non-issues.
  - Lower heat transfer coefficient / conductivity.
    - Finned or roughened fuel pins; larger steam generators required.
  - More pumping power required (5% to 10% of power).
  - High-temperature materials required
    - Stainless steel, or graphite cladding.
    - Insulated liner (ZrO<sub>2</sub>, MgO, or graphite) for PT.
  - Careful design for postulated accidents
    - Loss of pressure.



- Organic coolant at 0.6 to 2.0 MPa (300°C to 400°C)
  - Reduced D₂O inventory (20%) cost savings.
  - − Higher efficiencies possible, ~34% to 38%.
  - Low-pressure coolant
    - Thinner PT's; neutron economy improvements
    - Safer operations; lower capital costs.
  - Low activity in primary circuit.
  - Lower heat transfer coefficient / conductivity for organics.
    - Finned or roughened fuel pins may be used to enhance heat transfer
  - Higher density fuel required (UC or U<sub>3</sub>Si in SAP tubes)
    - Sintered Aluminum Product (SAP) AI + 15% AI<sub>2</sub>O<sub>3</sub>
  - Higher-temperature materials required.
  - Hydriding still a concern.
  - Costs for coolant replenishment; filtering to remove crud.
  - Increased fire hazard.





### **Organic Coolants**

- Diphenyl (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C<sub>6</sub>H<sub>4</sub>
- Terphenyl (3 benzene rings)
  - o-terphenyl (Tm =  $57^{\circ}$ C, Tb =  $332^{\circ}$ C)
  - m-terphenyl (Tm =  $87^{\circ}$ C, Tb =  $365^{\circ}$ C)
  - p-terphenyl (Tm =  $213^{\circ}$ C, Tb =  $376^{\circ}$ C)
- Santowax-R, Santowax-O-M, HB-40
  - mixtures of diphenyl and terphenyl





- Liquid Metal at ~ 0.1 MPa (1 atm)
  - − Pb, Pb-Bi, Pb-2wt%Mg, Na, <sup>7</sup>Li
  - High thermal conductivity; compact steam-generators.
  - Low pressure operation
    - Thin-walled PT's; reduced neutron absorption
    - Enhanced safety; reduced capital costs.
  - High boiling point (800°C 1700°C); high melt (100°C 330 °C)
    - Efficiencies of 40% to 50% possible.
  - Liquid metals absorb more high-energy gamma's.
  - Materials issues (high temp; corrosion issues)
    - Ceramics, niobium alloys, stainless steel (reduced neutron economy).
  - Neutron activation of coolant. (Bi is a problem).
  - Separation of moderator, coolant, secondary side.
    - Safety concerns for <sup>7</sup>Li and Na



# Lead-Magnesium (Future?)

- 2 wt% Mg, 98 wt% Pb
  - T<sub>melt</sub> ~ 249°C







#### Canada

- ZEEP, NRU, NRX, WR-1, ZED-2
- NPD-2, Douglas Point, Gentilly-I
- Pickering, Bruce, Darlington, Point Lepreau, Gentilly-2
- CANDU-6, ACR-1000

#### U.S.A.

- CP3, HWCTR, PRTR, Savannah River (Pu production)
- CVTR prototype; HWOCR program (1967)
- Many concepts investigated and proposed.
- Emphasis on research reactors and Pu production.



- U.K.
  - DIMPLE, SGHWR (Boiling light water)
- Japan
  - DCA, FUGEN (Boiling light water, MOX)
- Sweden
  - R3/Adam/Agesta, Marviken (BHWR)
- Italy
  - CIRENE (Boiling light water)
  - ORGEL (organically cooled)



- Germany
  - MZFR (pressure vessel) → Atucha I (Argentina)
  - KKN (Niederaichbach) (CO<sub>2</sub>-cooled)
- France
  - Aquilon, EL-1, EL-2, EL-3
  - EL-4 (CO<sub>2</sub>-cooled)
- Czechoslovakia
  - KS-150 / A-1 Bohunice (pressure vessel, CO<sub>2</sub>-cooled)
- Switzerland
  - Lucens (Magnox-type fuel, CO<sub>2</sub>-cooled)



- Belgium
  - Vulcain / spectral shift reactors.
- Norway
  - Halden (BHWR); research only.
- Euratom, Spain, Denmark
  - Organically-cooled HWR's (ORGEL, DON, DOR)
- India
  - CIRRUS, Rajasthan (RAPP 1973); early Canadian assistance.
  - Norora, Kakrapar, Kaiga, Kalpakkam, Tarapur
  - Designs similar to Douglas Point (Canada) (~200 MWe)
  - Development of larger PHWR's and AHWR (using thorium)



- Focus on power reactors.
- Organize by coolant type, chronology.
- Some projects were in advanced stage of design and development before cancellation.
  - Competing technologies performing well.
  - Reduced concerns about long-term uranium supplies.
  - Difficult to support several parallel programs.





### CVTR (USA)

- First and only HWR power reactor in U.S.A.
- Prototype operated 1963-1967.
- 65 MW<sub>th</sub>, 17 MW<sub>e</sub>, 26%, 15 kW/litre
  - 56 MWth from reactor, 9 MWth from oil-fired super-heater
- Vertical pressure tube reactor (HW mod+cool)
  - U-tube connections for pairs of PT's
  - 72 PT's, 36 pairs joined at bottom by U-tube
- 19-element assemblies
  - 1.5 to 2.0 wt% enriched UO<sub>2</sub>; offline refuelling.
  - 12,500 MWd/t burnup
- Control: 32 boron-steel rods



# CVTR (U.S.A)



FUEL ELEMENT





20





# CVTR (U.S.A)

- Coolant
  - 10 MPa
  - -301°C
- Steam
  - -2.7 MPa
  - 385°C







# **KANUPP** (Pakistan)

- 432 MW<sub>th</sub> / 125 MW<sub>e</sub> (1971)
  - Still in operation today
- Scale up of NPD-2
- 208 Channels
- 10.4-cm PT's
- 23.5-cm pitch
- 7.7 kW/litre
- On-line refuel
  - 4 bundles / day







# **KANUPP** (Pakistan)

- 19-element bundles
  - NPD-2, Douglas Point
  - Natural UO<sub>2</sub>
  - Zr-4 clad
  - bearing pads (new)
  - 0.5-m length
- C=0.81
- 8,650 MWd/t (ave.)







#### **KANUPP**

- 11.4 MPa, 293°C
- Steam at 4 MPa, 250°C (U-shaped shell/tube)
- Control: 4 rods, moderator level, boron shim







### R3/Adam (Sweden)

- First pressure-vessel HWR
- Operated 1964-1974.
- 65 MW<sub>th</sub> / 10 MW<sub>e</sub>
  - waste heat for district heating
- Coolant at 3.3 MPa, 220°C
- Steam at 1.37 MPa, 215°C







### R3/Adam (Sweden)

- 140 Channels
- Natural UO<sub>2</sub>
  - Zr-2 clad
  - 19-element clusters
  - 2,800 MWd/t burnup







#### R-3 / Adam





# **MZFR (Germany)**

- Pressure vessel; vertical.
- 200 MW<sub>th</sub> / 50 MW<sub>e</sub>
- Hex. Pitch (27.2 cm)
- 121 Channels
- Diagonal control rods





VERTICAL SECTION REACTOR MZFR





# **MZFR (Germany)**

- 37-element fuel strings
  - two per channel
  - 3.67-m core height
- UO<sub>2</sub>, natural.
  - Zircaloy-2 clad
  - $-C\sim0.79$
  - 5,000 MWd/t burnup
- On-line refuelling







#### **MZFR**

- Operated 1966 1984 (Seimens)
- Prototype for commercial reactor Atucha



8.45 MPa, 280°C

Steam at

- 3.11 MPa

- 236°C (Saturated)



FLOW DIAGRAM REACTOR MZFR





# Atucha 1 (Argentina)

- First, and only PV-PHWR
- Scale-up of MZFR
- 1179 MW<sub>th</sub> / 345 MW<sub>e</sub>
- 37-element fuel string
  - Zr-4 clad
  - Natural UO₂ (early), C~0.81
    - ~6,000 MWd/t burnup
  - 0.9 wt% enriched (recent)
    - ~13,000 MWd/t burnup
- CARA Fuel (52 rod)
  - Under development





# Atucha 1 (Argentina)

- In operation since 1974.
- 27.2 cm hex pitch, 252 channels; on-line refuel.
- 22-cm thick PV wall
- 20-degree diagonal CR







### Atucha 1 / Atucha 2

- Coolant at 11.3 MPa / 299°C
- Steam at 4.2 MPa / 253°C
- Atucha 2 (693 MW<sub>e</sub>) on hold since 1980's







# SGHWR (Winfrith, U.K.)

- First HWBLW (1968-1990)
- 308 MW<sub>th</sub> / 94 MW<sub>e</sub>
- 103 PT's, Zr-2
  - 26-cm lattice pitch
- Mod. Displacer Tubes
- Void/Power Coefficients
  - Slightly negative
- On-line refuel feasible.
  - multi-batch offline preferred



SCHEMATIC DIAGRAM OF CALANDRIA AND SHIELD TANKS

REACTOR SGHWR



#### **SGHWR**

36-element bundle, central spray tube

- 2.28 wt% enriched UO<sub>2</sub>
- Zircaloy-2 clad, 3.66 m long
- 21,000 MWd/t burnup
- 57-element bundles tested







### **SGHWR**

- 5-batch refuelling established later
  - 28,000 MWd/t burnup
- Control
  - Boron in mod. tubes
  - Mod. dump
  - Liquid absorber tubes
  - Moderator height
  - Solid rods
  - Moderator borson.



8.03

- sound stake page
- 2. HORTH STEAM DAUG
- 1. DRUM WATER LEVEL VESSEL
- 4. CHARGE PRO
- 5. 839.09
- 6. STEAM MINING HEADER
- T. MIKED STEAM TO FOND DUMP
- E. MAIN STEAM PIPE TO TURBING
- 9. SAFETY WILTE COURT
- TE. PUEL CHARACL
- 11. HELERON SHIELD TANKS
- 11. HAIN GROULATING FUNDS
- to. PERCENT
- 14. PERDMATER PUPILS
- IS. FOR LASSING BE
- 16. DIFFTON LAGRAGE BOX
- YT. DALL TUBE

#### THE POLLOWING ITEMS ARE ON THEO FOR CLARITY >

EMERGENCY CHRAMEL COOLING DRAIN SYSTEM STEAM DUMP TO POND

FIG. "

PLANT IN PRIMARY CONTAINMENT



#### **SGHWR**

- Steam at 6.5 to 6.1 MPa, 279°C
- 31% efficiency, 11 kW/liter
- Successful technology demonstration.







# **Gentilly-1 (1972-1977)**

- Prototype
- 830 MW<sub>th</sub> / 250 MW<sub>e</sub> (net)
- 308 vertical channels / 10 bundles
- 18-element NU fuel bundles
  - 7,000 MWd/t burnup
- Boiling light water, 5.6 MPa, 270°C
- Shutdown in 1979
  - Debugging reactor control.
  - Consolidation in nuclear industry.
  - Focus on CANDU-PHWR only.





## **Gentilly-1**

• Steam drums; direct cycle.







# **Gentilly-1**

18-element fuel

Central support rod









# **FUGEN (Japan)**

- HWBLW Reactor
- Operated 1979-2003
- Similarities to:
  - SGHWR, Gentilly-1
- 557 MW<sub>th</sub> / 148 MW<sub>e</sub>
- Void/Power Coefficients
  - Negative (MOX fuel)
- First for HW power reactor
  - Use recycled Pu in MOX
- Burnup
  - 10 GWd/t to 17 GWd/t





#### **FUGEN**

- 224 Channels, 24-cm pitch
  - Zr-2.5%Nb PT, Zr-2 CT
- 28-element assemblies, 4.4 m long
  - 1.5 to 2 wt% fissile in UO<sub>2</sub> or MOX
  - Zr-2 clad









### **FUGEN**

- On-load refuel
  - -~1 cluster / wk
- Control
  - B<sub>4</sub>C rods
  - Moderator dump
  - Chemical shim
    - Boron







#### **FUGEN**

- 7.1 MPa, 283.5°C
- Steam at 6.4 MPa, 279°C
- Successful technology demonstration.





# KS-150 / A-1 (1972-1979)

- Pressure vessel-type
  - Mod. at 90°C
- 590 MW<sub>th</sub> / 150 MW<sub>e</sub>
  - Blowers use ~15%
  - Net efficiency ~20%
- CO<sub>2</sub>-cooled
- 11 kW/litre
  - CO<sub>2</sub> at 6.5 MPa
- 156 Fuel Channels
  - Mg-alloy PT, Al-alloy CT
- 40 Control rods





# KS150 / A-1 Bohunice (Slovakia)

- Metallic fuel in cluster
  - 150 to 200 fuel pins
  - Nat. U metal clad in Mg/Be
- 3,000 MWd/t to 5,000 MWd/t







# KS-150 / A-1 Bohunice (Slovakia)

- CO<sub>2</sub> at 425°C
- Steam at
  - 2.8 MPa
  - 400°C (superheat)
- Shutdown
  - -1979
  - Partial fuel melt



FLOW DIAGRAM REACTOR HWGCR





# **EL-4 (France)**

- GCHWR Pressure Tube
- 250 MW<sub>th</sub> / 70 MW<sub>e</sub>
  - 28% efficient
  - 4.4 kW/litre
- CO<sub>2</sub> at 5.9 MPa, 500°C
- Zr-2 Channels
- Control
  - B₄C and SS rods







# **EL-4 (Monts d'Arree)**

- 23.5-cm Pitch
- 19-rod bundles
  - 0.5-m long
  - 1.37 wt% UO<sub>2</sub>
  - 1.65 wt% UO<sub>2</sub>
  - SS clad (or Zr/Cu)
  - graphite liner for bundle
  - 9 bundles / channel
- 12,000 MWd/t





#### EL-4

- Steam at 6.7 MPa, 490°C
- Operated successfully 1968-1985 (17 years).
  - Demonstration successful.





# Lucens (Switzerland)

- GCHWR pressure tube, small-scale experiment
- 30 MW<sub>th</sub> / 7.6 MW<sub>e</sub>, 25.3% efficiency.
- 73 fuel channels, 10 control channels
  - Zircaloy pressure tubes, calandria tubes.
  - Cd/Ag alloy control rods
- 0.96 wt% enriched U-0.1%Cr metal alloy
  - 7-rod assemblies, Mg-Zr alloy finned clad (~Magnox)
  - graphite liner / coolant tube around each fuel rod
  - return flow (down outer annulus, up through fuel pins)
  - 3,000 MWd/t burnup
- CO<sub>2</sub> at 6.2 MPa, 378°C outlet
- Steam at 2.2 MPa, 367°C



# Lucens (1968-1969)

24-cm & 29-cm pitches





52



# Lucens (Switzerland)

- Off-load refuelling
- Shutdown 1969
  - flow blockage from corrosion products
  - fuel damage at bottom at startup
- Converted to test facility.



Figure 4. Fuel element, radial section 1: Graphite structure; 2: Uranium and cladding; 3: Pressure tube; 4: Calandria tube





# KKN - Niederaichbach (Germany)

- GCHWR pressure tube, vertical
- 316 MW<sub>th</sub> / 100 MW<sub>e</sub>
- 31.6% efficient, 3.5 kW/litre
- 19-element bundles, 107-cm long, 4 per channel
  - 1.15 wt% UO<sub>2</sub>, stainless steel clad
  - 11,600 MWd/t burnup
- On-load refuelling capability, 1 bundle/day



# KKN - Niederaichbach (Germany)

• 351 channels, Zircaloy-2 • 24.5-cm pitch 0,0 OVERFLOW REACTOR KKN FUEL ELEMENT

55



#### KKN - Niederaichbach

- Vertical channels
- Control:
  - CdSO₄ in moderator
  - Moderator level
  - Moderator dump





#### KKN - Niederaichbach

- CO<sub>2</sub> at 6 MPa, 550°C; steam at 10 MPa, 527°C
- Operated 1973-1974
  - Difficulties encountered with steam generators





### **Projects That Never Materialized**

- Scale up of HWBLWR to Commercial Size
  - FUGEN (600 MWe)
    - MOX recycling in LWR's improved.
  - SGHWR (350 to 660 MWe)
    - Government decision to favor AGR's.
  - Gentilly-1 (600 MWe)
    - CANDU-PHWR's performing well.
  - Cirene (Italy) 1968 (project shutdown 1988)
    - Prototype, with plans for commercial plant.
    - 1613 MWth / 500 MWe, 31% efficiency
    - 19-rod assemblies, natural UO<sub>2</sub>, 8500 MWd/t, 5 MPa
    - Similarities to Gentilly-1
- Boiling Heavy Water
  - Marviken project cancelled during 1970's (focus on BWR's).





# FUGEN (Japan) - Commercial

- 1930 MW<sub>th</sub> / 600 MW<sub>e</sub>
- 648 Channels
- Pu-recycling
- MOX and UO<sub>2</sub>
  - -3.2 wt% fissile
  - 30,000 MWd/t burnup
- Void reactivity
  - Negative w/ MOX
- Power coefficient
  - Negative
- Poison injection.



Fig.3 600 MWe Demonstration Plant



#### **FUGEN - Commercial**

- 36-element fuel assemblies
  - -3.2 wt% fissile (UO<sub>2</sub> + MOX)



Filter A. Provid Americanists



### **SGHWR - Commercial**

- Scale-up of Prototype
  - 350 MW<sub>e</sub>, 660 MW<sub>e</sub> reactors
  - 31% to 32% efficiencies
- 57-rod assemblies
  - upgrade from 36-rod bundles
  - 2.2 to 3 wt% enriched UO<sub>2</sub>.
  - 25,000 MWd/t to 27,000 MWd/t
- Negative void, power coefficients
  - Enriched fuel, moderator displacer tubes, tight pitch
- On-load or off-load refuelling.
- 6.7 MPa, 284°C
  - 11% quality





# **CIRENE (Italy)**

#### Prototype

- $-130~\mathrm{MW_{th}}$  /  $36~\mathrm{MW_{e}}$
- Natural / enriched UO<sub>2</sub>

#### Commercial

- $-1613 \text{ MW}_{th} / 500 \text{ MW}_{e}$
- 600 vertical channels
- Boiling H<sub>2</sub>O
- 5 MPa / 260-270°C
- UO<sub>2</sub> natural
  - Positive void reactivity
- 19-rod assemblies
- -8,500 MWd/t
- Off-load refuelling.







## Marviken (Sweden)

- Boiling D<sub>2</sub>O with superheating
- Pressure-vessel type.
- 593 MW<sub>th</sub> / 193 MW<sub>e</sub>
- 33% efficiency
- 147 boiler channels
- 32 superheat channels
- 4.85 MPa, 259°C/472°C
- 13,000 MWd/t burnup.





- 4.42 m core height, 4.3 m core diameter
- 25-cm lattice pitch
- 147 boiler; 32 superheat



64





#### Boiling

- 36-rod assemblies
- 1.35wt% UO<sub>2</sub>
- Zircaloy-2 clad

#### Superheat

- 45-rod assemblies
- 1.75 wt% UO<sub>2</sub>
- Inconel alloy clad.







- 1963 to early 1970's
- Advanced stage of development
- Plans for 600-MW<sub>e</sub>
   commercial unit
  - Pre-stressed concrete
  - Natural uranium
  - 37-element assemblies
  - 9,900 MWd/t burnup
  - 7 MPa, ~284°C







#### Use of BHWR

- Motivated by concerns of long-term uranium supply.
- Times change.
  - Project cancelled during 1970's.
  - Focus on BWR's.



Fig. 4: Marvicen ESSS. Simplified flow diagram



- Gas-cooled Heavy Water Reactors
  - EL-250, EL-500 (CO<sub>2</sub>) (250 MW<sub>e</sub>, 500 MW<sub>e</sub>)
    - Pre-stressed concrete as pressure boundary.
    - Be, Zr/Cu cladding with natural or enriched U.
    - 37-element bundles in PT with liner
    - 6,500 to 15,000 MWd/t burnup.
    - CO<sub>2</sub> at 8.5 MPa, 500°C
    - Integral steam generators.
    - $\eta_{th} > 37\%$







- Gas-cooled Heavy Water Reactors
  - Czechoslovakia 500 MW<sub>e</sub> gas-cooled HWR's.
    - Pre-stressed concrete as pressure boundary.
    - 553 channels
    - U-metal or UO<sub>2</sub>, natural
    - Mg-Be or Zr-alloy cladding
    - 5,000 to 8,000 MWd/t burnup.
    - CO<sub>2</sub> at 8 to 9 MPa, 470°C to 510°C
    - Integral steam generators.
    - $\eta_{th}$  > 31%







- General Nuclear Engineering Corporation
- GNEC Florida (1958-1961)
- GCHWR Prototype
  - 175 MW<sub>th</sub> / 58 MW<sub>e</sub> (33% efficient)
  - CO<sub>2</sub> at 3.5 MPa, 540° C
  - Zircaloy-2 PT's with insulator
  - 19-element fuel bundles
  - Finned fuel pins
  - 1.2 to 1.9 wt% enriched UO<sub>2</sub>
  - Be or stainless steel clad
  - 10,000 MWd/t burnup
- Proposal for 300-MW<sub>e</sub> Unit





# **GNEC - GCHWR (1958-1961)**

#### Horizontal PT's





71



- Organically-cooled Heavy Water Reactors
  - Cancelled in late 1960's and 1970's.
  - ORGEL (Euratom)
  - DON (Spain)
  - DOR (Denmark)
  - HWOCR (USA) Cancelled 1967
    - Zinn / Trilling proponent
    - Conceptual designs completed 1000-MW<sub>e</sub>
    - Component testing and irradiations done in NRU reactor.
  - CANDU-OCR (500 MW<sub>e</sub> size) Cancelled 1973
    - Most of major technical issues worked out.
    - But, CANDU-PHWR was working well.



# **DOR (Denmark)**

- 1957 study, 235 MW<sub>e</sub>
- 19-rod, cluster-type elements
- Enriched UC clad in SAP
  - Sintered Aluminum Product
- Terphenyl coolant
- 276°C / 371°C coolant temp.
- Steam at 6.7 MPa, 346°C







DON (Spain)

- 107 MW<sub>th</sub> / 30 MW<sub>e</sub> (1960's)
- UC Fuel, Santowax coolant
- 1.1 wt% enriched UC fuel
- 19-element bundles, 138 channels
- B<sub>4</sub>C control rods
- 8,000 MWd/t burnup
- 299°C to 343°C coolant temp.
- Steam at 6 MPa, 321° C







### **CANDU-OCR**

- 500 MW<sub>e</sub> station
- HB-40 coolant
  - mix of terphenyls
- 400°C outlet
- 34% efficiency
- Cancelled 1973

Pickering working well.

Consolidate resources.





#### **CANDU-OCR**

- 36-element bundles.
- UC-fuel, Zr-2.5%Nb clad.
- Natural uranium.
- Potential for thorium.



FIGURE 16.6
Cutaway of a CANDU-OCR Reactor Building



- 1. Boilers (8)
- 2. Superheaters (4)
- 3. Booster Rods
- 4. Calandria Assembly
- 5. Shield Tank
- Snield lankEnd Shield
- 7. Feeders
- 8. Fueling Machine
- F/M Service Crane
- 10. F/M Vault Door
- 11. Moderator System
- 12. Emergency Airlock
- 13. Fuel Transfer Bay
- 14. Booster Flask Crane
- 15. Primary Pumps (4)
- 16. Fueling Machine Ports



- SDR (Sodium Deuterium Reactor) 1959
- Nuclear Development Corp.
- 40 MW<sub>th</sub> / 10 MW<sub>e</sub>; Chugach, Alaska
  - Sodium at 510°C
- Fuel:
  - 7 rods per assembly
  - 1.5 to 2 wt% UO<sub>2</sub> (or U-10wt%Mo)
  - Stainless steel clad
  - ~5,000 MWd/t burnup
- Potential
  - Larger reactor could run on NU.





# Sodium Deuterium Reactor (SDR)

- 128 to 155 vertical channels
  - Depending on fuel type









