

The Abdus Salam International Centre for Theoretical Physics

1944-13

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

19 - 30 May 2008

exercises

P. Descouvemont Universite' Libre de Bruxelles Brussels Belgium

EXCEL PROGRAM Potential.xls

1. Introduction

The program allows to determine 3 quantities:

- a. The phase shift (in degrees)
- b. The wave function at a given energy (in cell I10)
- c. The potential (in MeV)

1.1 Content of the excel file:

- Sheet "Potential": main part of the program. The Schrödinger equation is solved with the Numerov's algorithm.
- Sheet "Data": contains experimental phase shifts.

1.2 Input data:

- Masses and charges (cells B1 to B4)
- Angular momentum ℓ (cell B5)
- The discretization values N (number of points, typically N=400, cell E1) and size h (typically h=0.1, cell E2)
- The potential given by a Gaussian form $V(r) = V_0 \exp(-(r/r_0)^2)$ V₀ (in MeV) is given in cell H1, and r0 (in fm) in cell H2.

1.3 Note: a similar program is available online at http://pntpm3.ulb.ac.be/Nacre/Programs/gamdep.htm

2. System $\alpha + \alpha$

- a. Compute the phase shifts for $\ell = 0,2,4$ with the potential of Buck et al. [Nucl. Phys. A. 275 (1977) 246] with V₀=-122.62 MeV, r₀=2.132 fm. Compare with the experimental phase shifts, and with the ⁸Be spectrum (below).
- b. Evaluate the barrier height V_B .

Take $E=V_B/10$, $E=V_B$, $E=10*V_B$, and plot the wave functions for $\ell = 0,2,4$. What do you conclude?

c. Use the theoretical phase shift to estimate the l = 2 resonance energy and width by 2 methods:

1. The Breit-Wigner approximation: $\tan \delta(E) \approx \frac{\Gamma/2}{E_R - E}$

2. Check that the following definitions are equivalent, and apply them to the 2^+ resonance

$$E_{R} = \max(\frac{d\delta}{dE}), \quad \Gamma = 2 / \frac{d\delta}{dE} \bigg|_{E=E_{R}}$$

Hint: tabulate the phase shift with a small energy step (~ 0.1 MeV) and compute the derivative numerically.

3. Systems α +p and α +n

a. Compute the α +p and α +n phase shifts for $\ell = 0$ and $\ell = 1$ (J=1/2⁻ and J=3/2⁻), and compare with experiment. The potentials are:

$$\ell$$
 =0: V₀=-66.58 MeV, r₀=1.61 fm
 ℓ =1,J=3/2-: V₀=-89 MeV, r₀=1.82 fm
 ℓ =1,J=1/2-: V₀=-68 MeV, r₀=1.82 fm

- b. Determine the α +n scattering length *a* from the low-energy expansion $k \cot(\delta) \simeq -\frac{1}{a} + ...$
- c. Evaluate the α+p barrier height. Take E=V_B/10, E=V_B, E=10*V_B, and plot the wave functions for α+p and α+n (*l*=0). What do you conclude?
- d. For α +n, J=3/2⁻, evaluate the energy E_R and width Γ of the resonance. Plot the wave function at $E=E_R$, $E=E_R-\Gamma/2$, and $E=E_R+\Gamma/2$. Check that the internal part of the wave function is maximal at the resonance energy.

4. Experimental spectra of ⁸Be, ⁵He and ⁵Li

