PHYSICS DESIGN OF 30 MW MULTI PURPOSE RESEARCH REACTOR Archana Sharma Research Reactor Services Division BHABHA ATOMIC RESEARCH CENTRE, INDIA

Objective

- ➤ To meet the increasing needs of radio-isotopes for application in the field of medicine, agriculture and industry
- To provide enhanced facilities for basic research in frontier areas of science and for applied research related to development and testing of new and novel materials.

In order to meet the large requirement of high specific activity radioisotopes like Co⁶⁰ for teletherapy, Ir¹⁹² for brachytherapy, Sm¹⁵³, Y⁹⁰, W¹⁸⁸ and P³² (requiring high fast neutron flux levels), a research reactor providing high irradiation volume at a neutron flux level greater than 3 x 10¹⁴ n/cm²/s is essential.

Design Philosophy

- Plate Type, LEU fuel in the form of U₃ Si₂ dispersed in Aluminum Matrix with 19.75 Wt% ²³⁵U Enrichment
- Small, Compact and Under Moderated Core
- DM Water Moderated & Cooled
- Large Radial Heavy Water Reflector Tank to provide large Irradiation Volume and large excess reactivity
- To achieve high thermal and fast neutron flux levels in irradiation/ experimental positions

Cont...

- Core operable for about 25 full power days without the need for core reconstitution
- Minimum achievable Discharge fuel burn-up more than atom 35% of the initial fissile material
- From safety considerations, all reactivity coefficients to be maintained negative at all power levels
- Sufficient shut down margin

Salient Design Features

Reactor type	Tank in pool type reactor with fixed core
Thermal Power	30 MW
Max. Neutron Flux (in core)	
Thermal flux	6.7 x 10 ¹⁴ n/cm ² /sec
Fast flux	1.7 x 10¹⁴ n/cm²/sec
Max. Thermal Neutron Flux	
(in Reflector region)	3.2 x 10 ¹⁴ n/cm ² /sec
Core height (active)	60 cm
Core Radius	27.5 cm

Fuel loading

36 Kg of U (LEU)

Cont...

Primary Coolant Moderator Reflector

Shutdown device Material Beam tubes In core irradiation positions Irradiation / Experimental positions in reflector region

Demineralised water **Demineralised water** Heavy Water in an annular tank surrounding the core (80 cm thick) Hafnium **6 tangential beam tubes** 1 central, 3 peripheral **Radioisotope production : 12 Pneumatic carrier facility (NAA): 2 Neutron Transmutation Doping: 2 Material irradiation studies: 3**

Core & Reflector

- Core is constituted by 24 lattice positions laid in a square pitch of 85.6 mm and 8 positions in filler region. Equilibrium core consists of
 - **19 Standard Fuel Assemblies**
 - **4 Control Fuel Assemblies**
 - **1 In-core irradiation**
 - position
 - **3 Irradiation positions**
 - in filler
 - 2 Adjuster rods in filler
 - 2 Safety rods in filler
 - **1 Fine control rod in filler**

CORE CONFIGURATION

Core with Reflector Tank

STANDARD & CONTROL FUEL ASSEMBLY DATA

Parameters	Standard Fuel Assembly	Control Fuel Assembly
Fuel material	U ₃ Si ₂ - Al	U ₃ Si ₂ - Al
Enrichment (U-235)	19.75%	19.75%
Number of fuel assemblies	19	4
Number of fuel bearing plates per fuel assembly	20	14
Active height (mm)	600	600
Fuel plate thickness (mm)	1.4	1.4
Meat thickness (mm)	0.6	0.6
Meat width (mm)	68.9	68.9
Clad thickness (mm)	0.4	0.4
Water gap between plates (mm)	2.3	2.3
Hf blade Thickness (mm)		6

Standard Fuel Assembly

Control Fuel Assembly

Fuel Properties

U₃Si₂ dispersion fuel in Al matrix

- Quite high uranium density in fuel meat
- Good compatibility with aluminum
- High thermal conductivity
- Excellent blister resistance threshold (~515 °C)
- Stable swelling behaviours under irradiation
- High fission products retaining capacity
- Low release of volatile fission products and
- Better fabricability

Reactivity Devices

- 4 Control cum Shutoff rods
- 2 Safety rods
- 2 Adjuster Rods
- Partial dumping of heavy water reflector

Physics Design Calculations

The reactor physics calculations performed in two steps

- Generation of a few group homogenized nuclear cell data using multigroup transport theory (Lattice level) & multi group cross section libaray
- Global reactor calculations using few group diffusion theory (Core Level or Global calculations)

(i) Lattice calculation by WIMS.

- (ii) **3-D diffusion theory code FINSQR based on finite difference and nodal methods used to determine the core parameters which include:**
- Core excess reactivity, Shut down margin, worth of control rods, reactivity coefficients
- > Neutron flux distribution in and around the core region
- Power distribution, peaking factors at various core control rods position

Benchmark Problem

- A benchmark problem [IAEA-TECDOC-233, 1980] on pool type research reactor for LEU core was analyzed
- 10 MW , 6x5 elements core (lattice pitch = 81 x 77 mm) reflected by a graphite row on two opposite sides, and surrounded by water
- The standard and control fuel elements contain 23 and 17 fuel plates
- The three group homogenized cross sections of multiplying assemblies were obtained from WIMSD computer codes using 69 neutron energy group cross section libraries ENDFB6, IAEA, and JENDL3
- The core excess reactivities for fresh core, at BOC and at EOC were calculated using FINSQR.

Values of k-eff from 3-D diffusion theory code

Description	ANL	JAERI	CEA		BAR	С
				ENDBF6	IAEA	JENDL3
Fresh fuel	1.168	1.183	1.187	1.175	1.174	1.180
BOC	1.021	1.057	1.039	1.030	1.029	1.035
EOC	1.001	1.041	1.019	1.012	1.011	1.017

Reactivity Requirement in Equilibrium MPRR Core

PARAMETER	Reactivity load (mk)
Xenon, Sm and other FPs	40
Power & Temperature	3
Xenon over-ride	15
Experiments / Irradiations	15
Core burn up (25 days operating cycle)	37
Total	110

Neutron Flux

Max. Flux in In Core Water Hole Thermal (n/cm ² /sec) Epithermal Fast Max. Flux in Peripheral Water Hole Thermal	FINSQR 6.7 E+14 3.0 E+14 1.8 E+14 4.2E+14
Epithermal Fast	2.5E+14 8.5E+13
Max. Flux in Reflector (n/cm ² /sec) Thermal Epithermal Fast	3.2E+14 7.0E+13 6.3E+12

Three Group Neutron Flux Profile

Thermal Flux Mapping in the Core and Heavy Water Reflector

Power Distribution

Max Assembly Power

- SFA 1566 KW (CRs Fully Out) 1536 KW (CRs 50% In) Local peaking Factor = 1.18 Axial Peaking Factor = 1.53 (CRs 50% In)
- CFA 1053 KW (CRs Fully Out) 942KW (CRs 50% In) Local peaking Factor = 1.22 Axial Peaking Factor = 1.68 (CRs 50% In)

Core Neutronics Characteristics (Equilibrium Core)

Core excess reactivity at BOC	110 mk
Core average burn up	BOC 20 % of U ²³⁵
	EOC 37 % of U ²³⁵
Operating cycle length	25 days
Reactivity coefficients	Fuel temp. coeff. = -0.012 mk/ °C
	Coolant temp. coeff. = -0.04 mk/ °C
	Coolant void coeff. = -0.7 mk/ % void
	Burn up coeff. = -0.056 mk /MWD
Reactivity worth of control system	188 mk
Shutdown margin	50 mk

Concluding Remark

The MPRR with its high neutron flux and large irradiation volume will provide a versatile facility to meet the future requirements for basic and applied research , material irradiation and production of radioisotopes for application in the fields of medicine, agriculture & industry.

Thank You

- 6.1 kg of U235 mass in equilibrium core (36 kg U)
- Annual requirement of LEU ~115 kg
- Core reflected by heavy water
- Core mounted on an aluminium gridv