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Chapter 1

Laplace-Beltrami operator

1.1 Definition

Let (M, g) be a n-dimensional Riemannian manifold. If x1, . . . , xn are local co-
ordinates, we will denote by ∂xi the associated vector fields. Locally, any vector
field can be decomposed as

X =
∑

j

aj ∂xj ,

and we recall that X u =
∑

j aj ∂xj u for any function u ∈ C1.

The coefficients of the metric g are given by

gij := g (∂xi , ∂xj ) ,

so that we can also write
g =

∑
i,j

gij dxi ⊗ dxj .

Still using local coordinates, the volume form on M is given by

dvolg :=
√

det g dx1 . . . dxn ,

so that the integral of a function u (having compact support where the coordinates
are defined) ∫

M

u dvolg =
∫

Rn

u
√

det g dx1 . . . dxn,

does not depend on the choice of the coordinates.

The differential du of a function u ∈ C1 is given in local coordinates by

du =
∑

j

∂xj u dxj .

5



6 CHAPTER 1. LAPLACE-BELTRAMI OPERATOR

The gradient of u, denoted grad u, is by definition the vector field dual to du. It
is characterized by the validity of the identity

g(gradu, X) = du(X) = Xu,

for all vector field X ∈ TM . In local coordinates, grad u is given by the formula

gradu =
∑
i,j

∂xiu gij ∂xj .

Hence, we have in local coordinates

g(grad u, grad v) =
∑
i,j

gij∂xiu ∂xj v ,

for any functions u, v ∈ C1.

We also define the divergence of a vector field X by the identity∫
M

g(X, grad f) dvolg = −
∫

M

f divX dvolg

for all smooth function f with compact support. In local coordinates we fin

divX =
1√

det g

∑
i,j

∂xi

(√
det g gij g(X, ∂xj )

)
.

We denote by Γk
ij the Christoffel symbols associated to the Levi-Civita connec-

tion ∇ on (M, g). Recall that

∇∂xi ∂xj =
∑

k

Γk
ij ∂xk ,

and also that
∇X(u Y ) = (X u) Y + u∇XY ,

for any function u ∈ C1 and any vector fields X, Y ∈ TM . Recall that the
Christoffel symbols are given in terms of the metric coefficients by

Γk
ij = 1

2

∑
�

gk� (∂xig�j + ∂xj g�i − ∂x�gij) .

where (gij)ij are the coefficients of the inverse of the matrix (gij)ij defined by the
coefficients of the metric.

The Hessian of a function u is defined by

Hess u (X, Y ) := X(Y u) − (∇XY ) u .
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In local coordinates, we have

Hess u (∂xi , ∂xj ) = ∂xi∂xj u − Γk
ij ∂xku .

The Laplace-Beltrami operator ∆gu is defined to be the trace of Hess u with respect
to the metric g,

∆g u := trg(Hess u) =
∑
i,j

gij
(
∂xi∂xj − Γk

ij ∂xk

)
u .

We claim that we also have the formula

∆g = div (grad · ) =
∑
i,j

1√
det g

∂xi

(√
det g gij ∂xj

)
.

Proof of the claim : We start with the last expression of ∆gu which we
develop

∆g =
∑
i,j

gij∂xi∂xj +
∑

i

1√
det g

∂xi(
√

det ggij) ∂xj .

The identity between the two expression then follows from the fact that

∑
i

1√
det g

∂xi(
√

det g gij) = −
∑
i,k

gik Γj
ik (1.1)

To prove this last equality, we use the fact that the differential of B �−→ det(A+B)
is given by B �−→ det A tr(A−1 B) in the case where A is invertible, and hence∑

i

gij ∂xi

√
det g =

∑
i

gij trg(∂xig) =
∑
i,k,�

gij gk� ∂xigk� =
∑
i,k,�

gj� gik ∂x�gik.

Now, we have∑
i,k,�

gj� gik (∂xig�k + ∂xkg�i) = −
∑
i,k,�

gj� (g�k ∂xigik + g�i∂xkgik) = −2
∑

i

∂xigij .

Using these two fact, we compute

∑
i

1√
det g

∂xi(
√

det g gij) =
∑

i

∂xigij +
∑
i,k,�

1
2
gj� gik ∂x�gik

= −
∑
i,k

gik
∑

�

1
2

gj� (∂xig�k + ∂xkg�i − ∂x�gik)

and the equality follows at once from the expression of Γj
ik. This completes the

proof of the claim. �
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We claim that (1.1) together with the expression of the divergence of a vector
field X in local coordinates implies that

divX =
∑
ij

gij g(∂xi ,∇∂xj X) . (1.2)

Indeed,

divX =
1√

det g

∑
i,j

∂xi

(√
det g gij g(∂xj , X)

)

=
1√

det g

∑
i,j

g(∇∂xi (
√

det g gij ∂xj ), X)

+
∑
i,j

gij g(∂xj ,∇∂xi X))

But,

∑
i

∇∂xi (g
ij

√
det g ∂xj ) =

∑
i

(
∂xi

(
gij

√
det g

)
∂xj + gij

√
det g∇∂xi ∂xj

)
=

∑
i

∂xi

(
gij

√
det g

)
∂xj +

∑
i,k

gij
√

det g Γk
ij ∂xk

and the claim follows at once from (1.1).

In particular, if u, v are smooth functions of M , we have∫
M

u ∆gv dvolg = −
∫

M

g(gradu, grad v) dvolg

as can be seen from the following computation in local coordinates∫
M

u ∆gv dvolg = −
∫

M

gij∂xiu ∂xj v dvolg = −
∫

M

g(gradu, grad v) dvolg

provided the functions u and v have support in the local chart where the coordi-
nates are defined.

Example : Cone metrics. Assume that (Σ, h) is a compact (n − 1)-dimensional
Riemannian manifold without boundary. Let Γ(Σ) := (0,∞)×Σ be the cone over
Σ which is endowed with the metric

gcone = dr2 + r2 h ,

where r ∈ (0,∞). The Laplace-Beltrami operator on Γ is given by

∆gcone
= ∂2

r +
n − 1

r
∂r +

1
r2

∆h. (1.3)
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Example : In the special case where Σ = Sn−1 is the unit sphere with gSn−1 the
canonical metric induced by the embedding Sn−1 ↪→ R

n, we recover the expression
of the Laplacian in polar coordinates

∆ = ∂2
r +

n − 1
r

∂r +
1
r2

∆gSn−1 . (1.4)

Example : Cylindrical metrics. Assume that (Σ, h) is a compact (n − 1)-
dimensional Riemannian manifold without boundary. Let C := R × Σ be the
cylinder with base Σ which is endowed with the product metric

gcyl = dt2 + h .

The Laplace-Beltrami operator on C is given by

∆gcyl
= ∂2

t + ∆h. (1.5)

1.2 Spectrum of the Laplace-Beltrami operator

Here we assume that (M, g) is a compact manifold without boundary. We will say
that λ is an eigenvalue of −∆g if there exists a function ϕ such that

−∆g ϕ = λϕ .

The spectrum of the Laplace Beltrami operator is well understood and we have
the

Theorem 1.2.1. The eigenvalues of −∆g form an increasing sequence of numbers

0 = λ0 < λ1 < λ2 < . . .

tending to ∞. The dimension of the eigenspace Ejassociated to λj is finite. More-
over, the union of L2-orthonormal basis of the Ej form a Hilbert basis of L2(M).

In the special case where (M, g) = (Sn, gSn), more is known and we have the

Proposition 1.2.1. The eigenvalues of −∆Sn are given by

λj = j (n − 1 + j) ,

where j ∈ N. The corresponding eigenspace, which will be denoted by Ej, is
spanned by the restrictions to Sn of the homogeneous harmonic polynomials in
R

n+1.

One easy computation is the following : If P is a homogeneous harmonic
polynomial of degree j defined in R

n+1, then P (x) = |x|j P (x/|x|) and hence

r ∂rP = j P
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Using the expression of the Laplacian in polar coordinates, we find that

r2 ∆P = j (n − 1 + j) P + ∆gSn P .

Since P is assumed to be harmonic, when restricted to the unit sphere this equality
leads to

∆gSn P = −j (n − 1 + j) P .

This (at least) shows that the restrictions to Sn of the homogeneous harmonic
polynomials of degree j on R

n+1 belong to Ej .

Exercise : What is the dimension of the j-th eigenspace Ej in the case of the
sphere ?

Remark : In the case of the unit circle S1 ⊂ R
2, which we identify with R/2πZ,

the Laplace-Beltrami operator identifies with the second order operator ∂2
x acting

on 2π-periodic functions. The eigenvalues are given by λj = j2 and the corre-
sponding eigenspace is spanned by the functions x �−→ cos(jx) and x �−→ sin(jx).
The fact that these constitute a Hilbert basis of L2(S1) is nothing but the Fourier
decomposition of a 2π-periodic functions.

1.3 Bibliography

A clear exposition of the above material can be found in the first chapter of the
recent book by J.W. Morgan and G. Tian, Ricci Flow and the Poincaré Conjecture.
An electronic version can be found at

http://arxiv.org/abs/math.DG/0607607

Classical texts are M. P. do Carmo, Riemannian Geometry. Birkhäuser, Boston,
1993. or P. Petersen Riemannian geometry, Vol 171, GTM Springer-Verlag, New
York, 2006.

Let us also mention the book of R. Schoen and S.-T. Yau Lectures on differential
geometry, Conference Proceedings and Lecture Notes in Geometry and Topology,
I. International Press, Cambridge, MA, 1994.

The analysis of the spectrum of the Laplace-Beltrami operator can be found in
M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variété Riemannienne
Lecture Notes in Math. (1971). See also C. Müller Spherical harmonics, ETH
Lectures, Springer for the spectrum of the Laplacian on the sphere.



Chapter 2

Function spaces

2.1 Definition

Assume that (M, g) is a Riemannian manifold with or without boundary. We define
the Lebesgue spaces Lp(M, g) (or simply Lp(M)) to be the space of integrable
functions u defined on M such that

‖u‖Lp :=
(∫

M

|u|p dvolg

)1/p

is finite.

For all k ∈ N, we define

|∇ku|2g :=
∑

αj ,βj

g(∇eα1
. . .∇eαk

u,∇eβ1
. . .∇eβk

u),

where e1, . . . , en is an orthonormal basis of TpM at the point p where the computa-
tion is performed. Given k ∈ N and p ≥ 1, we define the Sobolev space W k,p(M, g)
(or simply W k,p(M)) to be the space of k times weakly differentiable functions u
such that

‖u‖W k,p :=
k∑

j=0

(∫
M

|∇ju|pg dvolg

)1/p

,

is finite. We also define W k,p
0 (M, g) to be the closure in W k,p(M, g) of C∞

0 (M̊),
the space of smooth functions with compact support in M .

2.2 Embedding results

Assume that (M, g) is a compact n-dimensional Riemannian manifold.

11



12 CHAPTER 2. FUNCTION SPACES

Proposition 2.2.1. Let k ∈ N and p ≥ 1 be given. Assume that k p < n, then
the embedding

W k,p(M) ↪→ L
np

n−kp (M) ,

is continuous. If k p > n and if m ∈ N is chosen so that m < k − n
p < m + 1, the

embedding
W k,p(M) ↪→ Cm,α(M) ,

is continuous, provided α = k − n
p − m.

2.3 Compactness results

Assume that (M, g) is a compact n-dimensional Riemannian manifold. We provide
two important compactness results which will be used in the lectures.

Proposition 2.3.1. Given k, � ∈ N and α, β ∈ (0, 1), the embedding

Ck,α(M) ↪→ C�,β(M) ,

is compact, provided � + β < k + α.

The following is a classical compactness result for Sobolev embeddings.

Proposition 2.3.2. Let k ∈ N and p ≥ 1 be given. Assume that k p < n and
q < np

n−kp , then the embedding

W k,p(M) ↪→ Lq(M) ,

is compact. Assume that k p > n and m ∈ N is chosen so that

m < k − n
p < m + 1

and 0 < α < k − n
p − m, then the embedding

W k,p(M) ↪→ Cm,α(M) ,

is compact.

2.4 Bibliography

A classical text on Sobolev spaces is the book of R. Adams, Sobolev Spaces, Aca-
demic Press, 1975.

The extension of the theory to the Riemannian setting can be found in the
book of T. Aubin Non-linear Analysis on Manifolds, Monge-Ampère equations Ed.
Springer (1982) and also in E. Hebey Nonlinear analysis on manifolds : Sobolev
spaces and inequalities, CIMS Lecture Notes, Courant Institute of Mathematical
Sciences, Volume 5, (1999).



Chapter 3

Second order elliptic
operators

In this chapter we recall a few well known results concerning the existence and
regularity of solutions of linear second order elliptic equations.

An operator L : C∞(M) −→ C∞(M) is said to be strictly elliptic if it can be
written in local coordinates as

L =
∑
i,j

aij∂xi∂xj +
∑

j

bj ∂xj + d ,

where the coefficients aij , bj and the function d are smooth functions and if the
matrix (aij)i,j is definite positive, i.e.∑

i,j

aijξ
iξj ≥ A |ξ|2 , (3.1)

for some constant A > 0.

3.1 Existence result in Lp spaces

Assume that (M, g) is a compact n-dimensional Riemannian manifold with bound-
ary. We recall the following classical result concerned with the existence of a
solution of some elliptic problem in Lebesgue spaces.

Proposition 3.1.1. Assume that d ≤ 0. Given p ∈ (1,∞) and f ∈ Lp(M), there
exists a unique solution of{

L v = f in M

v = 0 on ∂M ,
(3.2)

13



14 CHAPTER 3. SECOND ORDER ELLIPTIC OPERATORS

which belongs to W 2,p(M) ∩ W 1,p
0 (M).

Hence, when the function on the right hand side f belongs to Lp, there is a
unique (weak) solution to the equation (3.2) in the sense that the identity L v = f
is satisfied almost everywhere in M , in particular

∫
M

⎛
⎝∑

i,j

v ∂xi∂xj (aij w) +
∑

j

v ∂xj (bj w) − v dw

⎞
⎠ dvolg = 0,

for all smooth function w with compact support in M̊ . The boundary condition
v = 0 on ∂M has to be understood in the sense that v is the limit, in W 1,p of a
sequence of functions in C∞

0 (M̊).

This proposition extends to the case where the manifolds M has no boundary
under some slightly more restrictive assumption on the function d.

Proposition 3.1.2. Assume that d ≤ 0 is not identically equal to 0. Given
p ∈ (1,∞) and f ∈ Lp(M), there exists a unique solution of

L v = f in M,

which belongs to W 2,p(M).

3.2 Lp-Elliptic estimates

Assume that M ′ is compact included in the interior of M , we will write M ′ ⊂⊂
M̊ . The next proposition gives an estimate in Lp-spaces of the first and second
derivatives of a solution of L v = f in terms of the Lp-estimate of the functions v
and f on a larger domain.

Proposition 3.2.1. Given p ∈ (1,∞), there exists a constant c > 0 such that, if
g ∈ Lp(M), v ∈ Lp(M) satisfy

L v = g in M ,

in the sense of distributions, then

‖v‖W 2,p(M ′) ≤ c
(‖v‖Lp(M) + ‖g‖Lp(M)

)
.

This result essentially states that the norm of the derivatives of the function
v up to order two are controlled by the right hand side of the equation as well as
the norm of the solution on some strictly larger set. The constant c depends on
the distance between M ′ and ∂M .
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Assume that M is a smooth manifold with a boundary that has two disjoint
closed components T1 and T2 such that

∂M = T1 ∪ T2 .

We assume that M ′ ⊂⊂ M̊ ∪ T1 and that χ is a smooth function such that χ ≡ 1
in a collar neighborhood of T1 and χ ≡ 0 in a collar neighborhood of T2.

Proposition 3.2.2. Given p ∈ (1,∞), there exists a constant c > 0 such that, if
g ∈ Lp(M), v ∈ W 2,p(M) and χ v ∈ W 1,p

0 (M ′), satisfy{
L v = g in M

v = 0 on T1 ,

then
‖v‖W 2,p(M ′) ≤ c

(‖v‖Lp(M) + ‖g‖Lp(M)

)
.

This result essentially shows that the norm of the solution v, in the natural
space, is controlled by the norm of the right hand side and some information about
the function v.

3.3 Schauder’s estimates

We keep the notations and assumptions of the previous sections and recall some
well known results concerning the Hölder regularity of solutions of the equation
L v = g.

Proposition 3.3.1. Assume that p ≥ 1. There exists a constant c > 0 such that,
if g ∈ Lp(M) and v ∈ Lp(M) satisfy

L v = g in M ,

and if g ∈ C0,α(M) then u ∈ C2,α(M ′) and

‖u‖C2,α(M ′) ≤ c
(‖g‖C0,α(M) + ‖u‖Lp(M)

)
.

We also have the :

Proposition 3.3.2. Assume that p ≥ 1. There exists a constant c > 0 such that,
if g ∈ Lp(M), v ∈ W 2,p(M) and χ v ∈ W 1,p

0 (M ′), satisfy{
L v = g in M

v = 0 on T1 ,

and if g ∈ C0,α(M) then u ∈ C2,α(M ′) and

‖u‖C2,α(M ′) ≤ c
(‖g‖C0,α(M) + ‖u‖Lp(M)

)
.
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3.4 Regularity issues

We also recall the following well known result whose proof is quite hard to find
in the literature. It essentially states that solutions of the homogeneous problem
L v = 0 are smooth.

Proposition 3.4.1. Assume that v ∈ D′(M) is a solution of

L v = 0 ,

in the sense of distribution. Then v ∈ C∞(M̊).

In the case where M ⊂ R
n is a smooth domain (endowed with the euclidean

metric), the coefficients of L are constant and v ∈ Lp(M), with p > 1, the proof
of the result follows at once from the result of Proposition 3.3.2 together with a
convolution argument. Indeed, consider a smooth function ϕ which is positive,
has compact support in the unit ball and whose integral over R

n is equal to 1.

We define
vε(x) = v ∗ ϕε(x) :=

∫
M

ϕε(y) v(x − y) dy,

where
ϕε := ε−n ϕ(·/ε).

Then vε is smooth and satisfies L vε = 0 in Mε := {p ∈ M : dist(p, ∂M) ≥ 2 ε}.
This uses in an essential way the fact that the coefficients of L are constant and
hence the translates of a solution of L v = 0 are also solutions of the same equation.

Fix a compact M ′ ⊂⊂ M and apply the result of Proposition 3.3.2 to obtain
some estimate

‖vε‖C2,α(M ′) ≤ c ‖vε‖Lp(M2ε) .

But
‖vε‖Lp(M2ε) ≤ ‖v‖Lp(M) .

Therefore, the sequence of functions (vε)ε is bounded in C2,α(M ′). Using the com-
pactness of Proposition 2.3.2, we obtain the existence of a convergent subsequence
to v almost everywhere and hence v ∈ C2,α(M ′). A simple bootstrap argument
then implies that v is smooth in the interior of M ′.

3.5 The weak maximum principle

When the function v is a classical solution (namely v ∈ C2) of

L v ≤ 0

in M and when the function d in the definition of L is negative then

inf
M

v ≥ inf
∂M

min(0, v)
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Indeed, let us assume that v achieves a local minimum at a point p ∈ M̊ , then, at
this point ∑

i,j

aij∂xi
∂xj

v ≥ 0

(simply use (3.1)) and ∑
j

bj ∂xj v = 0,

since the gradient of v certainly vanishes at the point p) and hence

v ≤ 0

(since d v ≤ L v ≤ 0 and d < 0) at a point p ∈ M̊ , where v. The inequality then
follows at once.

This result will often be used under slightly stronger hypothesis, namely we
assume that L v < 0 and v > 0 on ∂M , then the previous argument implies that
v > 0 in M .

More generally, we have the :

Proposition 3.5.1. Assume that d ≤ 0. Let v ∈ W 1,2(M) ∩ C0(M) be a solution
of L v ≤ 0 in M . Then

inf
M

v ≥ inf
∂M

min(0, v)

3.6 The spectrum of self adjoint operators

Here we assume that (M, g) is a compact manifold without boundary and L is an
elliptic second order operator. We will say that λ is an eigenvalue of −L if there
exists a function ϕ such that

−L ϕ = λϕ .

The operator L is said to be self-adjoint if∫
M

Lu v dvolg =
∫

M

v Lu dvolg

for all u, v ∈ C∞(M). In this case, the following result generalizes the correspond-
ing result for the Laplace Beltrami operator.

Theorem 3.6.1. Assume that L is a self-adjoint elliptic operator. Then the eigen-
values of −L form an increasing sequence of numbers

λ0 < λ1 < λ2 < . . .

tending to ∞. The dimension of the eigenspace Ejassociated to λj is finite. More-
over, the union of L2-orthonormal basis of the Ej form a Hilbert basis of L2(M).



18 CHAPTER 3. SECOND ORDER ELLIPTIC OPERATORS

3.7 Bibliography

Most of the above results can be found in the book of D. Gilbarg and N.S.
Trudinger, Elliptic partial differential equations of second order Springer-Verlag,
Berlin, (1983).



Chapter 4

A simple model problem

We agree that BR (resp. B̄R) denotes the open (closed) ball of radius R > 0 in
R

n and B∗
R := BR \ {0} (resp. B̄∗

R) denotes the corresponding punctured ball.

If Ω is a bounded domain of R
n containing 0, the closure of Ω is denoted by Ω̄

and Ω∗ := Ω \ {0} (resp. Ω̄∗) denotes the corresponding punctured domain.

Finally, if R0 > 0 is fixed small enough so that BR0 ⊂ Ω and for all R < R0,
we define

ΩR := Ω \ B̄R.

Given ν ∈ R and a function

f : Ω∗ ⊂ R
n −→ R,

satisfying
‖|x|−ν f‖L∞(Ω) < +∞ ,

we would like to study the solvability of the Dirichlet problem{ |x|2 ∆u = f in Ω∗

u = 0 on ∂Ω .
(4.1)

Observe that we are not looking for the solvability of (4.1) on all of Ω but only
away from the origin. A solution of this equation is understood in the sense of
distributions, namely u is a solution of (4.1) if u ∈ L1

loc(Ω̄
∗) and if∫

Ω

u ∆v dx =
∫

Ω

f v |x|−2 dx

for all v ∈ C∞
0 (Ω∗), the space of smooth functions with compact support in Ω∗.

We claim that :

19
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Proposition 4.0.1. Assume that n ≥ 3 and ν ∈ (2 − n, 0). Then there exists
a constant c > 0 (depending on ν and n) and for all f ∈ L∞

loc(Ω
∗) there exists

u ∈ L∞
loc(Ω̄

∗) solution of (4.1) which satisfies

‖|x|−ν u‖L∞(Ω) ≤ c ‖|x|−ν f‖L∞(Ω) .

Proof : The proof of this result turns out to be a simple consequence of the
maximum principle. First, we recall the expression of the Euclidean Laplacian in
polar coordinates (1.4)

∆ = ∂2
r +

n − 1
r

∂r +
1
r2

∆gSn−1 .

Using this expression we get at once

|x|2 ∆|x|ν = −ν (2 − n − ν) |x|ν ,

away from the origin. Now, observe that the constant

cn,ν := ν (2 − n − ν) > 0,

precisely when ν ∈ (2 − n, 0) (this is where we use the fact that n ≥ 3 !).

The existence of a solution of (4.1) can then be obtained arguing as follows :
Given R ∈ (0, R0/2), we first solve the problem

{ |x|2 ∆uR = f in ΩR

uR = 0 on ∂ΩR .
(4.2)

Since f ∈ L∞(ΩR), the existence of a solution uR ∈ W 2,p(ΩR) for any p ∈ (1,∞)
follows from Proposition 3.1.2 which we apply to ΩR and to the function f which
satisfies

f ∈ L∞(ΩR) ⊂ Lp(ΩR),

for all p ∈ (1,∞). Hence we find

uR ∈ W 2,p(ΩR) ∩ W 1,p
0 (ΩR),

a (strong) solution of (4.2).

One can make use of the Sobolev Embedding Theorem in Proposition 2.2.1 to
show that uR ∈ C1,α(Ω̄R) for all α ∈ (0, 1). Now, observe that the function

w(x) =
1

cn,ν
‖|x|−ν f‖L∞(Ω) |x|ν − uR(x)
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is positive on ∂ΩR. Moreover
∆w ≤ 0

in ΩR. Therefore one can apply the maximum principle Proposition 3.5.1 which
yields the pointwize bound

uR(x) ≤ 1
cn,ν

‖|x|−ν f‖L∞(Ω) |x|ν

for all x ∈ Ω̄R. Observe that this bound is independent of the value of R. Applying
the same reasoning to −uR we obtain

|uR(x)| ≤ 1
cn,ν

‖|x|−ν f‖L∞(Ω) |x|ν . (4.3)

Now, we would like to pass to the limit, as R tends to 0. To this aim, we use
the a priori estimates for solutions of (4.2) which are provided by Proposition 3.2.2
with M = ΩR, T1 = ∂Ω and M ′ = Ω2R together with the a priori bound (4.3).
We conclude that, for all R ∈ (0, 1/2) there exists a constant c = c(n, ν,R) > 0
such that

‖uR′‖W 2,p(Ω2R) ≤ c ‖|x|−ν f‖L∞(Ω),

for all R′ ∈ (0, R).

It is now enough to apply the Sobolev Embedding Theorem together with a
standard diagonal argument to show that there exists a sequence (Ri)i tending to
0 such that the sequence of functions uRi

converges to some continuous function
u on compacts of Ω̄∗. Obviously u will be a solution of (4.1) and, passing to the
limit in (4.3), will satisfy

cn,ν ‖|x|−ν u‖L∞(Ω) ≤ ‖|x|−ν f‖L∞(Ω) (4.4)

We have thus obtained the existence of a solution of (4.1) satisfying (4.4), when
ν ∈ (2 − n, 0). This completes the proof of the Proposition. �
Exercice : Prove the uniqueness of the solution obtained in the previous proof.

Exercice : Assume that n ≥ 3, ν ∈ (2−n, 0) and Ω is a smooth bounded domain
in R

n. Show that there exists a constant c > 0 and for all f ∈ L∞
loc(R

n \ Ω̄) there
exists u ∈ L∞

loc(R
n \ Ω̄) a solution of{ |x|2 ∆u = f in R

n \ Ω̄

u = 0 on ∂Ω ,
(4.5)

which satisfies
‖|x|−ν u‖L∞(Rn\Ω̄) ≤ c ‖|x|−ν f‖L∞(Rn\Ω̄) .

Hint : Consider the change of functions and variables

ũ(x) = |x|2−n u(x/|x|2) and f̃(x) = |x|2−n f(x/|x|2) ,
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and compute ∆v.

Exercice : Given points x1, . . . , xm ∈ R
n and weight parameters µ, ν1, . . . , νm ∈

R, we define two positive smooth functions

π : R
n \ {x1, . . . , xm} −→ (0,∞) and γ : R

n \ {x1, . . . , xm} −→ (0,∞) ,

such that :

(i) For each i = 1, . . . , m, π(x) = |x − xi|−νi and γ(x) = |x − xi| in a neighbor-
hood of the point xi.

(ii) π(x) = |x|−µ and γ(x) = |x| away from a compact subset of R
n.

We assume that n ≥ 3 and µ, ν1, . . . , νm ∈ (2 − n, 0). Show that, given a
function

f : R
n \ {x1, . . . , xn} −→ R ,

satisfying
‖π f‖L∞(Rn) < ∞ ,

it is possible to find a solution of the equation

γ2 ∆u = f ,

which satisfies
‖π u‖L∞(Rn) ≤ c ‖π f‖L∞(Rn) ,

for some constant c > 0 independent of f .

We end this chapter by the following simple remark. If the functions u and f
solve

|x|2 ∆u = f ,

in B∗
1 and if we define for (t, z) ∈ (0,∞) × Sn−1 the functions

û(t, z) := e
n−2

2 t u(e−t z) , and f̂(t, z) := e
n−2

2 t f(e−t z) .

Then û and f̂ satisfy (
∂2

t + ∆gSn−1 − (
n−2

2

)2
)

û = f̂ ,

on (0,∞) × Sn−1. Recall that ∂2
t + ∆gSn−1 is the Laplace-Beltrami operator for

the product metric g = dt2 + gSn−1 on the cylinder R × Sn−1.



Chapter 5

Indicial roots

Assume that (Σ, h) is a compact (n − 1)-dimensional Riemannian manifold. We
denote by C := R × Σ the cylinder with base Σ. In this chapter, we study the
asymptotic behavior of the solutions of the homogeneous problem L u = 0 at
+∞ or −∞, where L is a second order elliptic operator on C. It turns out that
the asymptotic behavior of the solutions of the homogeneous problem L u = 0 is
intimately related to the notion of indicial roots we now define.

Definition 5.0.1. The indicial roots of the operator L at +∞ (resp. −∞) are
the real numbers δ for which the following holds : There exists a non-zero function
v ∈ C2(C) and there exists δ′ < δ (resp. δ′ > δ) such that

lim inf ‖v‖L∞({t}×Σ) > 0

and
lim e−δ′t L (eδt v) = 0

as t tends to +∞ (resp. −∞).

Observe that, if v ∈ C2(C) then, we always have

L (eδt v) = O(eδt) ,

while, for δ to be an indicial root of L at +∞, we ask that e−δt L (eδt v) tends to
0 exponentially fast at +∞. Finally, observe that, in order to define the indicial
roots of L at +∞ it is enough to consider functions v which are supported on a
half cylinder (t0, +∞) × Σ.

Without any further assumption on the structure of L, the determination of
the indicial roots of a given operator L is a hopeless task. Henceforth, we now
restrict our attention to some special class of operators, namely we assume that

L = ∂2
t + LΣ + a , (5.1)

23
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where LΣ is a self-adjoint second order elliptic operator and where the function a
defined on C only depends on t and is t0-periodic. For this class of operators, it
turns out that the determination of the indicial roots is equivalent to the study of
the asymptotic behavior of the solutions of the homogeneous problem L u = 0 at
∞.

Given the special structure of our operator, in order to understand the indicial
roots of the operator L, we perform the eigenfunction decomposition of a function
u as

u(t, ·) =
∑
j≥0

uj(t, ·)

where, for all t ∈ (0,∞), uj(t, ·) ∈ Ej the j-th eigenspace of −LΣ on Σ. The
eigenfunction decomposition induces a splitting of L into

L u =
∑
j≥0

(
∂2

t − λj + a
)

uj

In this special case, the study of the asymptotic behavior at ∞ of a function
u, solution of L u = 0, reduces to the study of the solutions of the second order
ordinary differential equations(

∂2
t − λj + a

)
uj = 0 ,

where λj are the eigenvalues of −LΣ associated to the j-th eigenspace.

5.1 ODE analysis

When the function a is constant, the determination of the solutions of the homo-
geneous equation

(
∂2

t − (λj − a)
)

uj = 0 is completely elementary but, for appli-
cations, it is also interesting to consider the case where a is a (smooth) periodic
function in which case the corresponding study is classical even though it does not
seem to be common knowledge.

Therefore, we consider in this section some operator of the form

∂2
t + b ,

where b is a smooth t0-periodic function. Concerning the existence and character-
ization of the solutions of the homogeneous problem

(∂2
t + b) w = 0 , (5.2)

we recall the classical :

Proposition 5.1.1. There exist δ + i µ ∈ C, w+ and w−, two real valued inde-
pendent solutions of (5.2), such that the following holds :
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(i) either δ > 0 and the functions

t �−→ e∓δ t w±(t)

are 2 t0-periodic.

(ii) or δ = 0 and the functions

t �−→ e∓ i µ t (w+ ± iw−)(t)

are 2 t0-periodic.

(iii) or δ = 0 and there exists ν ∈ R \ {0} such that the functions

t �−→ w+(t) and t �−→ w−(t) − ν t w+(t),

are 2 t0-periodic.

Proof : Given initial data (a0, a1) we consider w the unique solution of

∂2
t w + b w = 0 (5.3)

with w(0) = a0 and ∂tw(0) = a1. We then define the mapping

B(a0, a1) = (w(t0), ∂tw(t0)) ,

where we recall that t0 is the period of the function b. Clearly B is linear and
TrB ∈ R. We claim that

det B = 1.

To see this, consider the solution w0 associated to the initial data w0(0) = 1 and
∂tw0(0) = 0 and the solution w1 associated to the initial data w1(0) = 0 and
∂tw1(0) = 1. The Wronskian of the two solutions

W := w1 ∂tw0 − w0 ∂tw1

does not depend on t and by construction W (0) = 1. Now, given the definition of
B we check that

W (t0) = (detB) W (0)

and hence det B = 1 as claimed. We now distinguish a few cases according to the
spectrum of B.

Case 1. Assume that B can be diagonalized (in C
2). Since the determinant

of B is equal to 1 then the eigenvalues are given by λ and 1/λ where λ ∈ C and
|λ| ≥ 1. We write

λ = e(δ+i µ) t0

where δ ≥ 0 and µ t0 ∈ R.
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Observe that if |λ| > 1 then necessarily λ ∈ R since the trace of B is a real
number therefore, δ > 0 and µ t0 ∈ πZ. The coordinates of the eigenvector of
B associated to λ (resp. 1/λ) are the Cauchy data of a function w+, solution of
(5.3), which satisfies

w±(t + 2 t0) = e±2 (δ+iµ) t0 w±(t) = e±2 δ t0 w±(t),

and hence blows up (resp. tends to 0) exponentially at infinity.

If |λ| = 1, then δ = 0 and the real part and imaginary part of the coordinates
of the eigenvectors of B are the Cauchy data of w±, two real valued independent
solutions of (5.3), which satisfy

(w+ + i w−)(t + 2t0) = e2iµt0 (w+ + i w−)(t) ,

and hence these two independent solutions are bounded.

Case 2. To complete this discussion, we consider the case where B cannot be
diagonalized. In this case the eigenvalue λ necessarily satisfies λ2 = 1 and we can
write

λ = ei µ t0 ,

where µ t0 ∈ π Z. The coordinates of the eigenvector e1 of B associated to the
eigenvalue λ are the Cauchy data of w+ a 2 t0-periodic solution of (5.3). Since the
operator B is not diagonalized, there exists a vector e2 (independent of e1) such
that

B e2 = λ ( e2 + ν t0 e1) ,

for some ν ∈ R. In other words e1, e2 is a Jordan basis associated to B. We
denote by w− the solution of (5.3) whose Cauchy data are the coordinates of e2.
By definition we have

e1 = (w+(0), ∂tw
+(0)) and e2 = (w−(0), ∂tw

−(0))

Now, on the one hand
B e2 = (w−(t0), ∂tw

−(t0))

and on the other hand

B e2 = λ
(
(w−(0), ∂tw

−(0)) + ν t0 (w+(0), ∂tw
+(0))

)
Therefore, we have the identity

(w−(t0), ∂tw
−(t0)) = λ

(
(w−(0), ∂tw

−(0)) + ν t0 (w+(0), ∂tw
+(0))

)
which implies that

w−(t + t0) = λ (w−(t) + ν t0 w+(t))
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for all t ∈ R (simply use the uniqueness of the solutions of (5.3) with given initial
data). This shows that the function v defined by

v(t) = w−(t) − ν t w+(t)

satisfies
v(t + 2t0) = λ2 v(t) = v(t).

In other words, the function v is 2 t0-periodic and hence we can write

w−(t) = v(t) + ν t w+(t)

where both v and w+ are 2 t0-periodic. In this last case, we will say that w− is
”linearly growing”. This completes the proof of the result. �

Recall that the knowledge of the solutions w+ and w− allows one to solve the
equation

(∂2
t + b) w = f , (5.4)

using the ”variation of the constant formula” namely, all the solutions of (5.4) are
given by

w =
1
W

(
w+

∫ t

w− f ds − w−
∫ t

w+ f ds

)
+ a+ w+ + a− w− , (5.5)

where W denotes the Wronskian of the two solutions w± and a± are free param-
eters.

Building on the above analysis, we show the following result.

Proposition 5.1.2. Assume that v ∈ C2(R) satisfies

lim
t→+∞ e−δ̃′t (∂2

t + b) (eδ̃t v) = 0 ,

for some δ̃′ < δ̃. Then, δ̃ ∈ {−δ, δ} (where δ is given in Proposition 5.1.1) and
there exists w a non trivial solution of (∂2

t + b) w = 0 such that

lim
t→+∞ e−δ̃t (eδ̃t v − w) = 0 .

Proof : Without loss of generality, we can always assume that δ̃′ /∈ {−δ, δ}.
We set f := (∂2

t + b) (eδ̃t v) and use (5.5) to write

v = e−δ̃t
(
u + a+ w+ + a− w−)

,

where

u(t) :=
1
W

(
w+

∫ t

∗
w− f ds − w−

∫ t

∗∗
w+ f ds

)
.
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The bounds of integrations ∗ and ∗∗ are chosen according to the location of δ̃′

with respect to ±δ. We choose ∗ = ∗∗ = +∞ if δ̃′ < −δ, ∗ = +∞ and ∗∗ = −∞
if δ̃′ ∈ (−δ, δ) and ∗ = ∗∗ = −∞ if δ̃′ > δ.

Direct estimates (using the fact that δ̃′ < δ̃) show that

lim
t→+∞ ‖e−δ̃t u‖C2([t,t+1]) = 0.

This completes the proof of the result. �

5.2 Indicial roots of L

As a byproduct of the analysis in the previous section, we have the :

Proposition 5.2.1. Assume that a is a t0-periodic function. Then the indicial
roots of the operator

∂2
t + LΣ + a

at +∞ (or −∞) are equal to ±δj where δj is the parameter δ, associated to the
potential b = a − λj, which appears in the statement of Proposition 5.1.1.

We give a few examples of application of this result.

Example : In the case where the function a is constant, the indicial roots of the
operator

∂2
t + LΣ + a ,

are given by
δj = �√

λj − a ,

where λj are the eigenvalues of −LΣ.

Example : Assume that the metric on the cylinder C is conformal to the product
metric gcyl, namely

g = ϕ2 (dt2 + h) ,

for some smooth t0-periodic function ϕ, only depending on t. We consider the
operator

∆g + a = 1
ϕn ∂t

(
ϕn−2 ∂t

)
+ 1

ϕ2 ∆h + a ,

where ∆g is the Laplace-Beltrami operator associated to the metric g and where
a is a smooth t0-periodic function. Observe that the conjugate operator

ϕ
n+2

2 (∆g + a) (ϕ
2−n

2 w) =
(
∂2

t + ∆h + ϕ2 a − (n−2)(n−4)
4 (log ϕ)2

)
w ,

has precisely the form studied above. Obviously, the indicial roots of ∆g + a are
equal to the indicial roots of the conjugate operator ϕ

n+2
2 (∆g + a) ϕ

2−n
2 .
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Example : We can also find the indicial roots of the operator

L := ∂2
t + a ∂t + b LΣ + c ,

where a, b and c are t0-periodic functions only depending on t. We assume that
the function b is positive. Indeed, we define the functions ϕ and ψ by

∂tϕ =
√

b and ∂t

(
log(ψ2 ∂tϕ)

)
= −a,

with ϕ(0) = 0 and ψ(0) = 1. The indicial roots of L can be derived from the
knowledge of the indicial roots of the conjugate operator

L̃ :=
1
ψ

L (ψ ·) ,

once the change of variables s = ϕ(t) has been performed. We find explicitly

L̃ = ∂2
s + LΣ +

(
∂2

t ψ + a ∂tψ + c ψ

b ψ

)
◦ ϕ−1 .

The relation between the indicial roots δj of L and δ̃j of L̃ is then given by

δj =
1
t0

∫ t0

0

(b δ̃j − 1
2 a) dt .
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Chapter 6

Analysis in weighted spaces
on a cylinder

Assume that (Σ, h) is a compact Riemannian manifold. We denote by C = R×Σ
the cylinder with base Σ which is endowed with the product metric

gcyl = dt2 + h .

Given δ ∈ R, we define the space

L2
δ(C) := eδ t L2(C) ,

endowed with the norm

‖u‖L2
δ(C) := ‖e−δt u‖L2(C) .

More generally, for k ∈ N, we define W k,2
δ (C) := eδt W k,2(C) endowed with

the norm
‖u‖W k,2

δ (C) := ‖e−δt u‖W k,2(C) .

It is easy to check that (W k,2
δ (C), ‖ · ‖W k,2

δ (C)) is a Banach space.

Given a bounded smooth function a defined on C, we are interested in the
mapping properties of the (unbounded) operator Aδ defined by

Aδ : L2
δ(C) −→ L2

δ(C)

u �−→ (∂2
t + LΣ + a) u ,

where LΣ : C∞(Σ) −→ C∞(Σ) is a second order elliptic operator. The domain of
this operator is defined to be the set of functions u ∈ L2

δ(C) such that f := Aδu

31
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(in the sense of distributions) belongs to L2
δ(C). This means that∫

C

u (∂2
t + LΣ + a) v dt dvolh =

∫
C

f v dt dvolh ,

for all C∞ functions v with compact support in C (we shall return to this point
later on).

6.1 Consequences of standard elliptic estimates

We start with some properties of ∂2
t + LΣ + a which are inherited from the corre-

sponding more classical properties for elliptic problems.

Proposition 6.1.1. Assume that δ ∈ R is fixed. There exists a constant c > 0
such that for all u, f ∈ L2

δ(C) satisfying (∂2
t + LΣ + a) u = f in the sense of

distributions, we have

‖u‖W 2,2
δ (C) ≤ c (‖f‖L2

δ(C) + ‖u‖L2
δ(C)) .

Proof : First of all, applying Proposition 3.4.1 and Proposition 3.1.2, we see that
u ∈ W 2,2

loc (C). Indeed, we have

(∂2
t + LΣ + a) u = f

and since the right hand side belongs to L2
loc(C), for all t2 > t1, we can use the

result of Proposition 3.1.2 to get a function ū ∈ W 2,2([t1, t2] × Σ) which solves

(∂2
t + LΣ + a) ū = f ,

in [t1, t2] × Σ (and for example belongs to W 1,2
0 ([t1, t2] × Σ)). Therefore, u − ū

solves
(∂2

t + LΣ + a) (u − ū) = 0 ,

and the result of Proposition 3.4.1 can be applied to conclude that u − ū ∈
C∞((t1, t2) × Σ). In particular u = ū + (u − ū) ∈ W 2,2((t1, t2) × Σ).

Now, given t∗ ∈ R we apply the result of Proposition 3.2.1 with Ω = [t∗ −
2, t∗ + 2] × Σ and Ω′ = [t∗ − 1, t∗ + 1] × Σ and we conclude that

‖u‖2
W 2,2([t∗−1,t∗+1]×Σ) ≤ c

(
‖u‖2

L2([t∗−2,t∗+2]×Σ) + ‖f‖2
L2([t∗−2,t∗+2]×Σ)

)
.

It remains to multiply this inequality by e−2δt∗ , and sum the result over t∗ ∈ Z,
to obtain

‖u‖2
W 2,2

δ (C)
≤ c

(
‖u‖2

L2
δ(C) + ‖f‖2

L2
δ(C)

)
.

This completes the proof of the result. �
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6.2 The role of the indicial roots

We now assume that the function a only depends on t and is periodic. We further
assume that LΣ is a self-adjoint second order elliptic operator. The next result
explains the importance of the indicial roots δj in the study of the operator ∂2

t +
LΣ + a when defined between weighted L2-spaces.

Proposition 6.2.1. Assume that δ �= ±δj for j ∈ N. Then there exists a constant
c > 0 such that, for all u, f ∈ L2

δ(C) satisfying

(∂2
t + LΣ + a) u = f ,

in the sense of distributions, we have

‖u‖L2
δ(C) ≤ c ‖f‖L2

δ(C) .

Proof : To prove the result let us perform the eigenfunction decomposition of
both u and f . We write

u(t, z) =
∑
j≥0

uj(t, z) and f(t, z) =
∑
j≥0

fj(t, z)

where, for each j ≥ 0, the functions uj(t, · ) and fj(t, · ) belong to Ej for a.e. t.
In particular

LΣ uj = −λj uj and LΣ fj = −λj fj ,

wherever this makes sense.

Observe that∫
C

|u|2 e−2δt dt dvolh =
∑
j≥0

∫
C

|uj |2 e−2δt dt dvolh =
∑
j≥0

∫ ∞

0

‖uj‖2
L2(Σ) e−2δt dt ,

and∫
C

|f |2 e−2δt dt dvolh =
∑
j≥0

∫
C

|fj |2 e−2δt dt dvolh =
∑
j≥0

∫ ∞

0

‖fj‖2
L2(Σ) e−2δt dt ,

where ‖ · ‖L2(Σ) is the L2(Σ)-norm. In addition, the functions uj and fj satisfy

(∂2
t − λj + a) uj = fj , (6.1)

in the sense of distributions in R. Indeed, making use of∫
C

u (∂2
t + LΣ + a) v dt dvolh =

∫
C

f v dt dvolh ,
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with test functions of the form v(t, z) = ϕ(t) φ(z) where φ ∈ Ej and ϕ is a smooth
function with compact support in (0,∞), we find that uj is a Ej-valued function
solution of (6.1). Moreover∫

R

‖uj‖2
L2(Σ) e−2δt dt < ∞ and

∫
R

‖fj‖2
L2(Σ) e−2δt dt < ∞ .

Observe that uj ∈ W 2,2
loc (R) and hence we find by Sobolev embedding that

uj ∈ C1,1/2
loc (R). Also, arguing as in the proof of Proposition 6.1.1, we conclude

that∫
R

‖∂tuj‖2
L2(Σ) e−2δt dt < ∞ and

∫
R

‖∂2
t uj‖2

L2(Σ) e−2δt dt < ∞ . (6.2)

Let j0 denote the least index in N such that

δ2 + a < λj0 , (6.3)

for all t ∈ R. The proof of Proposition 6.2.2 is now decomposed into two parts.

Part 1 : We multiply the equation (6.1) by e−2 δ t uj and integrate over C.
We obtain

−
∫

C

uj ∂2
t uj e−2 δ t dt dvolh+

∫
C

(λj−a) u2
j e−2δt dt dvolh = −

∫
C

uj fj e−2δ t dt dvolh .

We integrate the first integral twice by parts to get∫
C

|∂t uj |2 e−2δt dt dvolh +
∫

C

(λj − a − 2 δ2) u2
j e−2δt dt dvolh

= −
∫

C

uj fj e−2δt dt dvolh .

(6.4)

Formally, this computation follows from the fact that

uj ∂2
t uj e−2δt = (−|∂t uj |2 + 2 δ2 u2

j ) e−2δt + ∂t

(
(uj ∂tuj + δ u2

j ) e−2δt
)

.

However, some care is needed to justify the integration by parts at ∞ and this can
be achieved by making use of (6.2).

We shall now make use of the following Hardy type inequality

Lemma 6.2.1. The following inequality holds

δ2

∫
R

v2 e−2δt dt ≤
∫

R

|∂tv|2 e−2δt dt ,

provided the integral on the left hand side is finite.
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Using this Lemma together with (6.4) we conclude that

(λj − a − δ2)
∫

C

u2
j e−2δt dt dvolh ≤

∫
C

|fj | |uj | e−2δ t dt dvolh .

where the constant c > 0 depends on δ but does not depend on j.

Let us now assume that j ≥ j0. Since λj − a − δ2 > 0, we conclude, using
Cauchy-Schwarz inequality, that

(λj − a − δ2)2
∫

C

u2
j e−2δt dt dvolh ≤

∫
C

f2
j e−2δ t dt dvolh . (6.5)

We now sum these inequalities over j ≥ j0 to conclude that

(λj0 − a − δ2)2
∫

C

ũ2 e−2δt dt dvolh ≤
∫

C

f̃2 e−2δ t dt dvolh . (6.6)

where we have defined

ũ =
∑
j≥j0

uj and f̃ =
∑
j≥j0

fj .

Observe that the constant c > 0 only depends on δ.

Proof of Lemma 6.2.1: We provide a short proof of the Hardy type inequality
we have used. Assume that δ �= 0 and also that∫

R

|∂tv|2 e−2δt dt < ∞ ,

since otherwise there is nothing to prove. We start with the identity

−2 δ

∫
R

v2 e−2δt dt =
∫

R

v2 ∂t(e−2δt) dt = −2
∫

R

v ∂tv e−2δt dt ,

where the last equality follows from an integration by parts. Use Cauchy-Schwarz
inequality to conclude that

δ2

∫
R

v2 e−2δt dt ≤
∫

R

|∂tv|2 e−2δt dt .

Observe that, in order to justify the integration by parts, it is enough to assume

that
∫

R

v2 e−2δt dt converges. This completes the proof of Lemma 6.2.1. �

Part 2 : It remains to estimate uj , for j = 0, . . . , j0 − 1. Here we simply
use the fact that we have an explicit expression for uj in terms of fj . We use the
analysis of the previous chapter and define w±

j to be the two independent solutions
of the homogeneous problem

(∂2
t − λj + a) w±

j = 0 ,
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which have been defined in Proposition 5.1.1. Let Wj denote the Wronskian of
these two solutions. We define the function ũj by

ũj(t, ·) =
1

Wj

(
w+

j (t)
∫ t

∗
w−

j (s) fj(s, · ) ds − w−
j (t)

∫ t

∗∗
w+

j (s) fj(s, · ) ds

)
(6.7)

where the bounds of integration ∗ and ∗∗ have to be chosen according to the
position of δ with respect to ±δj . In fact, it is easy to see that :

(1) We choose ∗ = ∗∗ = +∞ when δ < −δj .

(2) We choose ∗ = ∗∗ = −∞ when δ > δj .

(3) We choose ∗ = +∞ and ∗∗ = −∞ when −δj < δ < δj .

It is easy to check that

(∂2
t + LΣ + a) ũj = fj ,

in C. We claim that∫
C

ũ2
j e−2δt dt dvolh ≤ c

∫
C

f2
j e−2δt dt dvolh , (6.8)

for some constant c > 0 depending on j and δ.

Proof of the claim : Let us describe the basic strategy in order to obtain
the relevant a priori estimate. We first assume that we are either is case (i) or (ii)
described in Proposition 5.1.1. Namely, either δj > 0, or δj = 0 and we assume
that w±

j are both bounded. Consider a quantity of the form

vj(t) =
1

Wj
w±

j (t)
∫ t

•
w∓

j (s) fj(s) ds

where • is either ∗ or ∗∗ and where the function fj satisfies∫
R

f2
j (t) e−2δt dt < ∞

We need to prove that∫
R

v2
j (t) e−2δt dt ≤ c

∫
R

f2
j (t) e−2δt dt

Clearly it is enough to get the corresponding estimate for the function

ṽ(t) = eδ̃t

∫ t

•
e−δ̃s f̃(s) ds
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where δ̃ is either δj or −δj and f̃ = |fj |. Here • = −∞ if δ > δ̃ and • = +∞ if
δ < δ̃.

Pointwise bound Using Cauchy-Schwarz inequality, we already get the point-
wise bound

ṽ2(t) ≤ 1
2 |δ − δ̃| e2 δ t

∫
R

f̃2(s) e−2δs ds . (6.9)

This is where, it is important that δ �= δ̃.

Global estimate Next, using an integration by parts, we get∫ t2

t1

ṽ2(t) e−2δt dt =
1

2 (δ̃ − δ)

[
e−2δs ṽ2(s)

]t2

t1
− 1

δ̃ − δ

∫ t2

t1

f̃(s) ṽ(s) e−2δs ds

for all 0 ≤ t1 < t2. Here again, it is important that δ �= δ̃.

The pointwise bound (6.9) yields∫ t2

t1

ṽ2(t) e−2δt dt ≤ 1
4 (δ̃ − δ)2

∫
R

f̃2(t) e−2δt dt − 1
δ̃ − δ

∫ t2

t1

f̃(s) ṽ(s) e−2δs ds

(6.10)
Letting t1 tend to −∞ and t2 tend to +∞, and using Cauchy-Schwarz inequality,
we conclude that∫

R

ṽ2(t) e−2δt dt ≤ 1
4 (δ̃ − δ)2

∫
R

f̃2(s) e−2δs ds

+
1

|δ̃ − δ|

(∫
R

f̃2(s) e−2δs ds

)1/2 (∫
R

ṽ2(s) e−2δs ds

)1/2

from which (using Young’s inequality) it is straightforward to conclude that∫
R

ṽ2(t) e−2δt dt ≤ c

(δ̃ − δ)2

∫
R

f̃2(s) e−2δs ds .

This completes the proof of (6.8) in these two cases.

Finally, let us describe the changes which are needed to handle case (iii) de-
scribed in Proposition 5.1.1. This time we decompose

w−
j (t) = w̃j(t) + ν t w+

j (t) ,

where w+
j and w̃j are periodic. It is easy to check (using some integration by parts

formula) that (6.7) can also be written as

ũj(t, ·) =
1

Wj

(
w+

j (t)
∫ t

∗
w̃j(s) fj(s, · ) ds − w̃j(t)

∫ t

∗
w+

j (s) fj(s, · ) ds

)

− 1
Wj

w+
j (t)

∫ t

∗

∫ s

∗
w+

j (ζ) fj(ζ, · ) dζ ds ,
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where ∗ = −∞ if δ > 0 and ∗ = +∞ if δ < 0. The firt term can obviously be
estimated as we have already done. While, w+

j being bounded, in order to estimate
the second term, it is enough to obtain the relevant estimate for quantities of the
form

ṽ =
∫ t

∗

∫ s

∗
f̃(ζ) dζ ds

where the function f̃ satisfies∫ ∞

0

f̃2(t) e−2δt dt < ∞ .

Clearly, using the previous strategy, we get for the function

v̂ =
∫ t

∗
f̂(s) ds

the weighted estimate∫
R

|v̂|2(t) e−2δt dt ≤ c

δ2

∫
R

f̂2(t) e−2δt dt .

Using this estimate twice, we conclude that∫
R

|ṽ|2(t) e−2δt dt ≤ c

δ4

∫
R

f̃2(t) e−2δt dt .

The proof of (6.8) then follows at once. �

Granted the estimate (6.8), it remains to evaluate the difference between the
functions uj and ũj . Since

(∂2
t + LΣ + a) (uj − ũj) = 0 ,

we find that
uj − ũj = w+

j φ + w−
j ψ ,

where φ, ψ ∈ Ej . Remembering that uj − ũj ∈ L2
δ(C) we find that φ = ψ = 0.

This completes the proof of the result. �

As a byproduct, we also get the localized version of Proposition 6.2.1. For all
t > 0 we define

Ct := [t,∞) × Σ ,

the half cylinder , which is also assumed to be endowed with the metric gcyl. We
have the :
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Proposition 6.2.2. Assume that δ �= ±δj for j ∈ N. Then there exists a constant
c > 0 such that, for all u, f ∈ L2

δ(C0) satisfying

(∂2
t + LΣ + a) u = f ,

in the sense of distributions, we have

‖u‖L2
δ(C0) ≤ c (‖f‖L2

δ(C0) + ‖u‖L2([0,1]×Σ)) .

Proof : Consider χ a cutoff function which is identically equal to 1 for t > 3/4
and identically equal to 0 for t < 1/4. Define

f̃ = (∂2
t + LΣ + a) (χ u)

Clearly
‖f̃‖L2

δ(C) ≤ ‖χ f‖L2
δ(C) + c ‖u‖W 2,2([1/4,3/4]×Σ)

But, it follows from the proof of Proposition 3.2.1 that

‖u‖W 2,2([1/4,3/4]×Σ) ≤ c (‖f‖L2([0,1]×Σ) + ‖u‖L2([0,1])×Σ)) .

Finally, it follows from Proposition 6.2.1 that

‖χ u‖L2
δ(C) ≤ c

(
‖f‖L2

δ(C0) + ‖u‖L2([0,1])×Σ)

)
,

The result then follows at once from these estimates. �
Remark : It is easy to check that, in the main estimate in the statement of

Proposition 6.2.2, one can replace ‖u‖L2([0,1]×Σ) by ‖u‖L1([0,1]×Σ).

6.3 Generalization

The results of this chapter hold in greater generality. Indeed, the product metric
on the cylinder C can be replaced by any metric on C which is t0 periodic. Indeed,
all the norms in the function spaces which have been defined using the metric gcyl

are equivalent to the corresponding norms defined (on the same spaces) with the
metric g.

More important, the operator ∂2
t + LΣ + a can be replaced by any operator of

the form
L := d

(
∂2

t + a ∂t + b LΣ + c
)

,

where a, b, c and d are t0-periodic functions only depending on t, provided we
assume that the functions b and d are positive. We still assume that LΣ is a
self-adjoint second order elliptic operator.
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Indeed, as already mentioned at the end of the previous chapter, we can define
the functions ϕ and ψ by

∂tϕ =
√

b and ∂t

(
log(ψ2 ∂tϕ)

)
= −a,

with ϕ(0) = 0 and ψ(0) = 1 and define the conjugate operator

L̃ :=
1

d ψ
L (ψ ·) ,

which, once the change of variables s = ϕ(t) has been performed, can be expressed
as

L̃ = ∂2
s + LΣ +

(
∂2

t ψ + a ∂tψ + c ψ

b ψ

)
◦ ϕ−1 .

At the end of the previous Chapter, we have already mentioned the relation be-
tween the indicial roots of L and L̃. Now, it is clear that if

L u = f

then
L̃ũ = f̃

where u = ψ ũ and f = d ψ f̃ . Therefore, all the estimates we have obtained for
L̃ ũ = f̃ translate into the corresponding estimates for the equation L u = f .



Chapter 7

Fourier analysis on a
cylinder

The main result of the previous chapter was certainly Proposition 6.2.1 which
states that

‖u‖L2
δ(C) ≤ c ‖(∂2

t + LΣ + a) u‖L2
δ(C).

provided δ is not an indicial root of the operator ∂2
t + LΣ + a. The proof of this

result relied on the crucial fact that LΣ and a did not depend on t and hence
we could use separation of variables together with eigenfunction decomposition on
the cross section to analyze this operator. In the present chapter we recover this
result when the potential a is constant. This time the main tool is Fourier analysis
along the axis of the cylinder.

This analysis complements the previous analysis. It also has the advantage
to provide an explicit expression of the constant c which appears in the above
estimate. This explicit expression will allow us to analyze the bounded kernel of
operators of the form ∂2

t + LΣ + a when the potential a is any bounded function.

7.1 Fourier analysis

Recall that C = R × Σ is the cylinder endowed with the product metric gcyl =
dt2 + h. We now assume that the potential function a is constant and, without
loss of generality, it can be assumed to be equal to 0, since this simply amounts
to change LΣ + a into LΣ. So, let us assume that a ≡ 0. As usual, we denote
the eigenvalues of −LΣ by λ0 < λ1 < λ2 . . . and the associated eigenspaces by
E0, E1, E2, . . ..

As promised, we recover the result of Proposition 6.2.1 and we also provide an
explicit formula for the constant c which appeared in the statement of Proposi-
tion 6.2.1.

41
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Proposition 7.1.1. Assume that δ ∈ R is chosen so that δ2 �= λj for all j ≥ 0.
Then, for all u, f ∈ L2

δ(C) satisfying

(∂2
t + LΣ) u = f ,

in the sense of distributions, we have

‖u‖L2
δ(C) ≤ sup

ξ∈R

sup
j∈N

|(δ + iξ)2 − λj |−1 ‖f‖L2
δ(C).

Proof : First observe that, if u, f ∈ L2
δ(C) satisfy

(∂2
t + LΣ) u = f,

then U = e−δt u and F = e−δt f satisfy

e−δt
(
∂2

t + LΣ

)
(eδt U) = F

and U, F ∈ L2(C). Therefore, what we really need to prove is the estimate

‖U‖L2(C) ≤ sup
ξ∈R

sup
j∈N

|(δ + iξ)2 − λj |−1 ‖F‖L2(C)

provided Bδ U = F where the operator Bδ is defined by

Bδ := e−δt
(
∂2

t + LΣ

)
(eδt ·) = ∂2

t + 2 δ ∂t + δ2 + LΣ ,

We perform the Fourier transform of both u and f in the t variable. Hence,
we write

Û(ξ, ·) =
1√
2 π

∫
R

U(t, ·) eiξt dt

and
F̂ (ξ, ·) =

1√
2 π

∫
R

F (t, ·) eiξt dt .

It is easy to check that Û(ξ, ·) and F̂ (ξ, ·) are solutions (in the sense of distri-
butions) of (

LΣ + (δ + i ξ)2
)

Û = F̂ .

We define the operator
B̂δ+i ξ := LΣ + (δ + i ξ)2

acting on complex valued functions and, to keep notations short, we set

z := δ + i ξ ∈ C

Remember that the eigenvalues of −LΣ are denoted by λj , with λ0 < λ1 < λ2 . . .
and let us denote the corresponding eigenspaces by E0, E1, E2 . . .. If

z2 �= λj , (7.1)
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for all j ∈ N, (namely if z2 ∈ C is not an eigenvalue of −LΣ), then there exists a
bounded operator

R̂z : L2(Σ) �−→ L2(Σ) ,

which is a right inverse of for B̂z, namely B̂z◦R̂z = I in L2(Σ). Using the eigendata
decomposition, we even have an explicit formula for R̂z

R̂z F̂ =
∑
j∈N

1
z2 − λj

F̂j if F̂ =
∑
j∈N

F̂j ,

with F̂j ∈ Ej . Plancherel formula then implies that

‖R̂z F̂‖2
L2(Σ) =

∑
j∈N

|z2 − λj |−2 ‖F̂j‖2
L2(Σ)

and hence
‖R̂z F̂‖L2(Σ) ≤ sup

j∈N

|z2 − λj |−1 ‖F̂‖L2(Σ) . (7.2)

Hence we get the explicit bound

‖R̂z f̂‖L2(Σ) ≤ cδ ‖R̂z f̂‖L2(Σ). (7.3)

where
cδ := sup

ξ∈R

sup
j∈N

|(δ + iξ)2 − λj |−1

By Fourier inverse formula, we have

U(t, y) =
1√
2 π

∫
R

e−iξt Û(ξ, y) dξ

and

F (t, y) =
1√
2 π

∫
R

e−iξt F̂ (ξ, y) dξ

Therefore, if δ2 �= λj , for all j ≥ 0, we can write

Û = R̂z F̂ ,

and we have the (formal) expression of u in terms of f̂ , which is given by

U(t, y) =
1√
2 π

∫
R

e−iξt R̂z F̂ (ξ, y) dξ

In any case, (7.3) implies that

‖Û‖L2(Σ) ≤ cδ ‖F̂‖L2(Σ)
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and, using the fact that the Fourier transform is an isometry in L2(R), we can
estimate

‖U‖2
L2(C) = ‖Û‖2

L2(C) =
∫

R

∫
Σ

|Û |2 dξ dvolh

≤ cδ

∫
R

∫
Σ

|F̂ |2 dξ dvolh

≤ cδ ‖F̂‖2
L2(C) = cδ ‖F‖2

L2(C)

This completes the proof of the Proposition. �
Observe that, if δ2 + λj ≥ 0 then

|(δ + iξ)2 − λj |2 ≥ |δ2 − λj |2

for all ξ ∈ R while, in the case where δ2 + λj ≤ 0 then

|(δ + iξ)2 − λj |2 ≥ −4 λj δ2

for all ξ ∈ R. Hence, we have the general formula

sup
ξ∈R

sup
j∈N

|(δ + iξ)2 − λj |−1 = max
(

sup
j≥jδ

|δ2 − λj |−1, max
j≤jδ

(−4 λj δ2)−1/2

)

where jδ := min{j ∈ N : λj + δ2 ≥ 0}. In the case where δ2 + λ0 ≥ 0 then
jδ = 0 and the above formula simplifies into

sup
ξ∈R

sup
j∈N

|(δ + iξ)2 − λj |−1 = sup
j≥0

|δ2 − λj |−1. (7.4)

7.2 The bounded kernel of Schödinger type oper-
ators

Building on the previous result, we analyze some properties of the space of func-
tions which are bounded and which belong to the kernel of

∂2
t + LΣ + a,

when the potential a is only assumed to be in L∞(C). Obviously, when a is
constant then this space if finite dimensional. The analysis of Chapter 5 shows
that this space is still finite dimensional when a is assumed to be periodic and
only to depend on t.

Now, we do not assume that a is constant nor that it is a periodic function of t
and we nevertheless show that the bounded kernel of ∂2

t + LΣ + a is finite dimen-
sional provided there are large enough gaps between some consecutive eigenvalues
of ΛΣ. To be more precise, we assume that :
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There exists d > 0 and j0 ∈ N such that:

λj0+1 − λj0 > (1 + d) ‖V ‖L∞ and λj0 + λ0 ≥ 0 . (7.5)

Under this assumption, we define

δ :=

√
λj0+1 + λj0

2

Using the results of the previous section, we prove the :

Proposition 7.2.1. Assume that (7.5) holds. Then there exists c > 0 (depending
on (Σ, h), LΣ, ‖a‖L∞ , λ0 and d), such that

‖e−δ |t| w‖L2(C) ≤ c ‖w‖L2((−1,1)×Σ) (7.6)

for any function w ∈ L∞(C) such that (∂2
t + LΣ + a) w = 0.

Proof : To keep notations simple, we agree that the constants c > 0 may
increase from line to line but are constants which only depend on (Σ, h), LΣ,
‖a‖L∞ , , λ0 and d and the choice of δ (which itself depend on the previous data).
Assume that

(∂2
t + LΣ + a) w = 0

and that w ∈ L∞(C). Let χ be a cutoff function only depending on t, equal to 0
for t < −1/2 and equal to 1 for t > 1/2.

Observe that the second part of (7.5) implies that δ2 + λ0 ≥ 0 and hence we
can use (7.4). Then, the first part of (7.5) together with the choice of δ, implies
that

‖a‖L∞ sup
ξ∈R

sup
j∈N

|(δ + iξ)2 − λj |−1 <
1

1 + d
. (7.7)

We set
f := (∂2

t + LΣ) (χ w) = −a χw + [LΣ, χ] w

where [LΣ, χ] w := LΣ(χ w) − w LΣ w. Observe that [LΣ, χ] w is supported in
(−1/2, 1/2)×Σ and depends on w and the first partial derivatives of w. Therefore,
we have the estimate

‖e−δt [LΣ, χ] w‖L2(C) ≤ c ‖w‖W 1,2((−1/2,1/2)×Σ)

We now apply the result of Proposition 7.1.1 to the functions u := χ w and f , the
operator ∂2

t + LΣ and the parameter δ, to conclude that

‖e−δt χ w‖L2(C) ≤ sup
ξ∈R

sup
j∈N

|(δ + iξ)2 − λj |−1‖a‖L∞ ‖e−δt χ w‖L2(C)

+ c ‖w‖W 1,2((−1/2,1/2)×Σ)
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Here we have implicitly used the fact that ∂tχ and ∂2
t χ is supported in (−1/2, 1/2)×

Σ. Thanks to (7.7) we conclude that

‖e−δt χ w‖L2(C) ≤ 1
1 + d

‖e−δt χ w‖L2(C) + c ‖w‖W 1,2((−1/2,1/2)×Σ)

and hence,
‖e−δt χ w‖L2(C) ≤ c ‖w‖W 1,2((−1/2,1/2)×Σ) (7.8)

We apply the result of Proposition 1.1 to the functions u := (1−χ) w and this
time we change δ into −δ. Arguing as above, we conclude that

‖eδt (1 − χ) w‖L2(C) ≤ c ‖w‖W 1,2((−1/2,1/2)×Σ) (7.9)

Collecting (7.8) and (7.9), we get

‖e−δ |t| w‖L2(C) ≤ c ‖w‖W 1,2((−1/2,1/2)×Σ) (7.10)

To complete the proof, it suffices to observe that classical elliptic estimates
applied to the solution w of

(∂2
t + LΣ) w = −a w

imply that
‖w‖W 1,2((−1/2,1/2)×Σ) ≤ c ‖w‖L2((−1,1)×Σ) (7.11)

The proof of the estimate is now complete. �
Using the above estimate, we get

Proposition 7.2.2. Assume that (7.5) holds. Then the dimension of the space of
functions which are bounded and belong to the kernel of ∂2

t +LΣ + a is bounded by
a constant only depending on (Σ, h), LΣ, ‖a‖L∞ , λ0 and d.

Proof : To keep notations simple, we agree that the constants c > 0 may
increase from line to line but are constants which only depend on the data. Assume
that w is bounded solution of (∂2

t + LΣ + a) w = 0. The estimate of the previous
proposition implies that

‖w‖L2([−2,2]×Σ) ≤ c ‖w‖L2([−1,1]×Σ)

But elliptic regularity implies that

‖w‖L∞([−1,1]×Σ) ≤ c ‖w‖L2([−2,2]×Σ)

So we conclude that

‖w‖L∞([−1,1]×Σ) ≤ c ‖w‖L2([−1,1]×Σ) (7.12)

for any bounded solution of (∂2
t + LΣ + a) w = 0.



7.3. BIBLIOGRAPHY 47

Now, let us denote by φ1, . . . , φm an orthonormal basis (in L2([−1, 1] × Σ)) of
the bounded kernel of ∂2

t + LΣ + a. We consider the Bergman kernel associated
to the orthogonal projection in L2([−1, 1] × Σ) onto the space spanned by the
bounded kernel of ∂2

t + LΣ + a. We have explicitly

K(x, y) =
∑

j

φj(x)φj(y)

Observe that K is independent of the choice of the orthonormal basis. Also

m =
∫

[−1,1]×Σ

K(x, x) dvol

is the dimension of the bounded kernel of ∂2
t + LΣ + a. Obviously, there exists

x0 ∈ [−1, 1] × Σ such that

K(x0, x0)Vol([−1, 1] × Σ) ≥ m

Consider the evaluation form

Ex0(φ) = φ(x0)

and choose the orthonormal basis φ1, . . . , φm such that Ex0(φj) = 0 for j =
2, . . . , m. Then

K(x0, x0) Vol([−1, 1] × Σ) = φ1(x0)2 Vol([−1, 1] × Σ) ≥ m

But (9.4) implies that

‖φ1‖L∞([−1,1]×Σ) ≤ c ‖φ1‖L2([−1,1]×Σ) = c

Therefore m ≤ c This completes the proof. �
Many generalizations are possible (under suitable assumption on the gaps in

the spectrum of the operator LΣ. For example one can prove a similar result for
solutions in the kernel of which are bounded by (cosh t)δ.

7.3 Bibliography

The proof of Proposition 7.1.1 is essentially the one developed in the paper by
R.B. Lockhart and R.C McOwen, Elliptic differential operators on noncompact
manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1, no. 3, (1985) 409-447. It
has the advantage to be simple to implement and also to extend immediately to
higher order elliptic operators whose coefficients do not depend on the t variable.

Proposition 7.2.2 is inspired by the recent work of T. Colding, C. de Lellis and
W. Minicozzi Three circles theorems for Schrödinger operators on cylindrical ends
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and geometric applications, mathDG/0701302 where similar results are proven for
Schrödinger operators defined on manifolds with cylindrical ends.

The proof of Proposition 7.2.2 seems to be classical. Similar arguments can
be found in the paper by H. Donelly Eigenfunctions of the Laplacian on compact
Riemannian manifolds, Asian J. Math. Vol. 10, No. 1, pp. 115126, (2006). In
this paper, the starting point is Hörmander’s estimate

‖φ‖L∞ ≤ c λ
n−1

4 ‖φ‖L2 ,

for eigenfunctions φ of −∆g on a compact manifold (M, g). Here the constant
c > 0 does not depend on λ. This estimate plays the role of the result of Propo-
sition 7.2.1). Then following the proof of Proposition 7.2.2, one shows that the
multiplicity of λ is bounded by a constant (independent of λ) times λ

n?1
2 .



Chapter 8

Analysis on manifolds with
cylindrical ends

We will say that a complete, noncompact n-dimensional manifold (M, g) is a mani-
fold with cylindrical ends if it can be decomposed into the union of a compact piece
K ⊂⊂ M and finitely many ends E(1), . . . , E(m), each of which is diffeomorphic to

C
(i)
0 := [0,∞) × Σ(i) ,

where (Σ(i), h(i)) is a (n − 1)-dimensional compact Riemannian manifold. Some
information about the metric g will be required. We would like to transplant the
previous analysis to the setting.

8.1 The function spaces

In this chapter we simply need to assume that the geometry of g is controlled
uniformly along each end E(i). A simple way to express the assumption needed
(nevertheless covering almost all geometrically interesting situations) is to require
that the metric g restricted to E(i) is asymptotic to some metric g

(i)
per defined on

R × Σ(i) which is t
(i)
0 -periodic in the t variable.

Henceforth, we assume that there exists θ > 0 and c > 0 such that the coeffi-
cients of g satisfy

‖eθ t (g − g(i)
per)ab‖C2(C

(i)
0 ,g

(i)
per)

≤ c , (8.1)

on each E(i). This assumption ensures that the spaces W 2,2(E(i), g), W 2,2(C(i)
0 , g

(i)
per)

and W 2,2(C(i)
0 , dt2 + h(i)) are the same.

Given a m-tuple
δ̄ = (δ(1), . . . , δ(m)) ∈ R

m .

49
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Let
Γδ̄ : M −→ (0,∞) ,

be a smooth positive function which coincides with eδ(i)t on the end E(i) of M .

We define
L2

δ̄(M) = Γδ̄ L2(M, g) .

The norm in this weighted space is naturally defined as

‖u‖L2
δ̄
(M) := ‖Γ−1

δ̄
u‖L2(M,g) .

More generally, for k ∈ N, we define W k,2

δ̄
(M) := Γδ̄ W k,2(M) endowed with the

norm
‖u‖W k,2

δ̄
(M) := ‖Γ−1

δ̄
u‖W k,2(M,g) .

It is easy to check that (W k,2

δ̄
(M), ‖ · ‖W k,2

δ̄
(M)) is a Banach space.

Example : We consider the simple case where M := R × Σ is endowed with the
product metric

g = ds2 + h ,

where h is a metric on Σ and s is the coordinate on R. This manifold has 2
cylindrical ends E(1) and E(2) and we can choose t = −s for s < 0 to describe the
end E(1), and t = s, for s > 0 to describe the other end E(2). With these choices

L2
δ(C) := eδs L2(R × Σ) = L2

(−δ,δ)(R × Σ) .

Where L2
δ(C) is the space already defined in Chapter 6. While

(cosh s)δ L2(R × Σ) = L2
(δ,δ)(R × Σ) .

Warning : one should not confuse L2
δ(C) with δ ∈ R and L2

δ̄
(C) with δ̄ = (δ1, δ2) ∈

R
2.

Remark : Observe that there is no uniqueness in the choice of the coordinate t
describing a given end E of M since one can for example change t into t = λ t̃ and
which would have the effect to change the definition of the weight and hence of
the weighted spaces. We shall assume from now on that on each end a particular
choice of coordinate t has been done and one will easily check that the forthcoming
results will be independent of such a choice.

For all t > 0, it will be convenient to define E(i)(t) := [t,∞) × Σ(i) and

Mt := M \ E̊(1)(t) ∪ . . . ∪ E̊(m)(t) .
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8.2 Elliptic operators

On (M, g) we would like to study some elliptic operator L which has the property
to be asymptotic to the model operator

L(i) := d(i)
(
∂2

t + a(i) ∂t + b(i) LΣ(i) + c(i)
)

,

on the end E(i). Here the functions a(i), b(i), c(i) and d(i) are smooth, t
(i)
0 -periodic

functions on each E(i) and b(i) and d(i) are positive. This means that there exists
θ > 0 and c > 0 such that on each E(i).

‖eθ t (L − L(i))w‖L2(E(i)) ≤ c ‖w‖W 2,2(E(i)) , (8.2)

for any function w ∈ W 2,2(E(i)).

Given a m-tuple δ̄ = (δ(1), . . . , δ(m)) ∈ R
m, we define the unbounded operator

Aδ̄ : L2
δ̄
(M) −→ L2

δ̄
(M)

u �−→ Lu

8.3 The domain of the operator Aδ̄

The result we have obtained in Proposition 6.1.1 immediately translates into :

Proposition 8.3.1. Assume δ̄ ∈ R
m is fixed. There exists a constant c > 0

(depending on δ̄) such that for all u ∈ L2
δ̄
(M) satisfying Lu ∈ L2

δ̄
(M), we have

‖u‖W 2,2
δ̄

(M) ≤ c (‖Lu‖L2
δ̄
(M) + ‖u‖L2

δ̄
(M)) .

Proof : The proof of the result goes as follows : Let χ be a cutoff function
identically equal to 0 in M1/2 and identically equal to 1 on each E(i)(1).

Applying Proposition 6.1.1 to the operator L(i) and the function χ u defined
on [0, +∞) × Σ(i), we get

‖χ u‖W 2,2

δ(i) (E(i)) ≤ c
(
‖L(i) (χ u)‖L2

δ(i) (E(i)) + ‖χ u‖L2
δ(i) (E(i))

)
.

Using (8.2), we evaluate

‖(L − L(i)) (χ u)‖L2
δ(i) (E(i)) ≤ c ‖χ u‖W 2,2

δ(i)−θ
(E(i)) .

Collecting these two inequalities, we conclude easily that

‖u‖W 2,2
δ̄

(M) ≤ c
(
‖Lu‖L2

δ̄
(M) + ‖u‖L2

δ̄
(M) + ‖u‖W 2,2

δ̄−θ̄
(M)

)
(8.3)
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where θ̄ := (θ, . . . , θ). We fix t > 0 and decompose the last term on the right hand
side of this inequality

‖u‖W 2,2
δ̄−θ̄

(M) = ‖u‖W 2,2
δ̄−θ̄

(Mt)
+ ‖u‖W 2,2

δ̄−θ̄
(M\Mt)

≤ c e−θt ‖u‖W 2,2
δ̄

(M) + ct ‖u‖W 2,2(Mt) ,

where ct > 0 depends on t > 0 while c > 0 does not. Inserting this into (8.3), we
conclude that

‖u‖W 2,2
δ̄

(M) ≤ c
(
‖Lu‖L2

δ̄
(M) + ‖u‖L2

δ̄
(M) + e−θt ‖u‖W 2,2

δ̄
(M)

)
+ ct ‖u‖W 2,2(Mt) ,

where ct > 0 depends on t > 0 while c > 0 does not.

Now, we use the elliptic estimates provided by Proposition 3.2.2 with Ω = Mt+1

and Ω′ = Mt to show that

‖u‖W 2,2(Mt) ≤ c′t
(‖Lu‖L2(Mt+1) + ‖u‖L2(Mt+1)

)
,

for some constants c′t > 0 depending on t > 0.

Collecting these estimate, we get

‖u‖W 2,2
δ̄

(M) ≤ c′′t
(
‖Lu‖L2

δ̄
(M) + ‖u‖L2

δ̄
(M)

)
+ c e−θt ‖u‖W 2,2

δ (M).

for some constant c′′t > 0 depending on t > 0 and some constant c > 0 independent
of t > 0.

Finally, we choose t > 0 so that c e−θt ≤ 1/2 to conclude that

‖u‖W 2,2
δ̄

(M) ≤ c̄t

(
‖Lu‖L2

δ̄
(M) + ‖u‖L2

δ̄
(M)

)
.

This completes the proof of the result. �
The domain of the operator Aδ̄ is defined to be

Dom Aδ̄ = {u ∈ L2
δ̄(M) : Lu ∈ L2

δ̄(M)}
It follows from the previous Proposition that

Dom Aδ̄ = W 2,2

δ̄
(M),

And it is a simple exercise to check that

Dom Aδ̄ = {u ∈ L2
δ̄
(M) : ∃(um)m ∈ C∞

0 (M)

such that (um)m −→ u and (Lum)m −→ u inL2
δ̄
(M)}

As a consequence, we also obtain the following Lemma whose proof is left to
the reader.

Lemma 8.3.1. The operator Aδ̄ has dense domain and closed graph.
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8.4 An a priori estimate

In order to further extend the results we have obtained so far to manifolds with
cylindrical ends, we need some definition :

Definition 8.4.1. The set of indicial roots of the operator L, denoted by IndL, is
the collection of (δ(1), . . . , δ(m)) ∈ R

m where δ(i) is an indicial root of the restriction
of L on E(i).

Observe that IndL is also the collection of (δ(1), . . . , δ(m)) ∈ R
m where δ(i) is

an indicial root of L(i) on (0,∞) × Σ(i).

The following result is a consequence of Proposition 6.2.2.

Proposition 8.4.1. Assume that δ̄ /∈ IndL. Then, there exists a constant c > 0
and a compact K in M such that, for all u ∈ L2

δ̄
(M) satisfying Lu ∈ L2

δ̄
(M), we

have
‖u‖L2

δ̄
(M) ≤ c

(
‖Lu‖L2

δ̄
(M) + ‖u‖L2(K)

)

This result states that we can control the weighted L2-norm of u in terms of
the weighted L2-norm of Lu and some information about the function u away
from the ends.

Proof : We keep the notations of the proof of Proposition 8.3.1. This time,
we apply Proposition 6.2.2 (instead of Proposition 6.1.1) to the operator L(i) and
the function χ u defined on [0, +∞) × Σ(i), we get

‖χ u‖W 2,2

δ(i) (E(i)) ≤ c ‖L(i) (χ u)‖L2
δ(i) (E(i)) ,

since by assumption, δ(i) is not an indicial root of L(i). Arguing as in the previous
proof, we get

‖u‖W 2,2
δ̄

(M) ≤ c
(
‖Lu‖L2

δ̄
(M) + ‖u‖W 2,2

δ̄−θ̄
(M)

)
,

instead of (8.3). The rest of the proof is left to the reader since it is identical to
the proof of Proposition 8.3.1. �
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Chapter 9

Fredholm properties

We keep the notations and assumptions of the previous Chapter. In this chapter,
we make use of the global estimates derived in the previous Chapter to show that
the kernel of the operator Aδ̄ is always finite dimensional and also to show that
this operator has closed range if δ̄ does not belong to the set of indicial roots of L.
The proofs of these results are standard and follow closely the classical proofs of
Fredholm properties which can be found in many textbooks but is is interesting
to see where the result of Proposition 8.4.1 enters into the proof. We keep the
notations of the previous chapter.

9.1 The kernel of the operator Aδ̄

Recall that we have defined IndL, the set of indicial roots of the operator L, as
the collections of (δ(1), . . . , δ(m)) ∈ R

m where δ(i) is any indicial root of L(i) on
(0,∞) × Σ(i). We keep the notations of the previous chapter and prove that the
kernel of Aδ̄ is always finite dimensional.

Theorem 9.1.1. The kernel of Aδ̄ is finite dimensional.

Proof : Increasing the values of the entries of δ̄ = (δ(1), . . . , δ(m)) if this is
necessary, we can assume that δ̄ /∈ IndL. Indeed, if u ∈ Ker Aδ̄ then u ∈ Ker Aδ̄′

for any δ̄′ = (δ̄(1) ′, . . . , δ̄(m) ′) for which δ(i) ′ ≥ δ(i). Therefore, one can always
reduce to the case where δ̄′ /∈ IndL.

We give two proofs of this result :

First proof. We argue by contradiction and assume that the result is not
true. Then, there would exist a sequence (uj)j of linearly independent elements
of L2

δ̄
(M) which satisfy Aδ̄ uj = 0. Without loss of generality we can assume that

this sequence is normalized so that∫
M

|uj |2 Γ−2
δ̄

dvolg = 1 , (9.1)
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and also that ∫
M

uj uj′ Γ−2
δ̄

dvolg = 0, (9.2)

for all j �= j′. Using the result of Proposition 8.4.1 we obtain

‖uj − uj′‖L2
δ̄
(M) ≤ c ‖uj − uj′‖L2(K) , (9.3)

where c > 0 does not depend on j nor on j′.

Using (9.1) together with the result of Proposition 8.3.1 we conclude that the
sequence (uj)j is bounded in W 1,2(K). Now, we Rellich’s compactness result
allows us to extract some subsequence (which we will still denote by (uj)j) which
converges in L2(K). In particular, the sequence (uj)j is a Cauchy sequence in
L2(K). In view of (9.3) we see that the sequence (uj)j is also a Cauchy sequence
in L2

δ̄
(M). This space being a Banach space, we conclude that this sequence

converges in L2
δ̄
(M) to some function u.

Clearly, passing to the limit in (9.1) we see that∫
M

|u|2 Γ−2
δ̄

dvolg = 1 .

While, passing to the limit m′ −→ ∞ in (9.2), we get∫
M

uj u Γ−2
δ̄

dvolg = 0 ,

and then passing to the limit as m tends to ∞, we conclude that∫
M

u2 Γ−2
δ̄

dvolg = 0 .

This is clearly a contradiction and this completes the first proof of the Proposition.

Second proof. The second proof is more in the spirit of the proof of Proposi-
tion 7.2.2. Assume that w ∈ Lδ̄(M) is bounded solution of Aδ̄ w = 0. Proposi-
tion 8.4.1 implies that

‖w‖L2
δ̄
(M) ≤ c ‖w‖L2(K)

But elliptic regularity (applied on some bounded open set containing K) implies
that

‖w‖L∞(K) ≤ c ‖w‖L2
δ̄
(M)

So we conclude that
‖w‖L∞(K) ≤ c ‖w‖L2(K) (9.4)

for any solution of Aδ̄ w = 0 which belongs to L2
δ̄
(M).

Now the proof is identical to the one we gave in the proof of Proposition 7.2.2.
We denote by φ1, . . . , φm an orthonormal basis (in L2(K)) of the kernel of Aδ̄ and
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we consider the Bergman kernel associated to the orthogonal projection in L2(K)
onto the space spanned by the kernel of Aδ̄. We have explicitly

K(x, y) =
m∑

j=1

φj(x)φj(y)

Integration over K implies that

m =
∫

K

K(x, x) dvolg

which is the dimension of the kernel of Aδ̄. Now, there exists x0 ∈ K such that
K(x0, x0)Vol(K) ≥ m and we consider the evaluation form

Ex0(φ) = φ(x0).

We choose the orthonormal basis φ1, . . . , φm such that Ex0(φj) = 0 for j =
2, . . . , m. With these choices,

K(x0, x0) Vol(K) = φ1(x0)2 Vol(K) ≥ m

But (9.4) implies that

‖φ1‖L∞(K) ≤ c ‖φ1‖L2(K) = c

Therefore m ≤ c This completes the second proof of the Proposition. �

9.2 The range of the operator Aδ̄

We pursue our quest of the mapping properties of the operators Aδ̄ by studying
the range of this operator. Thanks to the results of the previous sections, we are
in a position to prove the :

Theorem 9.2.1. Assume that δ̄ /∈ IndL. Then the range of Aδ̄ is closed.

Proof : Let uj , fj ∈ L2
δ̄
(M) be sequences such that fj = Luj converges to f

in L2
δ̄
(M). Since we already know that Ker Aδ̄ is finite dimensional, it is closed

and we can project each uj onto{
u ∈ L2

δ̄(M) :
∫

M

u v Γ−2
δ̄

dvolg = 0 ∀v ∈ Ker Aδ̄

}
,

the orthogonal complement of Ker Aδ̄ in L2
δ̄
(M) with respect to the scalar product

associated to the weighted norm. Therefore, without loss of generality, we can
assume that uj is L2

δ̄
-orthogonal to KerAδ̄.
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Since fj converges in L2
δ̄
(M), there exists c > 0 such that

‖fj‖L2
δ̄
(M) ≤ c. (9.5)

We claim that the sequence (uj)j is bounded in L2
δ̄
(M). To prove this claim,

we argue by contradiction and assume that (at least for a subsequence still denoted
(uj)j)

lim
j→+∞

‖uj‖L2
δ̄
(M) = ∞.

We set
ûj :=

uj

‖uj‖L2
δ̄
(M)

and f̂j :=
fj

‖uj‖L2
δ̄
(M)

,

so that L ûj = f̂j . Applying the result of Proposition 8.3.1, we conclude that the
sequence (ûj)j is bounded in W 1,2(K) and hence, using Rellich’s Theorem, we
conclude that a subsequence (still denoted (ûj)j) converges in L2(K). Now the
result of Proposition 8.4.1 yields

‖ûj − ûj′‖L2
δ̄
(M) ≤ c

(
‖f̂j − f̂j′‖L2

δ̄
(M) + ‖ûj − ûj′‖L2(K)

)
. (9.6)

On the right hand side, the sequence (f̂j)j tends to 0 in L2
δ̄
(M) and the sequence

(ûj)j converges in L2(K). Therefore, we conclude that (ûj)j is a Cauchy sequence
in L2

δ̄
(M) and hence converges to û ∈ L2

δ̄
(M).

To reach a contradiction, we first pass to the limit in the identity L ûj = f̂j

to get that the function û is a solution of L û = 0 and hence û ∈ Ker Aδ̄. But by
construction ‖û‖L2

δ̄
(M) = 1 and also

∫
M

ûj û Γ−2
δ̄

dvolg = 0 ,

(since û ∈ Ker Aδ̄) and, passing to the limit in this last identity we find that
‖û‖L2

δ̄
(M) = 0. A contradiction.

Now that the claim is proven, we use the result of Proposition 8.3.1 together
with Rellich’s Theorem to extract, from the sequence (uj)j some subsequence
which converges to u in L2(K). Once more, Proposition 8.4.1 implies that

‖uj − uj′‖L2
δ̄
(M) ≤ c

(
‖fj − fj′‖L2

δ̄
(M) + ‖uj − uj′‖L2(K)

)
. (9.7)

This time, on the right hand side, the sequence (fj)j converges in L2
δ̄
(M) and the

sequence (uj)j converges in L2(K). Therefore, we conclude that (uj)j is a Cauchy
sequence in L2

δ̄
(M) and hence converges to u ∈ L2

δ̄
(M). Passing to the limit in the

identity Luj = fj we conclude that Lu = f and hence f belongs to the range of
Aδ̄. This completes the proof of the result.



Chapter 10

Duality theory

We keep the notations and assumptions of Chapter 8.

The adjoint of Aδ̄

A∗̄
δ :

(
L2

δ̄(M)
)′ −→ (

L2
δ̄(M)

)′
is defined as follows : An element T ∈ (

L2
δ̄
(M)

)′ belongs to Dom (A∗̄
δ
), the domain

of A∗̄
δ
, if and only if there exists S ∈ (

L2
δ̄
(M)

)′ such that

T (Aδ̄ v) = S(v) ,

for all v ∈ Dom (Aδ̄). In this case, we will write A∗̄
δ
(T ) = S.

Classical properties for unbounded operators show that :

Theorem 10.0.2. Assume that δ̄ /∈ IndL. Then

KerAδ̄ =
(
ImA∗̄

δ

)⊥
and

ImAδ̄ =
(
KerA∗̄

δ

)⊥
The first equality follows from a classical result for unbounded operators with

dense domain and closed graph. The second equality follows from classical results
for unbounded operators with dense domains, closed graph and closed range.

Recall that if E ⊂ B

E⊥ := {T ∈ B′ : T (f) = 0 ∀f ∈ E}

while if F ⊂ B′,

F ⊥ := {f ∈ B : T (f) = 0 ∀T ∈ F}
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10.1 Identification of A∗̄
δ
.

We now further assume that the operator L is formally self-adjoint. Which means
that ∫

M

uLv dvolg =
∫

M

vLu dvolg

for any u, v ∈ C2(M) with compact support in M .

It will be convenient to identify the dual of L2
δ̄
(M) with L2

−δ̄
(M). This is done

using the scalar product

〈u, v〉 :=
∫

M

u v dvolg (10.1)

Clearly, given v ∈ L2
−δ̄

(M), we can define Tv ∈ (
L2

δ̄
(M)

)′ by

Tv(u) = 〈u, v〉 .

Moreover, we have
‖Tv‖(L2

δ̄
(M))′ = ‖v‖L2

−δ̄
(M)

Conversely, given T ∈ (
L2

δ̄
(M)

)′, we can use Riez representation Theorem to shows
that there exists a unique v ∈ L2

−δ̄
(M) such that 〈u, v〉 = T (u) for all u ∈ L2

δ̄
(M).

Indeed, ũ �−→ T (Γδ̄ũ) is a continuous linear functional on L2(M). Hence there
exists a unique ṽ ∈ L2(M) such that

〈ũ, ṽ〉 = T (Γδ̄ ũ)

Therefore, we have
〈u, Γ−1

δ̄
ṽ〉 = T (Γδ̄ ũ)

for any u ∈ L2
δ̄
(M). It is enough to take v = Γ−1

δ̄
ṽ which clearly belongs to

L2
−δ̄

(M). Uniqueness is easy.

Given identification of
(
L2

δ̄
(M)

)′ with L2
δ̄
(M) it is easy to check that we can

identify A∗̄
δ

with A−δ̄. Indeed, if we write T = Tu and A∗̄
δ
(T ) = Tf , for u, f ∈

L2
−δ̄

(M), then, by definition

Tu(Aδ̄v) = 〈u, Aδ̄v〉

and
A∗̄

δ(T )(v) = 〈f, v〉
for all v ∈ Dom (Aδ̄). Hence, we have∫

M

uL v dvolg =
∫

M

f v dvolg ,
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for all v ∈ Dom (Aδ̄). This in particular implies that Lu = f in the sense of
distributions. Since u, f ∈ L2

−δ̄
(M), we conclude that u ∈ Dom (A−δ̄) and f =

A−δ̄ u.

Conversely, if u ∈ Dom (A−δ̄), we can write for all v ∈ Dom (Aδ̄)

〈u, Aδ̄v〉 =
∫

M

uL v dvolg

=
∫

M

vLu dvolg

= 〈A−δ̄ u, v〉
The integrations by parts can be justified since, according to the result of Propo-
sition 8.3.1, we have v ∈ W 2,2

δ̄
(M) and u ∈ W 2,2

−δ̄
(M). Therefore Tu ∈ Dom (A∗̄

δ
)

and A∗
δ(Tu) = TA−δ̄ u.

10.2 The result

With these identifications in mind, the results of the previous Chapter imply the :

Theorem 10.2.1. Assume that δ̄ /∈ IndL. Then Aδ̄ is Fredholm. Moreover

KerAδ̄ =
(
ImA−δ̄

)⊥
and

ImAδ̄ =
(
KerA−δ̄

)⊥
In particular

dim (KerAδ̄) = codim (ImA−δ̄).

Observe that, thanks to our identifications, if E ⊂ L2
δ̄
(M), then

E⊥ :=
{

v ∈ L2
−δ̄(M) :

∫
M

u v dvolg = 0 ∀v ∈ E

}
.

Very useful for us will be the following consequence of this result :

Corollary 10.2.1. Assume that δ̄ /∈ IndL. Then Aδ̄ is injective if and only if
A−δ̄ is surjective.

In application, one often need to prove that the linear operator A−δ̄ is sur-
jective. Thanks to this Corollary, this amounts to prove that the operator Aδ̄ is
injective.

10.3 Bibliography

This chapter relies essentially on classical results for unbounded operators which
can be found in the book of H. Brezis, Analyse Fonctionnelle.Théorie et applica-
tions. Masson, Paris, (1983).
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Chapter 11

The deficiency space

The results of the previous chapter are already of interest since they already pro-
vide right inverses for some class of elliptic operators acting on manifolds with
cylindrical ends. However, more can be said in particular concerning the dimen-
sion of the kernel and of the cokernel of these operators.

11.1 Existence of a local parametrix

We consider the cylinder C := R × Σ equipped with the product metric gcyl =
dt2 + h. We go back to the study of the operator

L := ∂2
t + LΣ + a

where LΣ is an elliptic second order operator on Σ and where a is a periodic
function of t. As usual, we denote by ±δj the indicial roots of the operator L.
Recall that, for all t ∈ R, we have defined the half cylinder

Ct := [t,∞) × Σ.

To begin with, let us prove the following :

Lemma 11.1.1. Assume that δ �= ±δj, for all j ∈ N. Then, there exists an
operator

Gδ : L2
δ(C0) −→ L2

δ(C0)

and a constant c > 0 (depending on δ) such that for all f ∈ L2
δ(C0), the function

u := Gδ(f) is a solution of
L u = f

in C0 and
‖u‖W 2,2

δ (C0)
≤ c ‖f‖L2

δ(C0)
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At first glance this result looks rather strange since we are not imposing any
boundary data. Nevertheless, some boundary data are hidden in the construction
of the operator Gδ. Observe that we state the existence of Gδ and do not state
any uniqueness of this operator !

Proof : The proof of the existence of Gδ relies on the eigenfunction decomposition
of the function f . We decompose as usual

f =
∑
j≥0

fj

where f(t, ·) ∈ Ej for all j ∈ N and a.e. t > 0. Recall that Ej is the j-th eigenspace
of −LΣ associated to the eigenvalue λJ . Define j0 ∈ N to be the least index for
which

δ2 + a < λj0 .

We set
f̃ =

∑
j≥j0

fj .

Clearly f̃ ∈ L2
δ(C0) and, for all T > 0 one can solve⎧⎨
⎩

(∂2
t + LΣ + a) ũT = f̃ in (0, T ) × Σ

ũT = 0 on ∂(0, T ) × Σ

The existence of ũT follows at once from the fact that, since we restrict our at-
tention to functions whose eigenfunction decomposition does not involve any term
for j = 0, . . . , j0 − 1, there is no solution of (∂2

t + LΣ + a) ũ = 0 which is defined
on (0, T ) × Σ and vanishes on the boundary of this set. Therefore, this opera-
tor is injective and, since it is self-adjoint it is surjective. It then follows from
Proposition 3.2.2 that we have the estimate

‖ũT ‖L2([0,T ]×Σ) ≤ cT ‖f̃‖L2([0,T ]×Σ)

for some constant cT > 0 which a priori depends on T . We claim that there exists
a constant c > 0 such that

‖e−δt ũT ‖L2([0,T ]×Σ) ≤ c ‖e−δt f̃‖L2([0,T ]×Σ) (11.1)

for some constant which does not depend on T > 0. The proof of the claim follows
closely the proof of the corresponding estimate in the proof of Proposition 6.2.2.
We leave the details to the reader.

Using elliptic estimates, as in the proof of Proposition 6.1.1, we conclude that
there exists a constant c > 0 such that

‖e−δt ũT ‖W 1,2([0,T ]×Σ) ≤ c ‖e−δt f̃‖L2
δ([0,T ]×Σ)
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In particular, given T ′ > 1, there exists cT ′ > 0 such that

‖ũT ‖W 1,2([0,T ′]×Σ) ≤ c ‖e−δt f̃‖L2([0,T+1]×Σ)

for all T > T ′ +1. Then, using Rellich’s Theorem together with a simple diagonal
argument, we conclude that there exists a sequence Ti tending to +∞ such that
the sequence (ũTi

)i converges in L2([0, T ′]×Σ), for all T ′ > 1. Passing to the limit
in the equation we obtain a solution ũ of⎧⎨

⎩
(∂2

t + LΣ + a) ũ = f̃ in C0

ũ = 0 on ∂C0 .
(11.2)

Moreover, passing to the limit in (11.1), we have the estimate

‖ũ‖L2
δ(C0) ≤ c ‖f̃‖L2

δ(C0)

To complete this study observe that the solution of (11.2) which belongs to L2
δ(C0)

is unique. To see this, we assume that there exist two solutions and taking the
difference we obtain a function w̃ ∈ L2

δ(C0) satisfying

{
(∂2

t + LΣ + a) w̃ = 0 in C0

w̃ = 0 on ∂C0

Performing the eigenfunction decomposition of w̃ as

w̃ =
∑
j≥j0

w̃j ,

where wj(t, ·) ∈ Ej , the j-th eigenspace of −LΣ associated to the eigenvalue λj .
We find that

w̃j = w+
j φj + w−

j ψj ,

where φj , ψj belong to Ej , and where w±
j are the two independent solutions of the

equation
(∂2

t − λj + a) w±
j = 0

which have been defined in Proposition 5.1.1. Using the fact that w̃j ∈ L2
δ(C0) we

conclude that ψj = 0. Next, using the fact that w̃j = 0 on ∂C0, we get φj = 0
and hence w̃ = 0.

Therefore, we can already define the operator Gδ on the space of functions
whose eigenfunction decomposition does not involve any term for j = 0, . . . , j0, by

Gδ(f̃) := ũ.
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It remains to understand the definition of Gδ acting on fj , when j ≤ j0 − 1.
In this case we define Gδ(f̃j) := ũj , where ũj is the function defined in (6.7) and
for which we have already proven that∫ ∞

0

|Gδ(f̃j)|2 e−2δt dt ≤ c

∫ ∞

0

f2
j e−2δt dt (11.3)

for some constant c > 0 depending on j and δ. This completes the proof of the
result. �

Following the arguments given in Section 6.3, we see that the result of Lemma 11.1.1
holds when the operator L is of the form

L = d
(
∂2

t + a ∂t + b LΣ + c
)

(11.4)

where as usual, the functions a, b, c and d are periodic functions and b and d are
positive.

Now, we keep the notations and assumptions of Chapter 8 and we explain
how a perturbation argument allows to extend the previous result when the model
operator L is replaced by the operator L defined on the end E(i).

Lemma 11.1.2. Assume that δ �= ±δ
(i)
j , for j ∈ N. There exists ti > 0, an

operator
G

(i)
δ : L2

δ([ti,∞) × Σ(i)) −→ L2
δ([ti,∞) × Σ(i))

and c > 0 (depending on δ and i) such that for all f ∈ L2
δ([ti,∞) × Σ(i)), the

function u := G
(i)
δ (f) is a solution of

Lu = f

in (ti,∞) × Σ(i) and

‖u‖W 2,2

([ti,∞)×Σ(i))

≤ c ‖f‖L2
δ([ti,∞)×Σ(i))

Proof : This result follows from a simple perturbation argument. First observe
that the result of Lemma 11.1.1 holds when [0,∞)×Σ(i) is replaced by [t,∞)×Σ(i).
The corresponding operator will be denoted by Gδ,t and the estimate holds with
a constant which does not depend on t ∈ R.

Using the fact that the operators L and L(i) are asymptotic to each other, we
can write

‖(L − L(i)) u‖L2
δ([t,∞)×Σ(i)) ≤ c e−2t ‖u‖W 2,2

δ ([t,∞)×Σ(i)) ,

provided t > 0. This implies that

‖f − L ◦ Gδ,t f‖L2
δ([t,∞)×Σ(i)) ≤ c e−2t ‖f‖L2

δ([t,∞)×Σ(i)) ,
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for some constant c > 0 which does not depend on t > 0. This clearly implies that
the operator L ◦ Gδ,R is invertible provided t is fixed large enough, say t = ti. To
obtain the result, it is enough to define

G
(i)
δ := Gδ,ti

◦ (L ◦ Gδ,ti
)−1 .

The relevant estimate then follows at once. �
We now make use of the analysis of Chapter 5 and denote the indicial rrots of

L(i) by ±δ
(i)
j . As usual, the index j refers to λ

(i)
j , the j-th eigenvalue of −LΣ(i)

associated to the eigenspace E
(i)
j . Proposition 5.1.1, provides for each j ≥ 0 and

each i = 1, . . . , k, a function

(t, z) �−→ w
±,(i)
j (t) φ(z) ,

which is a solution of the homogeneous problem

L(i) (w±,(i)
j φ) = 0 ,

in R×Σ(i) and is associated to the indicial root δ
(i)
j . Building on the result of the

previous application, we now prove that one can perturb these functions to get, on
any end E(i) a solution of the homogeneous problem associated with the operator
L which is asymptotic to L(i). This is the content of the following :

Lemma 11.1.3. For all i = 1, . . . , k, j ∈ N and φ ∈ E
(i)
j , there exists ti > 0 and

W
± (i)
j,φ which is defined in E(i)(ti) and which satisfies

LW
±,(i)
j,φ = 0 ,

in E(i)(ti). In addition,

W
±,(i)
j,φ − w

±,(i)
j φ ∈ L2

δ(E(i)(ti))

for all δ < ±δ
(i)
j − θ, depending on the index ± in W

± (i)
j,φ . Finally the mapping

φ −→ W
± (i)
j,φ

is linear.

In this result, ti is the parameter given in Lemma 11.1.2.

Proof : The proof of this Lemma uses the following computation which follows
at once from the expansion of the metric and the potential at infinity

Lw
±,(i)
j φ = (L − L(i)) w

±,(i)
j φ ∈ L2

δ([ti,∞) × Σ(i))
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for all δ < ±δ
(i)
j − θ. The result then follows from Lemma 11.1.2. �

For each i = 1, . . . , k, we define χ(i) to be a cutoff function which is identically
equal to 1 in E(i)(ti + 1) and identically equal to 0 in M \ ∪k

i=1E(i)(ti).

It will be convenient to define a partial order ≺ in R
k by

δ̄ ≺ δ̄′ if and only if δ(i) < δ′ (i)

for i = 1, . . . , k. Similar definitions can be given for �, � and �.

The main result of this chapter is :

Proposition 11.1.1. Given δ̄′ ≺ δ̄, δ̄, δ̄′ /∈ IndL. Assume that u ∈ L2
δ̄
(M) and

f ∈ L2
δ̄′(M) satisfy

Lu = f ,

in M . Then, there exists v ∈ L2
δ̄′(M) such that

u − v ∈ Dδ̄,δ̄′ := Span
{

χ(i) W
±(i)
j,φ , : φ ∈ E

(i)
j , δ′ (i) < ±δ

(i)
j < δ(i)

}
.

In addition, we have

‖v‖L2
δ̄′ (M) + ‖u − v‖Dδ̄,δ̄′ ≤ c (‖f‖L2

δ̄′ (M) + ‖u‖L2
δ̄
(M))

for some constant c > 0.

Observe that Dδ̄,δ̄′ i finite dimensional and hence one can choose any norm
| · ‖Dδ̄,δ̄′ on this space. The proof of this result relies on the corresponding result
for operators of the form (11.4) on a half cylinder, but as usual, using a change
of variables and conjugation, we can reduce to the corresponding result for the
model operator ∂2

t + LΣ + a on a half cylinder.

Lemma 11.1.4. Given δ′ < δ, δ, δ′ �= ±δj, for all j ∈ N. Assume that u ∈ L2
δ(C0)

and f ∈ L2
δ′(C0) satisfy

(∂2
t + LΣ + a) u = f

in C0. Then, there exists v ∈ L2
δ′(C0) such that

u − v ∈ Dδ,δ′ := Span
{
w±

j φ, : φ ∈ Ej , δ′ < ±δj < δ
}

.

In addition, we have

‖v‖L2
δ′ (C0) + ‖u − v‖Dδ,δ′ ≤ c (‖f‖L2

δ′ (C0) + ‖u‖L2
δ(C0)) ,

for some constant c > 0.
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Proof : To prove the Lemma, we use the result of Lemma 11.1.1 and set
v̄ = Gδ′ f ∈ L2

δ′(C0). Therefore

(∂2
t + LΣ + a) (u − v̄) = 0 ,

in C0. We have
‖v̄‖L2

δ′ (C0) ≤ c ‖f‖L2
δ′ (C0) ,

for some constant c > 0. We set w = u − v̄ which we decompose as usual

w =
∑
j≥0

wj ,

where wj(t, ·) ∈ Ej . We fix j0 to be the least index for which

|δ| < δj0 and |δ′| < δj0 .

We define
w̃ =

∑
j≥j0

wj .

We claim that w̃ ∈ L2
δ′(C0) and also that

‖w̃‖L2
δ′ (C0) ≤ c ‖w‖L2((0,1)×Σ) ,

for some constant c > 0. The proof of the claim follows the arguments in the proof
of Proposition 6.2.2. We omit the details.

Next, observe that, for j = 0, . . . , j0 − 1 the function wj is given by

wj = w+
j φj + w−

j ψj ,

for some φj , ψj ∈ Ej . Observe that φj = 0 if δj < δ and ψj = 0 if −δj < δ since
wj ∈ L2

δ(C0). It is easy to see that

‖φj‖L2(Σ) + ‖ψj‖L2(Σ) ≤ c ‖wj‖L2((0,1)×Σ) ,

for some constant c > 0 (depending on j).

We set

v = v̄ + w +
∑

j=0,...,j0−1, δj>δ′
w+

j φj +
∑

j=0,...,j0−1, −δj>δ′
w−

j ψj ,

so that

u − v =
∑

j=0,...,j0−1, δ<δj<δ′
w+

j φj +
∑

j=0,...,j0−1, δ<−δj<δ′
w−

j ψj .
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The estimate follows from collecting the above estimates. This completes the proof
of Lemma 11.1.4. �

We proceed with the proof of Proposition 11.1.1. Choose δ̄′′ ∈ R
k such that

δ̄ � δ̄′′ � δ̄′, δ̄′′ � δ̄ − θ̄

and δ̄′′ /∈ IndL. Recall that θ̄ := (θ, . . . , θ) ∈ R
k. Using the result of Proposi-

tion 8.3.1 we have

‖u‖W 2,2
δ̄

(M) ≤ c (‖f‖L2
δ̄′ (M) + ‖u‖L2

δ̄
(M))

Using the fact that the operators L and L(i) are asymptotic to each other, we
conclude that, on each end E(i), we have

Lu = f − (L − L(i))u ∈ L2
δ̄′′((ti,∞) × Σ(i)).

We apply the previous result to obtain the decomposition

u = v +
∑

δ′′ (i)<±δ
(i)
j <δ (i)

w
±,(i)
j φ

on E(i), where φ ∈ E
(i)
j and v ∈ L2

δ̄′′ (i)([ti,∞) × Σ(i)). Next use the result of

Lemma 11.1.3 and replace all w
±,(i)
j φ by χ(i) W

±(i)
j,φ to get the decomposition

u =

⎛
⎜⎝v +

k∑
i=1

∑
δ′′ (i)<±δ

(i)
j <δ (i)

χ(i) (w±,(i)
j φ − W

±,(i)
j,φ )

⎞
⎟⎠+

k∑
i=1

∑
δ′′ (i)<±δ

(i)
j <δ (i)

χ(i) W
±(i)
j,φ

Observe that the function

ũ = v +
k∑

i=1

∑
δ′′ (i)<±δ

(i)
j <δ (i)

χ(i) (w±,(i)
j φ − W

±,(i)
j,φ ) ∈ L2

δ̄′′(M)

and also that L ũ = f̃ ∈ L2
δ̄′′(M). If δ̄′′ = δ̄′ then the roof is complete. If not, we

apply the same argument with u replaced by ũ, f replaced by f̃ and δ̄ replaced by
δ̄′′ and argue inductively until the gap between δ̄ and δ̄′ is covered. �

11.2 The kernel of Aδ̄ revisited.

We keep the notations and assumptions of Chapter 8. Thanks to the result of
Proposition 11.1.1 we can state the :
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Lemma 11.2.1. Fix δ̄′ ≺ δ̄ such that δ̄, δ̄′ /∈ IndL. Assume that u ∈ L2
δ̄
(M)

satisfies
Lu = 0

in M . Then u ∈ L2
δ̄′(M) provided no element δ̄′′ ∈ IndL satisfies δ̄′ ≺ δ̄′′ ≺ δ̄.

This Lemma is a direct consequence of the result of Proposition 11.1.1. It
essentially states that the kernel of the operator Aδ̄ does not change as δ̄ remains
in some interval which does not contain any element of IndL.

11.3 The deficiency space

Again, we keep the notations and assumptions of Chapter 8. We now define

Definition 11.3.1. Given δ̄ � 0, δ̄ /∈ IndL, the deficiency space Dδ̄ is defined by

Dδ̄ := Span
{

χ(i) W
±(i)
j,φ , : φ ∈ E

(i)
j , δ

(i)
j < −δ(i)

}
.

Observe that the dimension of Dδ̄ can be computed explicitly and is in fact it
is given by the formula

dim Dδ̄ = 2
∑

i,j, δ
(i)
j <−δ(i)

dim E
(i)
j .

As a first byproduct, we obtain the :

Proposition 11.3.1. Given δ̄ � 0, δ̄ /∈ IndL. Assume that Aδ̄ is injective. Then
the operator

Ãδ̄ : L2
δ̄
(M) ⊕ Dδ̄ −→ L2

δ̄
(M)

u �−→ Lu

is surjective and
KerA−δ̄ = Ker Ãδ̄

As a consequence of the previous Proposition, we have the following important
result which is a relative index formula.

Corollary 11.3.1. Given δ̄ ∈ R
k, δ̄ � 0 and δ̄ /∈ IndL. Assume that Aδ̄ is

injective. Then
dimKerA−δ̄ = codim ImAδ̄ = 1

2 dimDδ̄

Proof : Under the assumptions of the Corollary, we have

dim KerA−δ̄ = dimKer Ãδ̄
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and
dim Dδ̄ = dimdim Ker A−δ̄ + codim Im Aδ̄

But, by duality, we have dimKerA−δ̄ = codim Im Aδ̄. The result then follows at
once. �

Exercise 11.3.1. Extend the results of Corollary 11.3.1 to the case there Aδ̄ is
not injective.



Chapter 12

Analysis in weighted Hölder
spaces

As far as linear analysis is concerned the results of the previous chapter are suf-
ficient. However, we would like to apply them to nonlinear problems for which is
will be more convenient to work in the framework of Hölder spaces. The purpose of
this chapter is to explain how the analysis of the previous chapter can be extended
to weighted Hölder spaces.

We begin with the definition of weighted Hölder spaces.

Definition 12.0.2. Given � ∈ N, α ∈ (0, 1) and δ̄ ∈ R
k, we define C�,α

δ̄
(M) to be

the space of functions u ∈ C�,α
loc (M) for which the following norm

‖u‖C�,α

δ̄
(M) := ‖u‖C�,α(M1) +

k∑
i=1

‖u‖C�,α

δ(i) (E(i))

is finite.

For example, the function Γδ̄ ∈ C�,α

δ̄′ (Σ) if and only if δ̄ � δ̄′. It also follows
directly from this definition that

C�,α

δ̄
(M) ⊂ L2

δ̄′(M)

for all δ̄ ≺ δ̄′.

Lemma 12.0.1. The space (C�,α

δ̄
(M), ‖ · ‖C�,α

δ̄
(M)) is a Banach space.

It is easy to check that the embedding

C�,α

δ̄
(M) −→ C�′,α′

δ̄′ (M)

73
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is compact provided �′ + α′ < � + α and δ̄ ≺ δ̄′.

The last easy observation is that the operator

Aδ̄ : C2,α

δ̄
(M) −→ C0,α

δ̄
(M)

u −→ Lu

is well defined and bounded.

12.1 Preliminary results

The proof of the main result of this Chapter requires some preliminary Lemma.
Basically, the structure of this section parallels the one of Chapter 6.

We start with some elementary application of classical Schauder elliptic esti-
mates. The result, which is not surprising, states that for solutions of Lu = f ,
if we a priori know that u belongs to L2

δ̄
(M) and f belongs to C0,α

δ̄
(M), then u

belongs to C2,α

δ̄
(M).

Lemma 12.1.1. Assume that δ̄ ∈ R
k is fixed. There exists c > 0 such that for all

u, f ∈ L2
δ̄
(M) satisfying

Lu = f

in M , if f ∈ C0,α

δ̄
(M) then u ∈ C2,α

δ̄
(M) and

‖u‖C2,α

δ̄
(M) ≤ c

(
‖f‖C0,α

δ̄
(M) + ‖u‖L2

δ̄
(M)

)
.

Proof : The result follows at once from elliptic estimates of Proposition 3.3.1
which we either apply on some compact subset Mt of M to get

‖u‖C2,α(Mt−1) ≤ ct

(‖f‖C0,α(Mt) + ‖u‖L2(Mt)

)
,

for some constant ct > 0 depending on t, or which we apply to any sub-annulus
[t − 2, t + 2] × Σ(i) of the end E(i) to get

‖u‖C2,α([t−1,t+1]×Σ(i)) ≤ c
(‖f‖C0,α([t−2,t+2]×Σ(i)) + ‖u‖L2([t−2,t+2]×Σ(i))

)
,

for some constant c > 0 independent of t. The result of the Lemma follows first by
taking the first inequality with t = 3 and next multiplying the second inequality
by e−δ(i)t and taking the supremum over t > 2. �

The last result didn’t make use of the notion of indicial roots. In contrast, the
next result will. The result is more difficult to prove, it states that for solutions
of L u = f on a half cylinder C0, where L is an operator of the form (11.4), if we
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a priori know that u belongs to C2,α
δ (C0) but also that f belongs to some much

smaller space C0,α
δ′ (C0) for some δ′ < δ, then u belongs to C2,α

δ′ (C0), provided there
is no indicial root of L between δ′ and δ.

As usual, up to some change of variable and some conjugation, it is enough to
prove the result for the operator ∂2

t + LΣ + a where a is a periodic function.

Lemma 12.1.2. Assume that δ′ < δ ∈ R and further assume that the interval
[δ′, δ] does not contain any ±δj for all j ∈ R. Let u ∈ C2,α

δ (C̄0) and f ∈ C0,α
δ′ (C̄0)

satisfy
(∂2

t + LΣ + a) u = f ,

in C0. Then u ∈ C2,α
δ′ (C0) and

‖u‖C2,α

δ′ (C0)
≤ c

(
‖f‖C0,α

δ′ (C0)
+ ‖u‖C2,α

δ (C0)

)
,

Proof : As usual, we perform the eigenfunction decomposition of both u and
f in C0

u =
∑
j∈N

uj and f =
∑
j∈N

fj

We define j0 ∈ N to be the least index for which

δ2 + a < λj0 .

For j = 0, . . . , , j0 − 1 one can use the explicit formula we have provided in the
proof of Proposition 6.2.2 to show directly that uj ∈ C2,α

δ′ (C0) and that

‖uj‖C2,α

δ′ (C0)
≤ c

(
‖fj‖C0,α

δ′ (C0)
+ ‖uj‖C2,α

δ (C0)

)
We denote

ũ =
∑
j≥j0

uj and f̃ =
∑
j≥j0

fj

The strategy is now to construct ṽ ∈ C2,α
δ′ (C0) solution of

(∂2
t + LΣ + a) ṽ = f̃ ,

in C0 with ṽ = ũ on ∂C0 and also to prove that

‖ṽ‖C2,α

δ′ (C0)
≤ c

(
‖f̃‖C0,α

δ′ (C0)
+ ‖ũ‖C2,α

δ (C0)

)
(12.1)

Assuming we have already done so, the difference ũ − ṽ satisfies

(∂2
t + LΣ + a) (ũ − ṽ) = 0,
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in C0 and equal to 0 on ∂C0. The eigenfunction decomposition of the function
ũ − ṽ shows that

ũ − ṽ =
∑
j≥j0

(
w+

j φj + w−
j ψj

)

where φj , ψj ∈ Ej . But ũ − ṽ ∈ C2,α
δ (C0) and hence ψj all have to be equal to 0.

Using the fact that ũ− ṽ = 0 on ∂C0, we also get that φj = 0. Hence ũ = ṽ. This
will complete the proof of the Lemma.

Therefore, the only missing part is the existence of ṽ and the a priori estimate
(12.1). To simplify the argument, let us first reduce to the case where ũ = 0
on ∂C0. To this aim, we choose a cutoff function χ which only depends on t, is
identically equal to 0 on (0, 1)×Σ and identically equal to 1 in (2,∞)×Σ. Then,
we define

w̃ = χ ṽ and g̃ = χ f̃ − [L, χ] ṽ

so that the equation we have to solve now reads

(∂2
t + LΣ + a) w̃ = g̃

in C0 with w̃ = 0 on ∂C0. Obviously the existence of ṽ is equivalent to the
existence of w̃ and (12.1) will follow at once from

‖w̃‖C2,α

δ′ (C̄0)
≤ c ‖g̃‖C0,α

δ′ (C̄0)
,

since
‖g̃‖C0,α

δ′ (C̄0)
≤ c

(
‖f̃‖C0,α

δ′ (C̄0)
+ ‖ũ‖C2,α

δ (C̄0)

)
The existence of w̃ follows from the arguments already developed to prove

Proposition 4.0.1. However the derivation of the estimate is more involved an
requires new technics since it is not possible to construct barrier solutions anymore.
In any case, for all t̄ > 1, we solve

(∂2
t + LΣ + a) w̃t̄ = g̃

in [0, t̄] × Σ with w̃t̄ = 0 on {0, t̄} × Σ.

We claim that there exists a constant c > 0 such that

sup
[0,t̄]×Σ

e−δt |w̃t̄| ≤ c sup
[0,t̄]×Σ

e−δ′t |g̃|

When t̄ remains bounded, the claim is certainly true and follows from standard
elliptic estimate (use Proposition 3.1.2 and Proposition 2.2.1). In order to prove
the claim, we argue by contradiction and assume that, for a sequence t̄i tending
to ∞, for a sequence of functions g̃i ∈ C0,α

δ′ ([0, t̄i] × Σ), we have

sup
[0,t̄i]×Σ

e−δ′t |g̃i| = 1 ,
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while, for the corresponding sequence of solutions w̃i

Ai := sup
[0,t̄i]×Σ

e−δ′t |w̃i| ,

tends to ∞. One should keep in mind that the eigenfunction decomposition of
both g̃i and w̃i have no component over Ej for j < j0.

Observe that the function w̃i is continuous and we can choose a point ti ∈
[0, t̄i] × Σ where Ai is achieved. We define the rescaled functions

ŵi := A−1
i e−δ′ti w̃i(ti + ·, ·) and ĝi := A−1

i e−δ′ti g̃Ri
(ti + ·, ·) .

Obviously
(∂2

t + LΣ + a(ti + ·, ·)) ŵi = ĝi .

Using the result of Proposition 3.2.2, we get the estimate

‖∇w̃i‖L∞([0,1/2]×Σ) ≤ c
(‖w̃i‖L∞([0,1]×Σ) + ‖g̃i‖L∞([0,1]×Σ)

)
,

for some constant c > 0 And hence

‖∇w̃i‖L∞([0,1/2]×Σ) ≤ c (1 + Ai) .

This implies that
e−δ′t |w̃i| ≤ c t (1 + Ai) ,

for all t ∈ [0, 1/2]. Therefore, if ρ > 0 is fixed so that

c ρ ≤ 1/2 ,

we conclude that, for i large enough, ti > ρ.

Working near {t̄i} × Σ and using similar arguments one can show that there
exists ρ̄ > 0 such that t̄i − ti > ρ̄. Therefore we conclude that

ρ ≤ ti ≤ t̄i − ρ̄ . (12.2)

As in the proof of Proposition 4.0.1 we pass to the limit for a subsequence of
i tending to ∞ to obtain ŵ a solution of

(∂2
t + LΣ + a(t∗ + ·, ·)) ŵ = 0 ,

in one of the following domains

(i) R × Σ (which occurs when t∗ = lim−ti = −∞ and t∗ = lim t̄i − ti = ∞).

(ii) [t∗,∞)×Σ (which occurs when t∗ = lim−ti > −∞ and t∗ = lim t̄i−ti = ∞).

(iii) (−∞, t∗] × Σ (which occurs when t∗ = lim−ti = −∞ and t∗ = lim t̄i − ti <
∞).
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Observe that, using (12.2), we always have t∗ < 0 < t∗.

In addition,
sup e−δ′t |ŵ| = 1 (12.3)

where the supremum is taken over the domain of definition of ŵ and finally ŵ = 0
on {t∗} × Σ and/or on {t∗} × Σ if either t∗ or t∗ is finite. As usual, we perform
the eigenfunction decomposition of ŵ as

ŵ =
∑
j≥j0

ŵj

Observe that, since we have chosen

δ2 + a < λj0

a simple application of the maximum principle implies that

|δ| < δj

for all j ≥ j0. Also
ŵj = w+

j φj + w−
j ψj

for some φj , ψj ∈ Ej . Using once more the fact that δ2 + a < λj0 we obtain from
the maximum principle that w±

j do not vanish.

In order to rule out case (ii), it is enough to look at the behavior of the function
ŵj near ∞ which implies that φj = 0 and next using the fact that ŵj = 0 at t = t∗,
we conclude that ψj = 0. Case (iii) can be ruled out using similar arguments.
Finally, case (i) is ruled out inspecting the behavior of ŵj at both ±∞.

Hence ŵ ≡ 0 and since this clearly contradicts (12.3), this completes the proof
of the claim.

Now that we have proven the claim, we use elliptic estimates and Ascoli’s
Theorem to pass to the limit as t̄ tends to 0 in the sequence w̃t̄ and obtain a
solution of

(∂2
t + LΣ + a) w̃ = g̃

in C0 with w̃ = 0 on ∂C0 and

sup
C0

e−δ′t |w̃| ≤ c sup
C0

e−δ′t |g̃|

To obtain the relevant estimates for the derivative, we use again the result of
Proposition 3.3.2. This completes the proof of Lemma 12.1.2. �
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12.2 The regularity result

The preliminary results we have proven allows us to extend our results in the
framework of weighted Hölder. The key Proposition is :

Proposition 12.2.1. Assume that δ̄, δ̄′ ∈ R
k are fixed with δ̄′ ≺ δ̄. Further

assume that no element δ̄′′ ∈ IndL satisfies δ̄′ � δ̄′′ � δ̄. Then, there exists c > 0
such that for all u, f ∈ L2

δ̄
(M) satisfying

Lu = f

in M , if f ∈ C0,α

δ̄′ (M) then u ∈ C2,α

δ̄′ (M) and

‖u‖C2,α

δ̄′ (M) ≤ c
(
‖f‖C0,α

δ̄′ (M) + ‖u‖L2
δ̄
(M)

)

Proof : We start by applying the result of Lemma 12.1.1 which implies that
u ∈ C2,α

δ̄
(M) and hence, thanks to the assumptions on the expansion of the metric

and the potential, we can write on any of the ends E(i)

L(i) u ∈ C0,α

δ̄′′ (E(i))

for any δ̄′′ � δ̄′, δ̄′′ � δ̄ − θ̄. Next we apply the result of Lemma 12.1.2 which
guaranties that u ∈ C2,α

δ̃
(Ei). If δ̄′′ = δ̄′ then the proof is complete. If not, we

iterate the argument starting from δ̄′′ and proceed in this way until we reach δ̄′.
The proof of the estimate follows from the estimates given in Lemma 12.1.1 and
Lemma 12.1.2. �

12.3 The kernel of Aδ̄ revisited once more

The first application of the result of Proposition 12.2.1 is concerned with the kernel
of the operator Aδ̄.

Lemma 12.3.1. Assume that δ̄ ∈ R
k is fixed with δ̄ /∈ IndL. Further assume that

u ∈ L2
δ̄
(M) is a solution of

Lu = 0 ,

in M . Then u ∈ C2,α

δ̄
(M).

In other words, in order to check the injectivity of Aδ̄, it is enough to check
the injectivity of Aδ̄, which in practical situation is easier to perform.

Observe that, if u ∈ L2
δ̄
(M) is in the kernel of Aδ̄ then u is also in the kernel

of Aδ̄′ for all δ ≺ δ′ since L2
δ̄
(M) ⊂ L2

δ̄′(M). However, it follows from Proposi-
tion 12.2.1 that the following is also true :

Lemma 12.3.2. Assume that δ̄ ∈ R
k is fixed with δ /∈ IndL. Further assume that

u ∈ L2
δ̄
(M) is in the kernel of Aδ. Then u is also in the kernel of Aδ̄′ for all δ̄′ ≺ δ̄

for which no element δ′′ ∈ IndL satisfies δ̄′ � δ̄′′ � δ̄.
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12.4 Mapping properties of L in weighted Hölder
spaces

The third application of the result of Proposition 12.2.1 is concerned with the
extension of the result of Proposition 11.1.1 in the framework of weighted Hölder
spaces and this will be useful when dealing with nonlinear differential operators.
We have the :

Proposition 12.4.1. Given δ̄′ ≺ δ̄, δ̄, δ̄′ /∈ IndL. Assume that u ∈ L2
δ̄
(M) and

f ∈ C0,α

δ̄′ (M) satisfy
Lu = f

in M . Then, there exists v ∈ C2,α

δ̄′ (M) such that

u − v ∈ Dδ̄,δ̄′ := Span
{

χ(i) W
±(i)
j,φ , : φ ∈ E

(i)
j , δ′ (i) < ±δ

(i)
j < δ(i)

}
.

In addition, we have

‖v‖C2,α

δ̄′ (M) + ‖u − v‖Dδ̄,δ̄′ ≤ c (‖f‖C0,α

δ̄′ (M) + ‖u‖L2
δ̄
(M)),

for some constant c > 0.

Let us now explain how this result is used. Given δ̄ ∈ R
k, δ̄ ≺ 0 and δ /∈ IndL.

Assume that Aδ̄ is injective, then, according to the result of Corollary 10.2.1, the
operator A−δ̄ is surjective and hence there exists

G−δ : L2
−δ̄(M) −→ L2

−δ̄(M),

a right inverse for A−δ̄ (i.e. A−δ̄ ◦ G−δ = I). In particular, given

f ∈ C0,α

δ̄
(M) ⊂ L2

−δ̄(M),

the function u := G−δ̄ f ∈ L2
−δ̄

(M) solves

Lu = f

in M . and we have

‖u‖L2
δ̄
(M) ≤ c ‖f‖L2

−δ̄
(M) ≤ c ‖f‖C0,α

δ̄
(M).

Applying the result of Proposition 12.4.1, we see that there exists v ∈ C2,α

δ̄
(M)

such that

u − v ∈ Dδ̄ := Span
{

χ(i) W
±(i)
j,φ , : φ ∈ E

(i)
j , δ

(i)
j < −δ(i)

}
,

and in addition, we have

‖v‖C2,α

δ̄
(M) + ‖u − v‖Dδ

≤ c (‖f‖C0,α

δ̄
(M) + ‖u‖L2

δ̄
(M)) ≤ c ‖f‖C0,α

δ̄
(M) ,

for some constant c > 0.

We summarize this in the following :
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Proposition 12.4.2. Given δ̄ /∈ IndL with δ̄ ≺ 0, let us assume that Aδ̄ is
injective, then the operator

Ãδ̄ : C�,α

δ̄
(M) ⊕ Dδ̄ −→ C�,α

δ̄
(M)

u −→ Lu

is well defined, bounded and surjective. In addition dimKer (Ãδ̄) = 1
2 dimDδ̄.

In particular, under the assumptions of the Proposition, there exists an oper-
ator

Gδ̄ : C0,α

δ̄
(M) −→ C2,α

δ̄
(M) ⊕ Dδ̄ .

which is a right inverse for the operator L. In fact there exists a 1
2 dim Dδ̄ dimen-

sional family of such right inverses.

Let us define

IsomL :=
{
δ̄ ; ∀δ̄′ ∈ IndL, δ′ � 0 ⇒ −δ̄′ ≺ δ̄ ≺ δ̄′

}
.

In other words, when δ̄ � 0 and δ̄ ∈ IsomL, then there is no element of IndL
between −δ̄ and δ̄. In particular Dδ̄ is empty. Therefore, the above statement
simplifies into the :

Proposition 12.4.3. Assume that for some δ̄ ∈ IsomL, the operator Aδ̄ is injec-
tive, then the operator Aδ̄′ is an isomorphism for any δ̄′ ∈ IsomL.




