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LECTURE NOTES ON MEAN CURVATURE FLOW

JINGYI CHEN

1. FUNDAMENTAL EQUATIONS FOR SUBMANIFOLDS

Let ¥ be a n-dimensional manifold and M be an (n + k)-dimensional manifold with a Rie-
mannian metric g. Let F': ¥ — M be an smooth immersion. The induced metric via F' on
Y is h = F*g. Denote the Levi-Civita connections of ¢ and h by V and V, respectively. Let
T, NY be the tangent bundle and the normal bundle of ¥ in M respectively. For each p € X
and X,Y € TX, the second fundamental form of ¥ in (M, g)

A:TYE XxTY. —- NX

is given by the Gauss formula:

(1) Vx,Y = Vx,Y + A(X,, ).

The following are some of the most important forlumas/equations for submanifolds.
Gauss’ Equations:

(2) (R(X,Y)Z, W) =(R(X,Y),Z, W)+ (A(X,2), A(Y,W)) — (A(Y, Z), A(X,W))

for all tangent vectors X,Y, Z, W € T),3.
Weingarten equations:

(3) Vxv = —BZ,(X)—FD)(I/
where D is the connection on N¥ and B : T3 x NY — T is the sharp operator defined by
g(BV(X)7 Y) - g(A(X7 Y)? V)

Codazzi’s equation: let vy41, ..., vyt be a local orthoformal section of NX, then

(4) (RX,Y)Z,v) = ((VxA)Y,2)~ (VyA)(X, 2)) (vi,v)
+AYY, Z)(Dxv;,v) — AY(X, Z)(Dyv;,v)
= (VxA)(Y.2) — (Vy A)(X, 2)
where V is the covariant differentiation on Hom(TM x TM, NM) determined by V, D.
Ricci equation:
(5)  (ROGY))' = A(B,(X),Y) = A(B,(Y), X) + Dx(Dyv) = Dy (Dxv) = Dixy v

The mean curvature vector of 3 in M is the trace of second fundamental form.
The second fundamental form for the immersion F' : 3 — M is given in local coordinate by
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2 JINGYI CHEN

with & = n+ 1,...,n + k, where z*’s are coordinates on ¥ and v,’s form a basis for N¥. The
coefficients are given by

O*F° p OF° OFP oFY
OxtdxI Y Qxk Ozt Oxd
In particular, when M is the euclidean space R"**, the mean curvature vector of ¥ is

(8) H=AF

(7) g =

+ T3, (F)

where A is the Laplace-Beltrami operator of the induced metric. To see AF' is indeed normal
to X, we compute

(AF,OF) = (g '0i(g"\/90;F),0F)
. 1 .. ) )
= (g9O5F,OF) + (979" Digud; F.OF) — (9" Bigsrg" O, F. OF)

3 1 .
= (g7OGFOF) + 59" g5 — 9 0iga

1 .. .
= 59”8;(&12 8JF> - g” <8jF, aﬁF)
= 0.
Therefore, AF € NX. Here we have used the useful formula
OydetC =det C - cijﬁlcij

for any invertible matrix C' = (¢;;).

A submanifold ¥ is called a minimal submanifold in M if H = 0. In particular, if ¥ is a
minimal submanifold in a euclidean space, then its coordinates are harmonic functions on X by
(8), hence there does not exists any compact minimal submanifold in euclidean space, except
points.

When ¥ is a hypersurface in R*™!, locally it is the graph of a smooth function f : Q@ C R® —
R. The unit upward normal vector v is given by

V1+I[Df?

and the mean curvature vector is

. Df
=div| ———— | v.
" <\/1 n \Df|2>

The first variation formula for volume reads:

d :/diVX:—/H-X
t=0

—V(Z
7V (%)
where X is an arbitrary vector field with compact support generated by a 1-parameter family
of diffeomorphisms ¢; of the ambient space:

dpy
X =——
dt

t=0

and ¥ = ¢4(X), o is the identity map.
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2. MEAN CURVATURE FLOW AND GEOMETRIC EVOLUTION EQUATIONS

2.1. Mean curvature flow. If F': 3 x [0,T) — M is smooth and satisfies

o\ -
¢

we say I satisfies the mean curvature flow. One can show that there exists a ¢-dependent family
of tangential diffeomorphisms ¢ such that F' = F o ¢ satisfies

(9) %—IZ = H(F)

and we will always use this equation to refer mean curvature flows (MCF).

If Q is a domain in R"* and u: Q x [0,7) — R is a smooth function which satisfies

ou Du
10 S 11 [ Duldiv | ——e
(10) ot 1D lV(«/l—i—]DuP)

then the time dependent graph ¥ = {(z,u(z,t))|z € Q,t € [0,T)} evolves by MCF. This can

be seen as follows
OF\* OF
—— = — vV
ot ot

— (o) Z2%D Y,
’ \/1+ |Dul?

——
1+ |Dul?
D
= div| —m |
V14 |Dul?

= H.
Expanding (10), we have
ou DiuD;u
11 - 9" ) D.D..
) ot <” 1+LDM2> ch
When n = 1, the graphical MCF (11) reduces to
(12) Ou - arctan u.

ot 1+u2 Oz
Example 2.1. A special solution to (12) is the so-called grim reaper given by
u(z,t) = —logcosx +t, x € (—m/2,7/2).

This solution is not defined on entire domain R and it translates in the y-direction by the unit
vector (0,1).

Example 2.2. Let 3; be the round sphere 9B, (0) in R" 1.

r(t) = vV R? — 2nt
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solves the O.D.E. on (—o0, R?/2n)
; n
=——, r(0) =R.
7 =" )
The MCF, w.r.t. inward pointing normal vector, is reduced to the above O.D.E., it shrinks to
a point at time R?/2n. So
2nt

is a self-similar solution.

Example 2.3. Let X; be the spherical cylinder 8Bf('51_k(0) x R¥ in R"*!. The MCF reduces
to

—k
r’:—nr , 7(0) = R.

The solution is
r(t) = v/R?>—2(n—k)t
for t € (—oo, R?/2(n — k)). This is an ancient solution as it exists from —oo.
MCF equation for F': ¥ x [0,7) — M can also be written as

OF _ i ( O*F® [ OF" o OFPOFTY 0
ot Ox'OxI 9 Qxk B 9t Oxi ) oy~

where ¢ is the time dependent induced metric and Ffj its connection and ng is the connection
on M. This is a quasilinear parabolic system, and its short time existence and uniqueness is
guaranteed when ¥ is compact and smooth [17]. Note that for each fixed ¢, the right hand side

of (13) is the tension field of the isometric immersion F : (X, g) — (M, h) and when the tension
field vanishes F' is a harmonic map.

(13)

2.2. Basic evolutions equations for geometric quantities. We consider the mean curva-
ture flow from a closed n-dimensional manifold in a m-dimensional Riemannian manifold M
with a Riemannian metric. Given an embedding Fy : > — M, we consider a one-parameter
family of smooth maps F; = F(-,t) : ¥ — M with corresponding images ¥; = F;(X) are
embedded submanifolds in M and F satisfies the mean curvature flow equation:

d
F(z,0) = Fy(x).
Here H(z,t) is the mean curvature vector of ¥; at F'(z,t) in M. Denote by A the second

fundamental form of ¥; in M and the Riemannian metric on M by (-, ). In a normal coordinates
around a point in ¥, the induced metric on ¥; from (,-) is given by

9ij = (OiF, 0; F)

where 0; (i =1,---,n) are the partial derivatives with respect to the local coordinates. In the
sequel, we denote by A and V the Laplace operator and covariant derivative for the induced
metric on Y; respectively. We choose a local field of orthonormal frames e, ..., e,, V1, ..., Um—n
of M along ¥ such that ey, ..., e, are tangent vectors of ¥; and vy, ..., vy, are in the normal
bundle over ¥;. We can write:

A = A%,
H = —H%,.
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Let A% = (hg;), where (h{;) is a matrix. By the Weingarten equation, we have
h% = (ﬁiva,eﬂ = <§jva,ei) = h;’éz

where V is the Levi-Civita connection on M. The trace and the norm of the second fundamental
form of ¥; in M are:
H® = ¢¥ h$; = h;

2 2 kl
| Al Z | A% 9”9 ik ]z = hiihij,
We first derive the evolution equatlon of the induced metric.

Lemma 2.4. Along a smooth MCF, we have

09i;
(15) at] = —2(h;j, H)
Proof. Write 0; = 0;F and g;; = (0;,0;). Then
09;; — _
gtf (V10:,0;) + (0, V ;)
= <§8iHa 8]) + <6ivvﬁjH>
= —2(H, hij).
Here we have used [0:F, 0;] = 0. O

Consequently, volume decreases along mean curvature flow:

Lemma 2.5. Let ¥ be a compact submanifold and let F : X x [0,T) — M satisfy MCF. Then

d/\/gdaz:—/ |H*\/gdz.

Lemma 2.6. Along MCF, we have
0 _
o = Hii- HP Rgijo — HPWO G — B (vg, Viva).
Proof. Set e; = 0;F. We have
hi; = —(Ve,€5,0a).
Then we have

Dy

8t 1) vHveieja'Uc» + <veiej7vH'Ua>

ﬁeivHeva» < (H el)ej7va> <vei€javH'Ua>
Weﬁejﬂ Vo) — (R(H, e;)ej,va) + (Ve,€j, VU

Ve, (V H+ V H),va) — (R(H, €;)ej,va) + <v€i€j7vfﬂ)a>
jH V) — HP Rﬁw - <VejH, Veva) + (Ve,€5, Viva)
- HO‘ H® Rgijo — HPW)hg + 1 (vg, Virva)

where we have used V. e; = hi ,Up at the center of the normal coordinates of 3. O
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Lemma 2.7. Along MCF, we have

o = ARS RO RS — HORD WS+ W RS, — bl hihg

,J e Im''mj im''mj Im'‘ml Ij'*ml

—ViRaji — ViRaiji + Rimhiy,; + Rijmho,, — Raﬂilhlﬂj~

Proof. Let K;ji be the curvature tensor on 3; and K,g;; be the curvature tensor for DL, The
Codazzi equations, the Gauss equation, and the Ricci equation read:

Vichon — Vb, = —Ramnk
and
Kiji = (hfkhf-l - hﬁhf-k) + Rijrl
and
Kapit = (hhyy — hijhy,) + Ragi
where R is the curvature tensor of M. We have
V,V,H® = V;V;hi
Vi(Vihj + Raujit)
= ViVih + ViR
= VIVih + (Rohy, — hi h)hS,: + Rinmh,;
(A Ry, — B W RSy + Rijmhy
+Ragihy; + (hshyy — hhi )b, + ViRaijt
= Vi(Vih$ + Raga) + hihy) hS,; — HPhY) he

i i = D+ (Wi = Bhi b

Im'‘ml

+Riimhim; + Rigmho + Raﬂilhlﬁj + ViR
= ARG+ hoR) hS — HOR he

Im''mj im'*mj

+hiﬁjhﬁ a hfmhﬁh%z + (hﬁchfz - loifhfi)hlﬁj

Im'*ml —

+V1 Rajit + ViRaji + Riimhy; + Rijmhy + Rapihy).
This proves the lemma. O

Then Lemma 2.6 and Lemma 2.7 immediately imply

Lemma 2.8. For the mean curvature flow, the second fundamental form satisfies

a « « « (6% « (0%
(5, —A)hy; = hikhglhlﬂj - lkhgihlﬁj + Wi b — HP (W), h '+h?zhiz)

ot m’'mj m’ mj
RORE pe B pBpe LN R. 4 VR
+ i7" “lm''ml im! Y51 ml + Vi ajil + Vi aljl

+Rillmh7anj + Riljmh%l + Ra,@’ilhlﬁj — hiﬁj <vﬁ,vfﬂ)a>.

Now we prove the main result in this section.
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Proposition 2.9. We have

9 B _ _
(5~ A)AP = —2|VAP +2h;(ViRajia + ViRajt) + 8Ragimhiihiy,

+205 i Raagn + 405 Rt iy + 405 Ratjm i,

+2 3 (hghl — hShG)? +2 ) (hhi,)2.

,B,i,j i,5,l,m

where V is the covariant differentiation on Hom(TX; x TY;, NorY,) determined by the covari-
ant differentiation on T and D on the normal bundle, D is the normal connection for the
embedding ¥y C M, and V is the connection on M, R is the curvature operator of M.

Proof. Using the previous lemmas, we have

0 0 7 il 1«
E\AF = &(9 kgjlhij kz)
_ apa BB o 0 o

= 2h(ARS + h ) — b bk + Hyhp, b,
+hhp i — W Wiy + ViRagi + ViRaiji
+Riumh; + Ritjmh + Ragahl; + H® Rejp)
— 20y (ARG + M By BB By — 200 B Ry + P R
(16) +ViRajit + ViRaiji + Rimha,; + Rigmh, + Raﬁilhlﬁj) :
Covariant differentiation of the curvature tensor leads to the following formula:
VeRamnp = VgRamnp + Ramﬂphgq + Ramng hgq + Raﬁnphgbq = Romnplisy,
and in turn we have
ViReajit = ViRaji + Ra,@‘ilhfl + Rajﬂlhg + Rajwhﬁ — Ryjithoy,
and
ViRaiji = ViRaji + Raﬁjlhlﬂi + Ralﬁzhg- + Raljﬁhg — Rt
The first Bianchi identity implies that
Rajpr + Roipj = Ragji-

It is clear that

A|A? = 2k ARS; + 2V h{;V ;.
Substituting the last four identities into (16), we get the identity in the proposition. (|
2.3. Higher derivatives of the second fundamental form. Let Rm, K be the Riemann

curvature tensors of M, 3 respectively. For simplicity, we will use F *x F', for tensors F, F, to
denote any linear combination of tensors formed by contraction on E; ;F} ; using the metric.

(17) (O —A)A=AxAx A+ VRm+ Ax Rm
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At the center p of a normal coordinate system of ¥, dg(p) = 0. Taking the ¢-differentiation of
the Christoffel symbols and using the evolution equation of g, we have at p

VA = VOoA+ &g(g_l x0g) x A

= VO A+g ' «V((AxH)xA

= VO A+VAZxA

= VO, A+ VAxA?
Changing order of covariant derivatives and using the Gauss equations, we have

AVA = VAA+VEKxA+KxVA
= VAA+V(Rm+ A*) + (Rm+ A*) x VA
Therefore, we obtain the evolution equation for V A:
(O —A)VA = V(A*+VRm+ Rmx* A) + VAx A?
+Rm*xVA+VRm+ AxVA
= VAx(A2+ A+ Rm)+ AxVRm + V:Rm + VRm
Next, we consider the second derivative of A:
OVIA=V(0,VA)+VA?xVA
and
AV?A = VAVA +V(VA) * (Rm + A?) + VA x V(Rm + A?)
Hence, we have
(18) (0, —A)VZA = V(VA*[A2+ A+ Rm]+ AxVRm + V>Rm + VRm)
+VZA % (Rm + A%) + VA% V(Rm + A?)
= V?Ax fi(VA, A,VRm, Rm) + fo(VA, A, VRm, Rm)
Inductively, for general k, we have
(19) (0, —A)VFA = VFAx f1(VF1A VF2A, . A, V*"'Rm,...,Rm)
+fo(VFTA, VF24, .., A, VE1Rm, ..., Rm)
It then follows
(0 — A)|[VFAZ = (VFA VFAx f1(VF 1A, VE24, . A, V¥ 'Rm, ..., Rm))
+(VFA, fo(VF 1A, VF2A, . A,V I1Rm, ..., Rm))

_2|vk+1A|2
< h(VFA, . A VY Rm, ..., Rm)|V*A?
(20) +ho(VELA, . A, V¥ 'Rm, ..., Rm)

where we have used the inequality 2ab < a? + b?.
Therefore, if |A|,...,|[V¥71A| are bounded on [0,T),T < oo, and if the ambient space has
bounded geometry, then
(0 — A)|VEAP < C1|[VFA]2 + Cs.
By the maximum principle (assume ¥ is compact),
d

a <€—Clt Inzatx|va|2) S 02
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This implies
k 412 Cht k 412
mEaX|V Al“ <e <C’2t+rr§ax|v Al ) < C(k,%0,T) < 00.
t 0

Hence, if |A| < C on [0,7),T < oo, then all derivatives of A are also bounded on [0,7"). The
MCF can be extended to [0,T + ¢€) for some € > 0.
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3. MONOTONICITY FORMULA

Assume the ambient space is euclidean. Using the standard heat kernel, we introduce

X —X0|2>
A(to —t)

for t < ty9. The following monotonicity formula, due to Huisken, is very useful.

(21) p(X, 1) = (4m(to — )"/ exp (

Proposition 3.1. Along MCF, we have

d B (F — Xo)*|”
(22) P /Mt p(F,t)dpy = /Mt p(F,1) )H + ECEDE dpug.
Proof. 1t is clear that
) ) ,
= [ p(F t)du = —p(Fyt)due — [ p(F )| H[*dpe
823 M, M, 8t M,

- Aﬁi+AmmwwﬁJPMRmm%m

t

Straightforward computation leads to

0 B n 1 | X — Xo|?

1) = <2(to —0) g X Ko 4(to—t0>2> A1)
and

X — Xo*\ _ | X — Xo[* (X — X, VX)
Ve <_ A(to — 1) ) - <_ A(to —t) ) 2t — 1)
and
|X—X0|2 e _|X—X0|2 ](X—XO,VX>|2 _(X—XO,AX) _ \VX|2

A“®@¢w—w>‘ p<4w—w>< 4(to — 1)2 2(to — 1) 2%—&)

Note that in the induced metric on M;
|IVX|? =n and AF = H,

so we have

0 (F— Xo,H) | |(F— Xo)*|?
2 — + A Ft)=— F t
(23) (5+0) ey == (F 2D =T i
Note

F— X, H F— Xg)* 2 F— Xo)-|?
’H’2+< 0. H) I 0)2! P 0)
(to —t) 4(to — t) 2(to — t)

Then the proposition follows. U

3.1. Finite time singularity. In general, MCF develops singularities, i.e., A becomes un-
bounded. In particular, MCF of any compact submanifold in the euclidean space must develop
singularity in finite time. More generally, we have

Theorem 3.2. Let M™ = N™ x RP, where N is compact. Let 3; evolve along MCF where 3,
is compact and dim¥; > n. Then the MCF becomes singular in finite time.
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Proof. Define a function f: N x RP — R by
1
Fay) =3l v € Ny c R
Let F': ¥ — M be the MCF. Then, at the center of a normal coordinate on M, we have

O foF) =V H =YY A F

and
A(foF) = g (83(f o F)~Thou(foF))
= g7 (fuFG + fasF B =TS 1)
= Vf Ax,F+ fapFOF] g0,
Hence, we have
of MoM o
o7 = Anf Z (VMM £) (e, €:)

where e;’s is an orthonormal basis of T>3;. The Hessian of f has two eigenspaces: n-dimensional
space Ej of the eigenvalue 0 and the p-dimensional F; of the eigenvalue 1. The intersection of
the tangent space to %; and F; has dimension > dim ¥; —n > 0. It then follows

%foFgAztfoF—(dimEt—n)

From the maximum principle

sup f <sup f —t(dim Xy — n)
3¢

3o

Therefore the MCF becomes singular at the latest at 7' < supy, f/(dim X9 — n). O

Remark 3.3. One can use the monotonicity formula to show MCF develops finite time singu-
larity when the ambient space is not a product described above but satisfies certain curvature
condition.

3.2. Type I singularity and self-similar solution.

Definition 3.4. We say T > 0 is a blow-up time if

lim sup sup |A|? = oco.
t—T M,

Proposition 3.5. Let U(t) = maxyy, |A|?. If the mean curvature flow blows up at T > 0, the
function U(t) satisfies

1
Ult) > —.
() = 2(T —t)
Proof. By the parabolic maximum principle, we have
d
—U@l) < 2U(t)?
SU@) < 2A00)
So p
—U () > -2
dt ()=
We have

U NT)-U () > —2(T —t).
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Since U(T') = 0, we get the desired inequality. O

Definition 3.6. We say T is a type I singularity, if

C
max [A]? < ——.
M, T—t

Otherwise, we say it is a type II singularity.

Assume ¥ is compact. At a type I singularity 7', assume z; — xo € M such that A(z;,t;) =
maxges, t<t, |A(x,t)| — oo and t; — T' < co. We may identify a neighborhood of zy in M with
a euclidean domain via the exponential map centered at xg. For simplicity, assume M = R"”
and zg = 0. We consider the new flow which we call a rescaled flow,

Fa,s) = (2T = 1)) F(x, 1),
where x € M, t > 0 and

It is clear that

d - B} ~
£F(x,s):F(a;,S)—|—H

where H is the mean curvature of F (x,s). We denote the rescaled surface by M.

Proposition 3.7. Let T be a type I singularity. For any s € [0,00), we have

max |A|? < C,
M,

and for any integer m,

max V™A < C.

M
Lemma 3.8. If F(x,t) — 0 as t — T, then F(x,s) remains bounded for all s € [0, 00).
Proof.

T T
|F(m,t)—F(:I:,T)|§/t ]H(x,7)|dr§0/t

which implies that

1
dr < CVT —,
\/T—TT_ ’

|F(z,5)| < C.
The proof is complete. O]
3.3. Self-similar solution. For the rescaled surface M;, the monotonicity reads as follows.
Let B

—|F?
=ex
P p B )
then ;
= | pdins = —/~ plH + F*[djs.
S J M, M

It follows that

(0.)
/ / ﬁ|H+FL2dﬂs</~ p < 0.
0 M Mo
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A subsequence M, s; converges to a smooth limiting surface M as s; — 00, in light of Proposition
3.7 and Lemma 3.8. Therefore, at infinity, we have

(24) Hy +FL=0.
Assume ¥; = F(X,t) is a self-similar solution, i.e., it takes the form

F(x,t) = A(t)Fo(),

where Fp : 3 — R™ is an immersion satisfying
Hy = cFg-
for some constant c. We may assume that A\(0) = 1. That Fi(t) is a self-similar solution implies
AN =c.

Hence for some conatnts ¢ and d,
N =ct+d.

MCF of the round sphere is an example of self-similar solution.

3.4. Translating solitons. Suppose that M, is a translating soliton which translates in the
direction of the constant vector T'. That means Fy = F + T, i.e, My = M +tT.

Example 3.9. An example of translating soliton. In R?, the ¢-family of curves
M; = {(z,—Incosz +1t) | |x| <7/2}

is a translating soliton which translates in the direction of the constant vector (0,1): M; =
My +t(0,1). In fact (cosz,sinx) is a unit tangent vector and (—sinx,cosz) is a unit normal
vector, and H = cosx. M; as the graph of u = —Incosx + t satisfies the MCF

qu’CL’

TR

Ut

3.5. Density Function. Let M be a smooth (n+ k)-dimensional manifold with a Riemannian
metric g. Assume that either M is closed or M = M; x RP for some closed manifold M; with g
being the product metric. Further, we assume (M, g) has nonnegative sectional curvature and
parallel Ricci curvature. Note this implies M; has nonnegative sectional curvature and parallel
Ricci curvature.

Let K(x,x0,t) > 0 be the heat kernel, i.e. the fundamental solution to the heat operator, of
(M, g) for t > 0 and x,z9 € M with the normalization

/ K(z,xo,t)du(x) = 1.
M

Then K (x,xzq,to — t) satisfies the backward heat equation

ot
for 0 <t < tg, where A is the Laplace operator of (M, g). Define

<8+AM> K(m,xo,to—t) =0

(25) B (a.t0) (5 1) = (47)2 (g — £)% K (w, w0, to — )



14 JINGYI CHEN

for 0 < t < tp. Hamilton’s computation [11] shows that if 3; are n-dimensional closed subman-
ifolds evolving along the mean curvature flow in M then

d DY, 1)
— o dus, = — H- O @ d
dt Js, (wo.to) T /Et q)(xo,to) (@0.t0) A%
Da® (20,100 D3P(2o,te)  Plwo,to)Jop
26 _/ ga,@ <D D (I) _ 0,0 0,l0 + 0,00 d 9
( ) 5 al/B¥ (xg,t0) (I)(zo,to) 2(t0 —t) U,
where «, 8 = n+1,...,n+k denote the indices for a basis normal to 3;. Here DL(I)(aco,to) denotes

the normal component of the gradient D®, ;) along ¥ in M.

Under the curvature assumption, Hamilton’s matrix Harnack inequality [10] asserts that the
last integral in (26) is nonnegative. We remark on that if M = M; x RP with the product metric
then under the same curvature assumption as above the last integral in (26) is still nonnegative.
In fact, the heat kernel of M is just the product of the heat kernels of M; and RP, and both
M7 and RP have the curvature property required in Hamilton’s Harnack estimate. Then direct
computation verifies the claimed nonnegativity by applying the heat operator to the product
of the kernels then using Hamilton’s result.

Therefore, if ¥ moves by mean curvature flow in M for ¢ € [0,tp) then for any xy € M the

function fEt D@ (10,10)dpt 1s decreasing in t <ty and
(27) O(M, zg, tp) := lim q)(x(),to)dugt
t/ "t Jy,

exists, where M denotes the mean curvature flow 3, ¢ € [0,ty). We call ©(M, xg, ty) the density
of the mean curvature flow 3; at (x,%y) and © the density function.

The upper-semicontinuity of the Gaussian density function for mean curvature flows in the
Euclidean space was proven in [20]. The proof in [6] and [20], which will be presented below
for the sake of completeness, carries over for ©.

Proposition 3.10. (Upper-semicontinuity of ©) Let M be a smooth manifold with parallel
Ricci curvature and nonnegative sectional curvature where M 1is either closed or the direct
product My x RP with the product metric for some closed manifold M. Suppose that the closed
submanifolds 3 evolve by mean curvature flow in M for t € [0,ty). Let (z;,t;) be a sequence of
points in M x [0,t9) such that lim;_(x;,t;) = (x0,t0) and t; < tjq1. Then
O(M, xg,tp) > limsup O(M, z;, t;).
Jj—oo
Proof. For a fixed t € [0,1(), there is some jo € N such that ¢t < ¢; for all j > jo. The integral
Js. @ (2. ¢,y is decreasing in ¢ for each (z;,¢;), so for j > jo
DIRMCIRT) FERY/

D, > i Dy = ivti).

/Et @it Z [0 | P ty) O(M, z;,1;)

The heat kernel K (z,y,t) € C°(M x M x RT), so for a fixed t < tg
lim (I)(a:j,tj)(xat) = (I)(xo,to)(wvt)

j—o0
holds for every x € M. Integrating over the closed submanifold 3 and then taking lim sup with
j — o0, we have

/ D (29,t0) = limsup O(M, x;,t;).
s

J—0o0
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Then letting t " g

O (M, xg,tp) > limsup O(M, z;,t;)

Jj—00
and this completes the proof. O

Proposition 3.11. Let M be a smooth manifold with parallel Ricci curvature and nonnegative
sectional curvature where M is either closed or My x RP. Let X2 be closed submanifolds moving
by mean curvature flow in M fort € [0,to). If there exist a sequence (j,t;) € ¥y, X [0,t0) such
that x; — xg and t; / to as j — oo, then

(28> @(M,xo,to) > 1.

Proof. Recall the following well-known short-time asymptotic expansion of heat kernel: on
a complete n-dimensional Riemannian manifold N there are smooth functions ¢;(x,y),i =
0,1,2, ..., defined on (N x N)\{(z,y) € N x N : z is in the cut locus of y} with

$o >0, ¢o(z,7)=1

and when ¢t — 0
_n 7,.2(1.’ y) - )
(29) K(x,y,t) ~ (4mt) "% exp ( —— 2 ) > dilw, )t
i=0

on any compact subset of (N x N)\{(z,y) € N x N : z is in the cut locus of y} uniformly,
where r(x,y) is the distance function on M. Note that x is in the cut locus of y if and only if
y is in the cut locus of = (cf. [2], [13]).

On the closed submanifold ¥, by Li-Yau’s heat kernel upper bound [18] for complete Rie-
mannian manifold with nonnegative Ricci curvature, for any r > 0

tli/r% S (4m(to — t))g K(x,x0,t0 — t)du(x)
- 2
= Cth/% S\ Bag (1) VOl(ga?o(\;t)(ji—t)) P <_m> ()
sapm [ -pie (—W) du(z)
(30) < C1Vol(%) lim (to — £)7% exp (—5(75;"2_”) =0

where C' and C; denote positive constants depending only on M. When deriving (30), we
have used that the volume of By, (v/to —t)) is bounded from below by a constant multiple of
(to — t)# as to —t — 0 and the volume of ¥ is decreasing in ¢ along mean curvature flow.
Choose r small enough so that By, (r) does not intersect the cut locus of zg in M. By the heat
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kernel expansion (29) for small time, we see from (30) that

O(M, 20, t0) = lim | (47 (to — 1)) K (x, 0, to — t)dpu(z)

/10 Jx
= lim e (47 (to — 1))2 K (z, 0, to — t)du(z)
= lim - (47(to — )2 exp ( (i x% ) ¢o(w, xo)dp(x)

since ¢ is continuous and ¢(zg, zp) = 1.
Along the mean curvature flow, ¥, is immersed for each t; < ty. Then set

o Vol(2y; N By, (p))
m; = lim —
p—0 Wn P

where wy, is the volume of the unit ball in R™. Note that (31) holds if zo, ty are replaced by z;, t;
respectively. Applying (31) at (z;,t;) and using the standard fact that the Gaussian den81ty is
equal to 1 on each of the m; sheets of the immersion at z;,

@(M,xj,tj) =mj >1
and m; = 1 if 3, is embedded at z;. Now the upper-semicontinuity of © yields
O(M, xg,t9) > limsup O(M, z;,t;) > 1
Jj—oo

and we finish the proof. O

3.6. Bounds on Area Ratio and Monotonicity Formula. On a complete manifold with
nonnegative Ricci curvature, the heat kernel has upper and lower bounds in terms of distance
function between points and volume of geodesic balls, due to the well-known work of Li and
Yau. In this section, we show that the heat kernel bounds and Hamilton’s Harnack inequality
imply an upper area bound for mean curvature flow, and the upper bound on heat kernel and
the monotonicity formula for a time varying test function, which mimics Brakke’s spherical
shrinking test functions, produce a lower area bound for the flow. We observe that the upper
bound, which involves the volume of geodesic balls of radius /fy arising from the heat kernel
estimates, tends to O when ty grows to infinity, provided ¥ has nontrivial Euclidean component
in M = M; x RP. The parabolic maximum principle applied to the coordinate functions in the
RP-directions then shows that 3 must stay in a bounded region of M. So the positive lower
area bound prevents the flow from admitting long time smooth solution.

Proposition 3.12. (Upper Bound on Area Ratio) Assume that M is a smooth manifold of
dimension n + k with nonnegative sectional curvatures and parallel Ricci curvature and M is
either closed or M = My x RP as before. Let ¥ be smooth mean curvature flow of immersed
closed n-dimensional submanifolds in M. Then for all zog € M and p € (0,2+/to) the estimate

(32) sup Vol(¥N By, (p)) < Cp"
[to—4p?,to—p?)

holds for some positive constant C' depending only on ¥g,tg and M.
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Proof. Under the curvature assumption, we have seen

d
at Jy ot =0

/Cp(ffovto) S/ (I)(l‘o,to)
> Yo

Since Ric(M) > 0, the heat kernel estimates in [18] read as

Ciexp <—%> Cyexp (—%)
< K(l‘a zo, t) <
VOI(Bmo(\/%)) VOI(Bmo(\/E))
for ¢ > 0 and some positive constants C7,Cs which only depend on the dimension of M.
Therefore, for all p with 4p? < to and t € [ty — 4p?, to — p?) on X N By, (p), the backward kernel
can be estimated from below as

4 k k 2 4 b
CID(xo to) > Mexp _T (-’L’,(L‘O) > Cl( 7T) P e_%‘
’ Vol(By, (2p)) 3(to —t) ) = Vol(Ba,(2p))
It then follows

and in particular

(33)

1 Vol(By, (2
Vol(XN B (p) < GSW/E@(%J())

1 Vol(B,, (2p))/
< e3 . T
=~ pk EO (OytO)

k

Vol(Ba, (2p)) / (4mto)2 ( r2(:c,xo)>
< C : P\~
= P oy Vol(Bry (Vi) TP\ Bt

Vol(Buy(20)) o

ok Vol(By,(v/t0))
< C(to, X0, M)p"

(34)

IN

C VOI(E())

where we have used Bishop’s volume comparison theorem for manifolds with nonnegative Ricci
curvature to estimate

Vol(By, (2)) < w42+ p
where the right hand side equals the volume of the Euclidean ball of radius 2p. g

The weighted monotonicity formula for mean curvature flows in the Euclidean space (cf. [9]
and [1]) generalizes to the Riemannian setting.

Proposition 3.13. (Weighted Monotonicity Formula) Let M be a complete manifold of dimen-
sion n+ k with a Riemannian metric g. Let X2 be a closed n-dimensional submanifolds evolving
by mean curvature flow in (M,g). Fix a point (xo,tg) in M x R. For any smooth function f
defined on X, t < tg

2
d 6f DLQ)(:EQ to)
L o = [ (2 =AF) @y — [ [H- )| £
dt /2f (o) /2 <0t f> (ooto) /2 ‘ e

Da®(, Ds®(, gaﬁq)(x to)
35 . af <DaD o, . (z0,t0) B (xo,t0) 0,to >
( ) /Efg o oto) (I)(zo,to) 2(t0 - t)
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where a, B are the indices for a basis normal to . If the sectional curvature of (M,g) is
nonnegative and the Ricci curvature is parallel and M is either closed or My x RP, then

2
d D72,
8 5 [ I%e < [ (5 - A7) P - [ ‘H—(”O
2 > :Bo,to

Proof. Since ¥ satisfies the mean curvature flow equation (??) and K (x, zg, to — t) satisfies the
backward heat equation, one uses the chain rule to compute

fé(xo,to)

d¢(:)§ ,t ) aCI)(x ,t )

=k (dn(to — )2V K(z, x0, to — 1)
— (4n(to — £))7 AnK (2,20, t0 — £) + Dy ) - H
= _Q(tok—t)cp(mo’to) =AM P 14,10) T DP(0,10) - H-
Recall that the area element du; of ¥ evolves along mean curvature flow according to the
equation

0

d — H|? dy,.
S0 = |H|” dpy

We can then write

d af
dt/ fé(xo,to) :/ <8t Af) xo,t0)+/ (I)(xo,to)Af_/ ’H‘Qf(b(xo,to)
Y b)) ¥

k
—_— i) — i) d -H
(37) 2(to — 1) /Zf (zo,t0) /EfAM (zo,to) +/EfD (zo,to)

The ambient Laplacian Ajp; and the induced Laplacian A on ¥ are related by
= AP, 1) + 9" DaDa® (1) — DOy 1) - H

AM P (z,t0)
where as before a, 3 denote the indices for a basis of TS, We also notice that
2
Do, , 9P Do ® (0 100 D3P (20 4
H-— 5 (zo,to) Dy 10) = ‘H|2 D 10) — 2D 1) - H + a go, 0) (z0,t0)
(x(),to) (zo,to)

and since X has no boundary by Green’s formula

/fA(I)($07tO) :/Cb(zo,to)Af'
z by

Substituting these formulas into (37) yields (35). Now (36) follows from Hamilton’s matrix
Harnack estimate [10] because under the curvature assumption on the metric and the assump-
tion on M the integrand of the last integral in (35) is pointwise nonnegative. (]

Proposition 3.14. (Lower Bound on Area Ratio) Let 3, be n-dimensional closed submanifolds
evolving by mean curvature flow in an (n + k)-dimensional manifold M fort € [0,ty). Assume
that M 1is either a closed manifold or a direct product of a closed manifold with some Euclidean
space and M has nonnegative sectional curvature and parallel Ricci curvature. If there are
rj € ¥y; and v; — o as t; — to, then for any a € (0,1) there exists a positive constant
C(a,n, M) such that for all p? in [0, min{rg, 2£¢,, 27 (M)}),

(38) Vol(Eto_ﬁpz N By, (p)) > Ca,n, M)p"
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where ¢ is a positive constant which depends on n,k, M and ro, (M) are positive constants
depending on M.

Proof. We seek a time dependent test function which is a nonnegative subsolution to the heat
equation on ¥ and has support in geodesic balls. Let us first recall some standard results about
distance function on Riemannian manifolds (see [15] for example). For each z¢ let r(x,zg) be
the distance function and define

o(x,x0) = r*(x, 20).
Assume the sectional curvature of M satisfies

—a®? < K <P

for some nonnegative constants a,b in the geodesic ball B, (r1) where r < o5 if b > 0. Then
¢ is smooth on By, (r1) and its Hessian satisfies

cos(br) 1
< — <
brsin(br) < 2Vd<p(v,v) < ar

for any unit tangent vector v € T, M where r = r(z,x0) < r1. Therefore there exists a positive
number rg < rq1, which may depend on a and b, such that for all » < ry the following inequalities
hold on By, (7o)

e[lT' _"_ e—ll?"

ear —_ e—ar

(39) 1 —20%r2 < —Vdp(v,v) < 1+ 2a*r2.

1
2
Now we modify Brakke’s spherical shrinking test function in the Euclidean case [1] by setting

3
(1 — —“0(35’“);6(75_150)) if it is nonnegative

f(x, @0, t,t0,0) =
0 otherwise
where c is a positive constant which will be determined later. Note that f € C2 with support
in the ball By, (\/0? + c(to — t)) which we require to be contained in By, (r¢) in order to have
(39).
Along mean curvature flow,

af _of

dt ot
and when f is restricted to any immersed submanifold >;

Apf=As,f+9DoDgf —Df -H

+Df-H

So we are led to

d _of o
(dt—Azt)f = S = Auf+gDaDsf

3 .2
= ﬁfS (—C—FAM(,O—gaﬂDaDﬂgp).

The bounds on the Hessian of ¢ in (39) imply
Ayro — g*°DoaDgp < (n+ k) (2 + 4a%r%) — k(2 — 46%?)
= 20+ 4r%((n + k)a® + kb?).

Then by setting
¢ =2n+ 41§ ((n + k)a* + kb?)
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d
(dt —A2t> f=<o.

Applying the weighted monotonicity formula (36) to the function f defined above, we have

d
dt/EfCI)(mO’tO) S 0

Jim /Z £ (2,1 g 10y i)

exists. For any a € (0,1) and ao? < tg, there is jo € N such that tj >ty — ac? for all j > jo.
Integrating the above differential inequality over (tg — o2, tj), we see

(10 [t [ P
L

2

we see that

Thus

tg—ao
Note that the nonnegative continuous function f is defined globally on M. By the arguments
in the proof of Proposition 3.11,

(41) f(xg,t5) < f(xj,t;) my = tli/%/zf($,t)¢’(zj,tj)

where m; is the volume density of X, at z;. For each pair (xj,t), we also have

d
dt/Ef%j,tj) <0.

Thus for any fixed ¢ < t; the inequality below holds and the limit therein exists
(42) im [ 50000 < [ 1000,
Combining (41) with (42), we obtain

f(.l'],t]) S 5 f(x7t)q)(xj,tj)'
t
Now by letting t; " to in the inequality above, we conclude
(43) f(zo,t0) < Jim F®(wo.t0)

3./"to S,
By (40), (43) and the fact
f (o, 0, t0,t0,0) =1
we have

(44) 1 < / fé(xo,to)'
Y 2

tg—ao
Since M is compact or M = M; x RP, there exist positive constants Cy(M) and 7(M)
depending only on M such that

(45) Vol(B, (1)) > Cy(M)7™*
for all x € M and 7 < 7(M). Then the heat kernel upper bound yields

ok
(I)(ffo to)(x7t0 - (102) < C(ao' )2 < C;
, Vol(B,,(Vao?)) ~ Ciazom
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for \/ao < 7(M). Applying the estimate above to (44) and noting that
0<f<(1+ca)
and f is supported in By, (Vo2 + cao?) at t = tg — ao?, we obtain

Craz o™
m S VOl(Eto—a0'2 N BI()(\/ 1+ COCO')).

To simplify the expression, we set p = /I + cao. It follows that ao? = ﬁpz Finally, we
recall all restrictions on p:

(i) ac? <ty implies  p? < ¢,

(ii) ao® < 7(M) implies p? < <7 (M)

(i13) (1 +ca)o? <ry implies p? < rg

~ 2 - 14 14

This means p* < min{rg, ==tg, =227 (M)}. O

3.7. Mean Value Inequality. Let ¥ = F(X,¢) be immersed submanifolds moving by mean
curvature flow in M for ¢ € [0,T). There are two ways to obtain continuous functions f on X.
One is by restricting continuous functions on M to %, so the functions are defined extrinsically.
The other one is by taking continuous functions on ¥ x [0,7) and at the points where ¥ is
immersed but not embedded the functions may take different values to ensure continuity, so
the functions are defined intrinsically. To be more precise, if F(p,t) = z9 = F(q,t) for p # g
there exist neighborhoods D, and D, of p and ¢ in ¥ respectively such that F(-,t) embeds
D, and D, into M. When f is regarded as a function on 3, its continuity and its value
at xg are determined by the neighborhoods D, and D,. Extrinsically or intrinsically defined
functions arise naturally when we study mean curvature flow. On an immersed submanifold
Yy, if 9 € ¥y, is an immersed point, then there exist at most my, points p in X satisfying
F(p,to) = x¢ where my,, is the volume density of ¥;, at xo and it counts the number of sheets
containing x( inside a small ball.
The arguments in the proof of Proposition 3.11 let us to conclude

Lemma 3.15. Let ¥ = F(X,t) for t € [0,T) and M be as in Proposition 3.12. Let f be a
continuous function on ¥ x [0,T]. Then for any ty € (0,T) and any xy, € ¢,

(46) f(p1,to) + .o + f(Pmy, » to) = lim / f(@, )@z, 10)d1(2)
t/to )y
holds, where my, is the volume density of ¥y, at x4, = F(pj,to) for j =1,...,my,.

Proposition 3.16. (Mean Value Inequality) Let M be a smooth Riemannian manifold with
parallel Ricci curvature and nonnegative sectional curvature. Assume that M is either closed or
a direct product My x RP of a closed manifold My with a Euclidean space RP. Let ¥ = F(X,t)
be closed submanifolds evolving by smooth mean curvature flow in M fort € [0,T). Let f be a
function on X which is a subsolution of the heat operator on .

d
<dt—AE>f§O

for all't € [0,T). Then there is a positive constant T(M) depending only on M such that for
all p € (0,min{7(M),/to}) and to < T such that

S cQa) v
47 Fpito) < —— / / 12
7 ; (ps:to) P2 Jio—p2 J5nBay (o)
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where p; are distinct points in ¥ with F(p;,to) = x¢ and my, is the volume density of ¥, at
xg.

Proof. We observe that for any smooth function ¢ on M x (tg — p?, o)
i - A 2.2 _ 2 i — A 2 2 i —A 2 .
(267) = & (5 =) P+ f2 (5 D)6 —8f6V0- vy

dt
d 2
Cﬁ‘ﬁ>¢

+8f%|Vo|®

IA

202 |Vf* + f?

d
(F-)#

by using the fact that f is a subsolution and Young’s inequality. Choose ¢ such that

+80f[Vol|VF

< f?

0<¢<1 in M x(to— p% to)

. 2
p=1 in By, (5) x (to — &, t0)
#=0 in M\By(p) x (to — p* to)

and
2 | 12 2|09
pIDG| + p* [D°¢| + p* | 55| < Co(M)
for some constant Co(M) which depends on (M, g). For ¢ so chosen, we have
d 2,2y _ Co o
—- _ < 20
(18) (5-8) Py <2
in M x (tg — p?,to) and
(49) &) () =0
dt a

. 2
in By, (5) x (to — & to).
Since Ric(M) > 0, it follows from the heat kernel upper estimate
2
t) < C(TL+]€) exp <_’I“ (:Cam(]))
/Vol(By, (vio — 1)) 5(to — 1)

K($7 xo,to —
)
that as long as p < 7(M), where 7(M) is defined in (52), and to — t > p?/4, then

C(M)

(50) K(l‘,$0,t,t0) S pn+k

holds for some positive constant C'(M) depending only on M.

We now estimate the backward kernel by decompose By, (p) X (to—p?, t0)\Baz, (5) % (to— %, to)
into two disjoint regions. First, when p?/4 < tq —t < p? it follows directly from the heat kernel
upper estimate (50) that

[NIES
Q

(M)
P

CD(xo,to)(:Eat) = (47’[‘(t0 - t)) K(l‘a antatO) <
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Second, when 0 < to — t < p?/4,

Clto—t)* r2(x, x0)
a0 S B V1) T <_5(750—t)>
(M) P’
[CED (‘zo@—t))
C(M)
< =
p

because \/tg — t < p/2 < 7(M). In the last step above, we have applied the following elementary
fact to y = p?/(to — t): for any ¢ > 0, there exists a positive constant C(n, c) such that for all
y > 0 the inequality below holds

y" < C(n,c)e¥.

Recall f2¢? is supported in M\ By, (p) X [to — %, to). By the weighted monotonicity formula
(36) together with (48), (49) and the estimate on @, ;) above, we have

d / 2,9 Co(M)C (M) / 2
@ B, o < :
dt Js F2" @ (ap,t) P2 5By (0) f

Noting ¢(z,to — p?) = 0 for all z € M, integrating the inequality above over (g — p?,t) yields

Co(M)C(M) [* 2
/’E (‘To,tO) pn+2 to_p2 EﬂB:co (P)

Since ¢(xo,tp) = 1, by Lemma 3.15 we obtain that for any p € ¥ with F(p,tg) = xo

mxo mxo

D FPpito) = > F(pito)d* (w0, to)
=1 =1

= i 262D
tlfng)/zf ¢ (a:o,t())

Co(M)C(M) (o 9
n—+2 f '
p to—p? Y XNBg, (p)

The proof is now complete. O
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4. A MAXIMUM PRINCIPLE FOR EVOLUTION EQUATIONS

We discuss a useful maximum principle for evolution equations on a complete Riemannian
manifold with time dependent metrics. The theorem below is due to Ecker-Huisken [8] which is
based on an earlier work of Liao-Tam [16] on the maximum principle on complete noncompact
manifolds with time independent metric.

Theorem 4.1. Let M be a manifold with Riemannian metrics g(t). Suppose that

(51) a

< a < oo.

g

and the following volume growth condition holds:
(52) vol(B,(p), g(1)) < e )

for some uniform constant ¢ > 0 and some p € M, B(r,p) is the geodesic ball at the t. Let
feC'M x[0,T))NC=®(M x (0,T]). Assume

0
(53) angg(t)f—l-a'Vf—i-Bf
where |a] < < oo and |B| <7y < oo on M x [0,T]. Assume f <0 on M x {0} and
T
(54) / / e ™o @Y £12(2)dptgpy dt < 0o
0 M

for some § > 0. Then f <0 on M x [0,T].

Proof. From (51), ¢g(t) are uniformly equivalent to g(0): 3C1, Cy depending on T" such that
(55) C29(0) <g(t) < Crg(0).

Following Liao-Tam, fix n with 0 < 7 < min {7, 1/64c,1/32a,1/325}. Set

_ 97”3(5) (y,p)
4(2n —s) '
where 6 is yet to determined and 74)(y, p) is the distance between points y and p in g(s). Then

h<y7$): O<3<77

@ . _97“3(5) (y,p) _ Org(s) dTg(s)
ds  4(2n—s5)2 2(2n—s) ds
— oV — Org(s)  dry(s)
2(2n —s) ds
For any fixed curve with length I(s) measured in g(s), we have
W) _|d [ e < L
S <=
‘ 7 ds/ g(C'(1),C"(1))dT| < 2al(s)

where we have used (51)

In particular,
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Therefore, for § = %, n < i,
d
(56) < =07V + 07 a| VA (20 — 5) < <2|VA[.

As in [16], for K > 0 define fx = max{min(f, K),0} and take a smooth time independent
function ¢ with compact support. For 0 < e < 7, by (53) we have

n o n n
OS/ ebs/ ¢2€th <A —f)—i-ﬂ/ ebs/ (Z526th’Vf‘+’Y/ ebs/ ¢2€thf
€ M ds € M € M
where b will be chosen later and we have used fx f > 0. Integrating by parts,

/677 et /M P fRAf = - /:] e /M SIS

- / "ot /M @2 fr VAV f -2 / Tt /M o VoV f
= I+0I+10

Observe
n
L= [t [ s
€ M
1 K —bs 2 _h 2 g —bs 2 _h 2 2
L o A S\ L el B S\
€ M € M
1 (7 n
Y R R A S
2 € M € M
Note
K, iff>K
Kk = f, if0<f<K
0, iff<o0
Hence
Ofk B
(57) o

whenever 0 f,/0s exists, and we have by using (57)

0 0 0 del
—thK£ = —6th%+£{€th(fK—f)}— Tifx(fK—f)
0 0
(59) S L )

Note fx is uniformly Lipschitz continuous on compact subsets of M x [0,T]. Note

0
— <
‘85\@’ < na,/g
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where /g = /et g. Therefore, from (58)

o R e W, + [ 5 (e—‘” /| ¢2eth(fK—f)>

s [le / et st~ 1)~ [ / o2 fic(fic f

AL o) S Lo o

sy [ [ oG e [ el - f>
s [T [ Gt [T [ - 1) f
—6—8/ p*el 2 n+; na—b/ / Pe th

vy [ [ o thf+ “ [ |
+(b— na) / 6—8/ o*e" fre(fx — f)
et [ ek Sj— [ [ e

+/ 6—5/ ¢thf§<+e‘s/ ¢2€th(fK—f)S 6

by noting fx(fx — f) < 0 and taklng b > 2na + 4v. It then follows from (56)

/—bs/ ¢2hf /¢2hf2:j_,y/ /¢2hf2
(59) / /¢2 "fi|VR? 4 e /¢2 " frc(fr — f)

We also esitmate

ﬁ/enebs/M¢26th|Vf] < i/ﬁ"ebs/M(bzeth‘erﬁz/ / 2P

We therefore have

0= [len [ e (Af—)Jrﬁ/ R I Y
= v [Cen [ gl et [ g g [Ter [ g
wy [Tete [ vy
[ler [ gk [ [ g
o

n - =1
w2 [Cen [ vops -
€ M

IN

S=e€

IN

S=n

s=¢

IN

2eh f2
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Letting € — 0, using fx = 0 at s = 0 because f <0 at s =0 and fx(fx — f) <0, taking ¢
to be the cut-off function which is 1 in B%(p), 0 outside B}, ;(p) and 0 < ¢ < 1,|V¢|” < 2, we
have

e bn

n n
00) G [ i< [Tet [ e [t [ et 2
Br) ey 0 Bl () 0 B, ())\BY(»)

Since 0 < 7 < min(T,1/64c,1/32a,1/325), one checks h(y,s) < —2cr?(y,p) and h(y,s) <
—672(y,p) for all 0 < s < 7. Since f?{ < K?, we have, for each fixed K > 0, from the volume
growth condition (52) that

n
(61) lim / e—bS/ ehfz =0
R=o0 Jo BY,,(0\B%(p)

Note 0 < |V f|? = |[Vfk|? < |Vf|? and let R — oo in (60)

—b
(62) I A /0” /Meh(rwr?—wm?)@o

2 Ju

5=
by (61) and the assumption (54).

Letting K — oo, we see f& — (f1)?, and |Vfk|?> — |Vf]? for all s. By the dominated
convergence theorem,

/ e (f+)2[omy < 0
M

hence f* = 0 at t = . Since 7 is arbitrary with 0 < 7 < min(7,1/64K,1/325§) we conclude
f<0on M x [0,T], by an inductive argument. O

We now apply this maximum principle to MCF.

Theorem 4.2. Let Fy : M"™ — R" be a smooth MCF of a complete hypersurface with bounded
C?*“-norm. Suppose the initial hypersurface Fo(M) has nonnegative mean curvature. Then the
smooth solution to MCF from Fy over [0,T] has nonnegative mean curvature, where T' depends
on n and the initial curvature bound.

Proof. The equation we deal with is

9 AR
(2 8)n-apw

Because C%“-norm of Fy is bounded, the initial surface has bounded curvature and sup,;, |A| <
co- One can bound sup,,, |A| in terms of ¢ on some small interval [0, T]. Since Ricyy, > —2|A|?,
the uniform volume growth condition (52) holds on [0, T as Ricci curvature has a lower bound
on this interval. From the parabolic theory, we have

sup t' " *|VH|*> < O(n, T, co, | Fo||c2.2)
My

which in turn, together with the volume growth condition, implies (54). Recall
0
agij = —QHhij.

So (51) holds. Now with b = |A|? in (53), Theorem 4.1 implies the desired result. O
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