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LECTURE NOTES ON MEAN CURVATURE FLOW

JINGYI CHEN

1. Fundamental equations for submanifolds

Let Σ be a n-dimensional manifold and M be an (n + k)-dimensional manifold with a Rie-
mannian metric g. Let F : Σ → M be an smooth immersion. The induced metric via F on
Σ is h = F ∗g. Denote the Levi-Civita connections of g and h by ∇ and ∇, respectively. Let
TΣ, NΣ be the tangent bundle and the normal bundle of Σ in M respectively. For each p ∈ Σ
and X, Y ∈ TΣ, the second fundamental form of Σ in (M, g)

A : TΣ× TΣ→ NΣ

is given by the Gauss formula:

(1) ∇XpY = ∇XpY +A(Xp, Yp).

The following are some of the most important forlumas/equations for submanifolds.
Gauss’ Equations:

(2) 〈R(X, Y )Z, W 〉 = 〈R(X, Y ), Z, W 〉+ 〈A(X, Z), A(Y, W )〉 − 〈A(Y, Z), A(X, W )〉
for all tangent vectors X, Y, Z,W ∈ TpΣ.
Weingarten equations:

(3) ∇Xν = −Bν(X) +DXν

where D is the connection on NΣ and B : TΣ×NΣ→ TΣ is the sharp operator defined by

g(Bν(X), Y ) = g(A(X,Y ), ν)

Codazzi’s equation: let νn+1, ..., νn+k be a local orthoformal section of NΣ, then

〈R(X,Y )Z, ν〉 =
(
(∇XAi)(Y, Z)− (∇Y Ai)(X, Z)

) 〈νi, ν〉(4)

+Ai(Y, Z)〈DXνi, ν〉 −Ai(X, Z)〈DY νi, ν〉
= (∇̃XA)(Y, Z)− (∇̃Y A)(X,Z)

where ∇̃ is the covariant differentiation on Hom(TM × TM, NM) determined by ∇, D.
Ricci equation:

(5)
(
R(X, Y )ν

)⊥ = A(Bν(X), Y )−A(Bν(Y ), X) +DX(DY ν)−DY (DXν)−D[X,Y ]ν

The mean curvature vector of Σ in M is the trace of second fundamental form.
The second fundamental form for the immersion F : Σ→ M is given in local coordinate by

(6) A = hα
ij

∂F

∂xi
⊗ ∂F

∂xj
⊗ να
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2 JINGYI CHEN

with α = n + 1, ..., n + k, where xi’s are coordinates on Σ and να’s form a basis for NΣ. The
coefficients are given by

(7) hα
ij =

∂2Fα

∂xi∂xj
− Γk

ij

∂Fα

∂xk
+ Γα

βγ(F )
∂F β

∂xi

∂F γ

∂xj
.

In particular, when M is the euclidean space R
n+k, the mean curvature vector of Σ is

(8) H = ΔF

where Δ is the Laplace-Beltrami operator of the induced metric. To see ΔF is indeed normal
to Σ, we compute

〈ΔF, ∂lF 〉 = 〈√g−1∂i(gij√g∂jF ), ∂lF 〉
= 〈gij∂2

ijF, ∂lF 〉+ 1
2
〈gijgst∂igst∂jF, ∂lF 〉 − 〈gis∂igstg

tj∂jF, ∂lF 〉

= 〈gij∂2
ijF, ∂lF 〉+ 1

2
gst∂lgst − gis∂igsl

=
1
2
gij∂l〈∂iF, ∂jF 〉 − gij〈∂jF, ∂2

ilF 〉
= 0.

Therefore, ΔF ∈ NΣ. Here we have used the useful formula

∂l detC = detC · cij∂lcij

for any invertible matrix C = (cij).
A submanifold Σ is called a minimal submanifold in M if H ≡ 0. In particular, if Σ is a

minimal submanifold in a euclidean space, then its coordinates are harmonic functions on Σ by
(8), hence there does not exists any compact minimal submanifold in euclidean space, except
points.
When Σ is a hypersurface in R

n+1, locally it is the graph of a smooth function f : Ω ⊂ R
n →

R. The unit upward normal vector ν is given by

ν =
(−Df, 1)√
1 + |Df |2

and the mean curvature vector is

H = div

(
Df√

1 + |Df |2

)
ν.

The first variation formula for volume reads:

d

dt
V (Σt)

∣∣∣∣
t=0

=
∫
divX = −

∫
H ·X

where X is an arbitrary vector field with compact support generated by a 1-parameter family
of diffeomorphisms ϕt of the ambient space:

X =
dϕt

dt

∣∣∣∣
t=0

and Σt = ϕt(Σ), ϕ0 is the identity map.
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2. Mean curvature flow and Geometric evolution equations

2.1. Mean curvature flow. If F̃ : Σ× [0, T )→ M is smooth and satisfies(
∂F̃

∂t

)⊥
= H(F̃ )

we say F satisfies the mean curvature flow. One can show that there exists a t-dependent family
of tangential diffeomorphisms φ such that F = F̃ ◦ φ satisfies

(9)
∂F

∂t
= H(F )

and we will always use this equation to refer mean curvature flows (MCF).
If Ω is a domain in R

n+1 and u : Ω× [0, T )→ R is a smooth function which satisfies

(10)
∂u

∂t
=
√
1 + |Du|2 div

(
Du√

1 + |Du|2

)
then the time dependent graph Σ = {(x, u(x, t))|x ∈ Ω, t ∈ [0, T )} evolves by MCF. This can
be seen as follows (

∂F

∂t

)⊥
=

(
∂F

∂t
· ν
)

ν

=

(
(0, ut) · (−Du, 1)√

1 + |Du|2

)
ν

=
ut√

1 + |Du|2 ν

= div

(
Du√

1 + |Du|2

)
ν

= H.

Expanding (10), we have

(11)
∂u

∂t
=
(

δij − DiuDju

1 + |Du|2
)

DiDju.

When n = 1, the graphical MCF (11) reduces to

(12)
∂u

∂t
=

uxx

1 + u2
x

=
∂

∂x
arctanux.

Example 2.1. A special solution to (12) is the so-called grim reaper given by

u(x, t) = − log cosx+ t, x ∈ (−π/2, π/2).

This solution is not defined on entire domain R and it translates in the y-direction by the unit
vector (0, 1).

Example 2.2. Let Σt be the round sphere ∂Br(t)(0) in R
n+1.

r(t) =
√

R2 − 2nt
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solves the O.D.E. on (−∞, R2/2n)

r′ = −n

r
, r(0) = R.

The MCF, w.r.t. inward pointing normal vector, is reduced to the above O.D.E., it shrinks to
a point at time R2/2n. So

F (x, t) = F (x)

√
1− 2nt

R2

is a self-similar solution.

Example 2.3. Let Σt be the spherical cylinder ∂Bn+1−k
r(t) (0)× R

k in R
n+1. The MCF reduces

to

r′ = −n− k

r
, r(0) = R.

The solution is
r(t) =

√
R2 − 2(n− k)t

for t ∈ (−∞, R2/2(n− k)). This is an ancient solution as it exists from −∞.

MCF equation for F : Σ× [0, T )→ M can also be written as

(13)
∂F

∂t
= gij

(
∂2Fα

∂xi∂xj
− Γk

ij

∂Fα

∂xk
+ Γα

βγ

∂F β

∂xi

∂F γ

∂xj

)
∂

∂yα

where g is the time dependent induced metric and Γk
ij its connection and Γ

α
βγ is the connection

on M . This is a quasilinear parabolic system, and its short time existence and uniqueness is
guaranteed when Σ is compact and smooth [17]. Note that for each fixed t, the right hand side
of (13) is the tension field of the isometric immersion F : (Σ, g)→ (M, h) and when the tension
field vanishes F is a harmonic map.

2.2. Basic evolutions equations for geometric quantities. We consider the mean curva-
ture flow from a closed n-dimensional manifold in a m-dimensional Riemannian manifold M
with a Riemannian metric. Given an embedding F0 : Σ → M , we consider a one-parameter
family of smooth maps Ft = F (·, t) : Σ → M with corresponding images Σt = Ft(Σ) are
embedded submanifolds in M and F satisfies the mean curvature flow equation:

(14)

{
d

dt
F (x, t) = H(x, t)
F (x, 0) = F0(x).

Here H(x, t) is the mean curvature vector of Σt at F (x, t) in M . Denote by A the second
fundamental form of Σt in M and the Riemannian metric on M by 〈·, ·〉. In a normal coordinates
around a point in Σ, the induced metric on Σt from 〈·, ·〉 is given by

gij = 〈∂iF, ∂jF 〉
where ∂i (i = 1, · · · , n) are the partial derivatives with respect to the local coordinates. In the
sequel, we denote by Δ and ∇ the Laplace operator and covariant derivative for the induced
metric on Σt respectively. We choose a local field of orthonormal frames e1, ..., en, v1, ..., vm−n

of M along Σt such that e1, ..., en are tangent vectors of Σt and v1, ..., vm−n are in the normal
bundle over Σt. We can write:

A = Aαvα

H = −Hαvα.
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Let Aα = (hα
ij), where (h

α
ij) is a matrix. By the Weingarten equation, we have

hα
ij = 〈∇ivα, ej〉 = 〈∇jvα, ei〉 = hα

ji

where∇ is the Levi-Civita connection on M . The trace and the norm of the second fundamental
form of Σt in M are:

Hα = gijhα
ij = hα

ii

|A|2 =
∑
α

|Aα|2 = gijgklhα
ikh

α
jl = hα

ikh
α
ik.

We first derive the evolution equation of the induced metric.

Lemma 2.4. Along a smooth MCF, we have

(15)
∂gij

∂t
= −2〈hij , H〉

Proof. Write ∂i = ∂iF and gij = 〈∂i, ∂j〉. Then
∂gij

∂t
= 〈∇H∂i, ∂j〉+ 〈∂i,∇H∂j〉
= 〈∇∂i

H, ∂j〉+ 〈∂i,∇∂j
H〉

= −2〈H,hij〉.
Here we have used [∂tF, ∂i] = 0. �

Consequently, volume decreases along mean curvature flow:

Lemma 2.5. Let Σ be a compact submanifold and let F : Σ× [0, T )→ M satisfy MCF. Then

d

dt

∫
Σ

√
g dx = −

∫
Σ
|H|2√g dx.

Lemma 2.6. Along MCF, we have
∂

∂t
hα

ij = Hα
,ji −HβRβijα −Hβhβ

jlh
a
il − hβ

ij〈vβ,∇Hvα〉.
Proof. Set ei = ∂iF . We have

hα
ij = −〈∇eiej , vα〉.

Then we have
∂

∂t
hα

ij = 〈∇H∇eiej , vα〉+ 〈∇eiej ,∇Hvα〉
= 〈∇ei∇Hej , vα〉 − 〈R(H, ei)ej , vα〉+ 〈∇eiej ,∇Hvα〉
= 〈∇ei∇ejH, vα〉 − 〈R(H, ei)ej , vα〉+ 〈∇eiej ,∇Hvα〉
= 〈∇ei(∇T

ej
H +∇N

ej
H), vα〉 − 〈R(H, ei)ej , vα〉+ 〈∇eiej ,∇Hvα〉

= 〈∇N
ei
∇N

ej
H, vα〉 −HβRβijα − 〈∇T

ej
H,∇eivα〉+ 〈∇eiej ,∇Hvα〉

= Hα
,ji −HβRβijα − 〈∇T

ej
H,∇eivα〉+ 〈∇eiej ,∇Hvα〉

= Hα
,ji −HβRβijα −Hβhβ

jlh
a
il + hβ

ij〈vβ,∇Hvα〉
where we have used ∇eiej = hβ

ijvβ at the center of the normal coordinates of Σt. �
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Lemma 2.7. Along MCF, we have

Hα
,ji = Δhα

ij + hβ
ilh

β
lmhα

mj −Hβhβ
imhα

mj + hβ
ijh

β
lmhα

ml − hβ
imhβ

ljh
α
ml

−∇lRαjil −∇iRαljl +Rillmhα
mj +Riljmhα

ml −Rαβilh
β
lj .

Proof. Let Kijkl be the curvature tensor on Σt and Kαβij be the curvature tensor for D⊥. The
Codazzi equations, the Gauss equation, and the Ricci equation read:

∇kh
α
mn −∇mhα

kn = −Rαmnk

and

Kijkl = (hβ
ikh

β
jl − hβ

ilh
β
jk) +Rijkl

and

Kαβil = (hα
ikh

β
kl − hα

lkh
β
ki) +Rαβil

where R is the curvature tensor of M . We have

∇i∇jH
α = ∇i∇jh

α
ll

= ∇i(∇lh
α
jl +Rαljl)

= ∇i∇lh
α
lj +∇iRαljl

= ∇l∇ih
α
lj + (hβ

ilh
β
lm − hβ

imhβ
ll)h

α
mj +Rillmhα

mj

+(hβ
ijh

β
lm − hβ

imhβ
lj)h

α
ml +Riljmhα

ml

+Rαβilh
β
lj + (hα

ikh
β
kl − hα

lkh
β
ki)h

β
lj +∇iRαljl

= ∇l(∇lh
α
ij +Rαjil) + hβ

ilh
β
lmhα

mj −Hβhβ
imhα

mj

+hβ
ijh

β
lmhα

ml − hβ
imhβ

ljh
α
ml + (hα

ikh
β
kl − hα

lkh
β
ki)h

β
lj

+Rillmhα
mj +Riljmhα

ml +Rαβilh
β
lj +∇iRαljl

= Δhα
ij + hβ

ilh
β
lmhα

mj −Hβhβ
imhα

mj

+hβ
ijh

β
lmhα

ml − hβ
imhβ

ljh
α
ml + (hα

ikh
β
kl − hα

lkh
β
ki)h

β
lj

+∇lRαjil +∇iRαljl +Rillmhα
mj +Riljmhα

ml +Rαβilh
β
lj .

This proves the lemma. �

Then Lemma 2.6 and Lemma 2.7 immediately imply

Lemma 2.8. For the mean curvature flow, the second fundamental form satisfies

(
∂

∂t
−Δ)hα

ij = hα
ikh

β
klh

β
lj − hα

lkh
β
kih

β
lj + hβ

ilh
β
lmhα

mj −Hβ(hβ
imhα

mj + hβ
jlh

α
il)

+hβ
ijh

β
lmhα

ml − hβ
imhβ

jlh
α
ml +∇lRαjil +∇iRαljl

+Rillmhα
mj +Riljmhα

ml +Rαβilh
β
lj − hβ

ij〈vβ,∇Hvα〉.
Now we prove the main result in this section.
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Proposition 2.9. We have

(
∂

∂t
−Δ)|A|2 = −2|∇̃A|2 + 2hα

ij(∇lRαjil +∇iRαljl) + 8Rαβlmhα
ilh

α
im

+2hα
ijh

β
ijRαlβl + 4hα

ijRillmhα
mj + 4hα

ijRiljmhα
ml

+2
∑

α,β,i,j

(hα
ilh

β
jl − hα

jlh
β
il)

2 + 2
∑

i,j,l,m

(hα
ijh

α
lm)

2.

where ∇̃ is the covariant differentiation on Hom(TΣt× TΣt, NorΣt) determined by the covari-
ant differentiation on TΣt and D on the normal bundle, D is the normal connection for the
embedding Σt ⊂ M , and ∇ is the connection on M , R is the curvature operator of M .

Proof. Using the previous lemmas, we have

∂

∂t
|A|2 =

∂

∂t
(gikgjlhα

ijh
α
kl)

= 4Hαhα
ikh

β
ijh

β
kj + 2hα

ij

∂

∂t
hα

ij

= 2hα
ij(Δhα

ij + hα
ikh

β
klh

β
lj − hα

lkh
β
kih

β
lj + hβ

ilh
β
lmhα

mj

+hβ
ijh

β
lmhα

ml − hβ
imhβ

jlh
α
ml +∇lRαjil +∇iRαljl

+Rillmhα
mj +Riljmhα

ml +Rαβilh
β
lj +HβRαjβi)

= 2hα
ij

(
Δhα

ij + 2hβ
ilh

β
lmhα

mj + hβ
ijh

β
lmhα

ml − 2hβ
imhβ

ljh
α
ml +HβRαjβi

+∇lRαjil +∇iRαljl +Rillmhα
mj +Riljmhα

ml +Rαβilh
β
lj

)
.(16)

Covariant differentiation of the curvature tensor leads to the following formula:

∇qRαmnp = ∇qRαmnp +Rαmβph
β
nq +Rαmnβhβ

pq +Rαβnph
β
mq −Rsmnph

α
sq,

and in turn we have

∇lRαjil = ∇lRαjil +Rαβilh
β
jl +Rαjβlh

β
il +Rαjiβhβ

ll −Rmjilh
α
ml,

and
∇iRαljl = ∇iRαljl +Rαβjlh

β
li +Rαlβlh

β
ij +Rαljβhβ

il −Rmljlh
α
mi.

The first Bianchi identity implies that

Rαjβl +Rαlβj = Rαβjl.

It is clear that
Δ|A|2 = 2hα

ijΔhα
ij + 2∇lh

α
ij∇lh

α
ij .

Substituting the last four identities into (16), we get the identity in the proposition. �

2.3. Higher derivatives of the second fundamental form. Let Rm,K be the Riemann
curvature tensors of M,Σ respectively. For simplicity, we will use E ∗ F , for tensors E, F , to
denote any linear combination of tensors formed by contraction on Ei...jFk,...l using the metric.

(17) (∂t −Δ)A = A ∗A ∗A+∇Rm+A ∗Rm
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At the center p of a normal coordinate system of Σt, ∂g(p) = 0. Taking the t-differentiation of
the Christoffel symbols and using the evolution equation of g, we have at p

∂t∇A = ∇∂tA+ ∂t(g−1 ∗ ∂g) ∗A

= ∇∂tA+ g−1 ∗ ∇(A ∗H) ∗A

= ∇∂tA+∇A2 ∗A

= ∇∂tA+∇A ∗A2

Changing order of covariant derivatives and using the Gauss equations, we have

Δ∇A = ∇ΔA+∇K ∗A+K ∗ ∇A

= ∇ΔA+∇(Rm+A2) + (Rm+A2) ∗ ∇A

Therefore, we obtain the evolution equation for ∇A:

(∂t −Δ)∇A = ∇(A3 +∇Rm+Rm ∗A) +∇A ∗A2

+Rm ∗ ∇A+∇Rm+A ∗ ∇A

= ∇A ∗ (A2 +A+Rm) +A ∗ ∇Rm+∇2Rm+∇Rm

Next, we consider the second derivative of A:

∂t∇2A = ∇(∂t∇A) +∇A2 ∗ ∇A

and
Δ∇2A = ∇Δ∇A+∇(∇A) ∗ (Rm+A2) +∇A ∗ ∇(Rm+A2)

Hence, we have

(∂t −Δ)∇2A = ∇(∇A ∗ [A2 +A+Rm] +A ∗ ∇Rm+∇2Rm+∇Rm)(18)
+∇2A ∗ (Rm+A2) +∇A ∗ ∇(Rm+A2)

= ∇2A ∗ f1(∇A, A,∇Rm,Rm) + f2(∇A, A,∇Rm,Rm)

Inductively, for general k, we have

(∂t −Δ)∇kA = ∇kA ∗ f1(∇k−1A,∇k−2A, ..., A,∇k−1Rm, ..., Rm)(19)

+f2(∇k−1A,∇k−2A, ..., A,∇k−1Rm, ..., Rm)

It then follows

(∂t −Δ) |∇kA|2 = 〈∇kA,∇kA ∗ f1(∇k−1A,∇k−2A, ..., A,∇k−1Rm, ..., Rm)〉
+〈∇kA, f2(∇k−1A,∇k−2A, ..., A,∇k−1Rm, ..., Rm)〉
−2|∇k+1A|2

≤ h1(∇k−1A, ..., A,∇k−1Rm, ..., Rm)|∇kA|2
+h2(∇k−1A, ..., A,∇k−1Rm, ..., Rm)(20)

where we have used the inequality 2ab ≤ a2 + b2.
Therefore, if |A|, ..., |∇k−1A| are bounded on [0, T ), T < ∞, and if the ambient space has

bounded geometry, then
(∂t −Δ)|∇kA|2 ≤ C1|∇kA|2 + C2.

By the maximum principle (assume Σ is compact),

d

dt

(
e−C1tmax

Σt

|∇kA|2
)
≤ C2
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This implies

max
Σt

|∇kA|2 ≤ eC1t

(
C2t+max

Σ0

|∇kA|2
)
≤ C(k,Σ0, T ) < ∞.

Hence, if |A| ≤ C on [0, T ), T < ∞, then all derivatives of A are also bounded on [0, T ). The
MCF can be extended to [0, T + ε) for some ε > 0.
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3. Monotonicity Formula

Assume the ambient space is euclidean. Using the standard heat kernel, we introduce

(21) ρ(X, t) = (4π(t0 − t))−n/2 exp
(
−|X −X0|2

4(t0 − t)

)
for t < t0. The following monotonicity formula, due to Huisken, is very useful.

Proposition 3.1. Along MCF, we have

(22)
∂

∂t

∫
Mt

ρ(F, t)dμt = −
∫

Mt

ρ(F, t)
∣∣∣∣H +

(F −X0)⊥

2(t0 − t)

∣∣∣∣2 dμt.

Proof. It is clear that

∂

∂t

∫
Mt

ρ(F, t)dμt =
∫

Mt

∂

∂t
ρ(F, t)dμt −

∫
Mt

ρ(F, t)|H|2dμt

=
∫

Mt

(
∂

∂t
+�)ρ(F, t)dμt −

∫
Mt

ρ(F, t)|H|2dμt.

Straightforward computation leads to

∂

∂t
ρ(X, t) =

(
n

2(t0 − t)
− 1
2(t0 − t)

〈H, X −X0〉 − |X −X0|2
4(t0 − t)2

)
ρ(X, t)

and

∇ exp
(
−|X −X0|2

4(t0 − t)

)
= − exp

(
−|X −X0|2

4(t0 − t)

) 〈X −X0,∇X〉
2(t0 − t)

and

� exp
(
−|X −X0|2

4(t0 − t)

)
= exp

(
−|X −X0|2

4(t0 − t)

)( |〈X −X0,∇X〉|2
4(t0 − t)2

−〈X −X0,�X〉
2(t0 − t)

− |∇X|2
2(t0 − t)

)
.

Note that in the induced metric on Mt

|∇X|2 = n and �F = H,

so we have

(23)
(

∂

∂t
+�

)
ρ(F, t) = −

(〈F −X0, H〉
(t0 − t)

+
|(F −X0)⊥|2
4(t0 − t)2

)
ρ(F, t)

Note

|H|2 + 〈F −X0, H〉
(t0 − t)

+
|(F −X0)⊥|2
4(t0 − t)2

=
∣∣∣∣H +

(F −X0)⊥

2(t0 − t)

∣∣∣∣2
Then the proposition follows. �

3.1. Finite time singularity. In general, MCF develops singularities, i.e., A becomes un-
bounded. In particular, MCF of any compact submanifold in the euclidean space must develop
singularity in finite time. More generally, we have

Theorem 3.2. Let Mm = Nn × R
p, where N is compact. Let Σt evolve along MCF where Σt

is compact and dimΣt > n. Then the MCF becomes singular in finite time.
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Proof. Define a function f : N × R
p → R by

f(x, y) =
1
2
|y|2, x ∈ N, y ∈ R

p.

Let F : Σ→ M be the MCF. Then, at the center of a normal coordinate on M , we have
∂

∂t
(f ◦ F ) = ∇Mf ·H = ∇Mf ·ΔΣtF

and

Δ(f ◦ F ) = gij
(
∂2

ij(f ◦ F )− Γk
ij∂k(f ◦ F )

)
= gij

(
fαFα

ij + fαβF β
j Fα

i − Γk
ijfαFα

k

)
= ∇f ·ΔΣtF + fαβFα

i F β
j gij .

Hence, we have
∂f

∂t
= ΔΣtf −

∑
i

(∇M∇Mf
)
(ei, ei)

where ei’s is an orthonormal basis of TΣt. The Hessian of f has two eigenspaces: n-dimensional
space E0 of the eigenvalue 0 and the p-dimensional E1 of the eigenvalue 1. The intersection of
the tangent space to Σt and E1 has dimension ≥ dimΣt − n > 0. It then follows

∂

∂t
f ◦ F ≤ ΔΣtf ◦ F − (dimΣt − n)

From the maximum principle

sup
Σt

f ≤ sup
Σ0

f − t(dimΣ0 − n)

Therefore the MCF becomes singular at the latest at T ≤ supΣ0
f/(dimΣ0 − n). �

Remark 3.3. One can use the monotonicity formula to show MCF develops finite time singu-
larity when the ambient space is not a product described above but satisfies certain curvature
condition.

3.2. Type I singularity and self-similar solution.

Definition 3.4. We say T > 0 is a blow-up time if

lim sup
t→T

sup
Mt

|A|2 =∞.

Proposition 3.5. Let U(t) = maxMt |A|2. If the mean curvature flow blows up at T > 0, the
function U(t) satisfies

U(t) ≥ 1
2(T − t)

.

Proof. By the parabolic maximum principle, we have
d

dt
U(t) ≤ 2(U(t))2

So
d

dt
U−1(t) ≥ −2.

We have
U−1(T )− U−1(t) ≥ −2(T − t).
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Since U(T ) = 0, we get the desired inequality. �

Definition 3.6. We say T is a type I singularity, if

max
Mt

|A|2 ≤ C

T − t
.

Otherwise, we say it is a type II singularity.

Assume Σ is compact. At a type I singularity T , assume xi → x0 ∈ M such that A(xi, ti) =
maxx∈Σt,t≤ti |A(x, t)| → ∞ and ti → T < ∞. We may identify a neighborhood of x0 in M with
a euclidean domain via the exponential map centered at x0. For simplicity, assume M = R

n

and x0 = 0. We consider the new flow which we call a rescaled flow,

F̃ (x, s) = (2(T − t))−1/2F (x, t),

where x ∈ M , t > 0 and

s = −1
2
log
(

T − t

T

)
.

It is clear that
d

ds
F̃ (x, s) = F̃ (x, s) + H̃

where H̃ is the mean curvature of F̃ (x, s). We denote the rescaled surface by M̃s.

Proposition 3.7. Let T be a type I singularity. For any s ∈ [0,∞), we have

max
M̃s

|Ã|2 ≤ C,

and for any integer m,
max
M̃s

|∇mÃ|2 ≤ C.

Lemma 3.8. If F (x, t)→ 0 as t → T , then F̃ (x, s) remains bounded for all s ∈ [0,∞).

Proof.

|F (x, t)− F (x, T )| ≤
∫ T

t
|H(x, τ)|dτ ≤ C

∫ T

t

1√
T − τ

dτ ≤ C
√

T − τ ,

which implies that
|F̃ (x, s)| ≤ C.

The proof is complete. �

3.3. Self-similar solution. For the rescaled surface M̃s, the monotonicity reads as follows.
Let

ρ̃ = exp

(
−|F̃ |2
2

)
,

then
d

ds

∫
M̃s

ρ̃dμ̃s = −
∫

M̃s

ρ̃|H̃ + F̃⊥|2dμ̃s.

It follows that ∫ ∞

0

∫
M̃s

ρ̃|H̃ + F̃⊥|2dμ̃s ≤
∫

M̃0

ρ̃ < ∞.
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A subsequence M̃si converges to a smooth limiting surface M̃∞ as si →∞, in light of Proposition
3.7 and Lemma 3.8. Therefore, at infinity, we have

(24) H̃∞ + F̃⊥∞ = 0.

Assume Σt = F (Σ, t) is a self-similar solution, i.e., it takes the form

F (x, t) = λ(t)F0(x),

where F0 : Σ→ R
m is an immersion satisfying

H0 = c F⊥0

for some constant c. We may assume that λ(0) = 1. That F∞(t) is a self-similar solution implies

λλ
′
= c.

Hence for some conatnts c and d,
λ2 = ct+ d.

MCF of the round sphere is an example of self-similar solution.

3.4. Translating solitons. Suppose that Mt is a translating soliton which translates in the
direction of the constant vector T . That means Ft = F + tT , i.e, Mt = M + tT .

Example 3.9. An example of translating soliton. In R
2, the t-family of curves

Mt = {(x,− ln cosx+ t) | |x| < π/2}
is a translating soliton which translates in the direction of the constant vector (0, 1): Mt =
M0 + t(0, 1). In fact (cosx, sinx) is a unit tangent vector and (− sinx, cosx) is a unit normal
vector, and H = cosx. Mt as the graph of u = − ln cosx+ t satisfies the MCF

ut =
uxx

1 + u2
x

.

3.5. Density Function. Let M be a smooth (n+k)-dimensional manifold with a Riemannian
metric g. Assume that either M is closed or M = M1×R

p for some closed manifold M1 with g
being the product metric. Further, we assume (M, g) has nonnegative sectional curvature and
parallel Ricci curvature. Note this implies M1 has nonnegative sectional curvature and parallel
Ricci curvature.
Let K(x, x0, t) > 0 be the heat kernel, i.e. the fundamental solution to the heat operator, of

(M, g) for t > 0 and x, x0 ∈ M with the normalization∫
M

K(x, x0, t)dμ(x) = 1.

Then K(x, x0, t0 − t) satisfies the backward heat equation(
∂

∂t
+ΔM

)
K(x, x0, t0 − t) = 0

for 0 < t < t0, where ΔM is the Laplace operator of (M, g). Define

(25) Φ(x0,t0)(x, t) = (4π)
k
2 (t0 − t)

k
2 K(x, x0, t0 − t)
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for 0 < t < t0. Hamilton’s computation [11] shows that if Σt are n-dimensional closed subman-
ifolds evolving along the mean curvature flow in M then

d

dt

∫
Σt

Φ(x0,t0)dμΣt = −
∫

Σt

∣∣∣∣∣H− D⊥Φ(x0,t0)

Φ(x0,t0)

∣∣∣∣∣
2

Φ(x0,t0)dμΣt

−
∫

Σt

gαβ

(
DαDβΦ(x0,t0) −

DαΦ(x0,t0)DβΦ(x0,t0)

Φ(x0,t0)
+
Φ(x0,t0)gαβ

2(t0 − t)

)
dμΣt(26)

where α, β = n+1, ..., n+k denote the indices for a basis normal to Σt. Here D⊥Φ(x0,t0) denotes
the normal component of the gradient DΦ(x0,t0) along Σ in M .
Under the curvature assumption, Hamilton’s matrix Harnack inequality [10] asserts that the

last integral in (26) is nonnegative. We remark on that if M = M1×R
p with the product metric

then under the same curvature assumption as above the last integral in (26) is still nonnegative.
In fact, the heat kernel of M is just the product of the heat kernels of M1 and R

p, and both
M1 and R

p have the curvature property required in Hamilton’s Harnack estimate. Then direct
computation verifies the claimed nonnegativity by applying the heat operator to the product
of the kernels then using Hamilton’s result.
Therefore, if Σ moves by mean curvature flow in M for t ∈ [0, t0) then for any x0 ∈ M the

function
∫
Σt
Φ(x0,t0)dμt is decreasing in t < t0 and

(27) Θ(M, x0, t0) := lim
t↗t0

∫
Σt

Φ(x0,t0)dμΣt

exists, whereM denotes the mean curvature flow Σ, t ∈ [0, t0). We call Θ(M, x0, t0) the density
of the mean curvature flow Σt at (x0, t0) and Θ the density function.
The upper-semicontinuity of the Gaussian density function for mean curvature flows in the

Euclidean space was proven in [20]. The proof in [6] and [20], which will be presented below
for the sake of completeness, carries over for Θ.

Proposition 3.10. (Upper-semicontinuity of Θ) Let M be a smooth manifold with parallel
Ricci curvature and nonnegative sectional curvature where M is either closed or the direct
product M1×R

p with the product metric for some closed manifold M1. Suppose that the closed
submanifolds Σ evolve by mean curvature flow in M for t ∈ [0, t0). Let (xj , tj) be a sequence of
points in M × [0, t0) such that limj→∞(xj , tj) = (x0, t0) and tj ≤ tj+1. Then

Θ(M, x0, t0) ≥ lim sup
j→∞

Θ(M, xj , tj).

Proof. For a fixed t ∈ [0, t0), there is some j0 ∈ N such that t < tj for all j > j0. The integral∫
ΣΦ(xj ,tj) is decreasing in t for each (xj , tj), so for j > j0∫

Σt

Φ(xj ,ti) ≥ lim
t↗tj

∫
Σ
Φ(xj ,tj) = Θ(M, xj , tj).

The heat kernel K(x, y, t) ∈ C∞(M ×M × R
+), so for a fixed t < t0

lim
j→∞

Φ(xj ,tj)(x, t) = Φ(x0,t0)(x, t)

holds for every x ∈ M . Integrating over the closed submanifold Σ and then taking lim sup with
j →∞, we have ∫

Σ
Φ(x0,t0) ≥ lim sup

j→∞
Θ(M, xj , tj).
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Then letting t ↗ t0

Θ(M, x0, t0) ≥ lim sup
j→∞

Θ(M, xj , tj)

and this completes the proof. �

Proposition 3.11. Let M be a smooth manifold with parallel Ricci curvature and nonnegative
sectional curvature where M is either closed or M1 ×R

p. Let Σ be closed submanifolds moving
by mean curvature flow in M for t ∈ [0, t0). If there exist a sequence (xj , tj) ∈ Σtj × [0, t0) such
that xj → x0 and tj ↗ t0 as j →∞, then

(28) Θ(M, x0, t0) ≥ 1.

Proof. Recall the following well-known short-time asymptotic expansion of heat kernel: on
a complete n-dimensional Riemannian manifold N there are smooth functions φi(x, y), i =
0, 1, 2, ..., defined on (N ×N)\{(x, y) ∈ N ×N : x is in the cut locus of y} with

φ0 > 0, φ0(x, x) = 1

and when t → 0

(29) K(x, y, t) ∼ (4πt)−
n
2 exp

(
−r2(x, y)

4t

) ∞∑
i=0

φi(x, y) ti

on any compact subset of (N × N)\{(x, y) ∈ N × N : x is in the cut locus of y} uniformly,
where r(x, y) is the distance function on M . Note that x is in the cut locus of y if and only if
y is in the cut locus of x (cf. [2], [13]).
On the closed submanifold Σ, by Li-Yau’s heat kernel upper bound [18] for complete Rie-

mannian manifold with nonnegative Ricci curvature, for any r > 0

lim
t↗t0

∫
Σ\Bx0 (r)

(4π(t0 − t))
k
2 K(x, x0, t0 − t)dμ(x)

≤ C lim
t↗t0

∫
Σ\Bx0 (r)

(t0 − t)
k
2

Vol(Bx0(
√

t0 − t))
exp

(
−d2(x, x0)
5(t0 − t)

)
dμ(x)

≤ C1 lim
t↗t0

∫
Σ\Bx0 (r)

(t0 − t)−
n
2 exp

(
− r2

5(t0 − t)

)
dμ(x)

≤ C1Vol(Σ0) lim
t↗t0

(t0 − t)−
n
2 exp

(
− r2

5(t0 − t)

)
= 0(30)

where C and C1 denote positive constants depending only on M . When deriving (30), we
have used that the volume of Bx0(

√
t0 − t)) is bounded from below by a constant multiple of

(t0 − t)
n+k

2 as t0 − t → 0 and the volume of Σ is decreasing in t along mean curvature flow.
Choose r small enough so that Bx0(r) does not intersect the cut locus of x0 in M . By the heat
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kernel expansion (29) for small time, we see from (30) that

Θ(M, x0, t0) = lim
t↗t0

∫
Σ
(4π(t0 − t))

k
2 K(x, x0, t0 − t)dμ(x)

= lim
t↗t0

∫
Σ∩Bx0 (r)

(4π(t0 − t))
k
2 K(x, x0, t0 − t)dμ(x)

= lim
t↗t0

∫
Σ∩Bx0 (r)

(4π(t0 − t))−
n
2 exp

(
−d2(x, x0)
4(t0 − t)

)
φ0(x, x0)dμ(x)

= lim
t↗t0

∫
Σ∩Bx0 (r)

(4π(t0 − t))−
n
2 exp

(
−d2(x, x0)
4(t0 − t)

)
dμ(x)(31)

since φ0 is continuous and φ(x0, x0) = 1.
Along the mean curvature flow, Σtj is immersed for each tj < t0. Then set

mj = lim
ρ→0

Vol(Σtj ∩Bxj (ρ))
ωnρn

where ωn is the volume of the unit ball in R
n. Note that (31) holds if x0, t0 are replaced by xj , tj

respectively. Applying (31) at (xj , tj) and using the standard fact that the Gaussian density is
equal to 1 on each of the mj sheets of the immersion at xj ,

Θ(M, xj , tj) = mj ≥ 1

and mj = 1 if Σtj is embedded at xj . Now the upper-semicontinuity of Θ yields

Θ(M, x0, t0) ≥ lim sup
j→∞

Θ(M, xj , tj) ≥ 1

and we finish the proof. �

3.6. Bounds on Area Ratio and Monotonicity Formula. On a complete manifold with
nonnegative Ricci curvature, the heat kernel has upper and lower bounds in terms of distance
function between points and volume of geodesic balls, due to the well-known work of Li and
Yau. In this section, we show that the heat kernel bounds and Hamilton’s Harnack inequality
imply an upper area bound for mean curvature flow, and the upper bound on heat kernel and
the monotonicity formula for a time varying test function, which mimics Brakke’s spherical
shrinking test functions, produce a lower area bound for the flow. We observe that the upper
bound, which involves the volume of geodesic balls of radius

√
t0 arising from the heat kernel

estimates, tends to 0 when t0 grows to infinity, provided Σ has nontrivial Euclidean component
in M = M1×R

p. The parabolic maximum principle applied to the coordinate functions in the
R

p-directions then shows that Σ must stay in a bounded region of M . So the positive lower
area bound prevents the flow from admitting long time smooth solution.

Proposition 3.12. (Upper Bound on Area Ratio) Assume that M is a smooth manifold of
dimension n + k with nonnegative sectional curvatures and parallel Ricci curvature and M is
either closed or M = M1 × R

p as before. Let Σ be smooth mean curvature flow of immersed
closed n-dimensional submanifolds in M . Then for all x0 ∈ M and ρ ∈ (0, 2√t0) the estimate

(32) sup
[t0−4ρ2,t0−ρ2)

Vol(Σ ∩Bx0(ρ)) ≤ Cρn

holds for some positive constant C depending only on Σ0, t0 and M .
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Proof. Under the curvature assumption, we have seen

d

dt

∫
Σ
Φ(x0,t0) ≤ 0

and in particular ∫
Σ
Φ(x0,t0) ≤

∫
Σ0

Φ(x0,t0)

Since Ric(M) ≥ 0, the heat kernel estimates in [18] read as

(33)
C1 exp

(
− r2(x,x0)

3t

)
Vol(Bx0(

√
t))

≤ K(x, x0, t) ≤
C2 exp

(
− r2(x,x0)

5t

)
Vol(Bx0(

√
t))

for t > 0 and some positive constants C1, C2 which only depend on the dimension of M .
Therefore, for all ρ with 4ρ2 < t0 and t ∈ [t0− 4ρ2, t0− ρ2) on Σ∩Bx0(ρ), the backward kernel
can be estimated from below as

Φ(x0,t0) ≥
C1(4π)kρk

Vol(Bx0(2ρ))
exp

(
−r2(x, x0)
3(t0 − t)

)
≥ C1(4π)kρk

Vol(Bx0(2ρ))
e−

1
3 .

It then follows

Vol(Σ ∩Bx0(ρ)) ≤ e
1
3
Vol(Bx0(2ρ))

ρk

∫
Σ
Φ(x0,t0)

≤ e
1
3
Vol(Bx0(2ρ))

ρk

∫
Σ0

Φ(x0,t0)

≤ C
Vol(Bx0(2ρ))

ρk

∫
Σ0

(4πt0)
k
2

Vol(Bx0(
√

t0))
exp

(
−r2(x, x0)

5t0

)
≤ C

Vol(Bx0(2ρ))
ρk

t0
k
2

Vol(Bx0(
√

t0))
Vol(Σ0)(34)

≤ C(t0,Σ0, M)ρn

where we have used Bishop’s volume comparison theorem for manifolds with nonnegative Ricci
curvature to estimate

Vol(Bx0(2ρ)) ≤ ωn+k2n+kρn+k

where the right hand side equals the volume of the Euclidean ball of radius 2ρ. �

The weighted monotonicity formula for mean curvature flows in the Euclidean space (cf. [9]
and [1]) generalizes to the Riemannian setting.

Proposition 3.13. (Weighted Monotonicity Formula) Let M be a complete manifold of dimen-
sion n+k with a Riemannian metric g. Let Σ be a closed n-dimensional submanifolds evolving
by mean curvature flow in (M, g). Fix a point (x0, t0) in M × R. For any smooth function f
defined on Σ, t < t0

d

dt

∫
Σ
fΦ(x0,t0) =

∫
Σ

(
∂f

∂t
−Δf

)
Φ(x0,t0) −

∫
Σ

∣∣∣∣∣H− D⊥Φ(x0,t0)

Φ(x0,t0)

∣∣∣∣∣
2

fΦ(x0,t0)

−
∫

Σ
fgαβ

(
DαDβΦ(x0,t0) −

DαΦ(x0,t0)DβΦ(x0,t0)

Φ(x0,t0)
+

gαβΦ(x0,t0)

2(t0 − t)

)
(35)
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where α, β are the indices for a basis normal to Σ. If the sectional curvature of (M, g) is
nonnegative and the Ricci curvature is parallel and M is either closed or M1 × R

p, then

(36)
d

dt

∫
Σ

fΦ(x0,t0) ≤
∫

Σ

(
∂f

∂t
−Δf

)
Φ(x0,t0) −

∫
Σ

∣∣∣∣∣H− D⊥Φ(x0,t0)

Φ(x0,t0)

∣∣∣∣∣
2

fΦ(x0,t0)

Proof. Since Σ satisfies the mean curvature flow equation (??) and K(x, x0, t0− t) satisfies the
backward heat equation, one uses the chain rule to compute

dΦ(x0,t0)

dt
=

∂Φ(x0,t0)

∂t
+DΦ(x0,t0) ·H

= −kπ (4π(t0 − t))
k
2
−1 K(x, x0, t0 − t)

− (4π(t0 − t))
k
2 ΔMK(x, x0, t0 − t) +DΦ(x0,t0) ·H

= − k

2(t0 − t)
Φ(x0,t0) −ΔMΦ(x0,t0) +DΦ(x0,t0) ·H.

Recall that the area element dμt of Σ evolves along mean curvature flow according to the
equation

∂

∂t
dμt = − |H|2 dμt.

We can then write
d

dt

∫
Σ

fΦ(x0,t0) =
∫

Σ

(
∂f

∂t
−Δf

)
Φ(x0,t0) +

∫
Σ
Φ(x0,t0)Δf −

∫
Σ
|H|2 fΦ(x0,t0)

− k

2(t0 − t)

∫
Σ

fΦ(x0,t0) −
∫

Σ
fΔMΦ(x0,t0) +

∫
Σ

fDΦ(x0,t0) ·H.(37)

The ambient Laplacian ΔM and the induced Laplacian Δ on Σ are related by

ΔMΦ(x0,t0) = ΔΦ(x0,t0) + gαβDαDβΦ(x0,t0) −DΦ(x0,t0) ·H
where as before α, β denote the indices for a basis of TΣ⊥. We also notice that∣∣∣∣∣H− D⊥Φ(x0,t0)

Φ(x0,t0)

∣∣∣∣∣
2

Φ(x0,t0) = |H|2Φ(x0,t0) − 2DΦ(x0,t0) ·H+
gαβDαΦ(x0,t0)DβΦ(x0,t0)

Φ(x0,t0)

and since Σ has no boundary by Green’s formula∫
Σ

fΔΦ(x0,t0) =
∫

Σ
Φ(x0,t0)Δf.

Substituting these formulas into (37) yields (35). Now (36) follows from Hamilton’s matrix
Harnack estimate [10] because under the curvature assumption on the metric and the assump-
tion on M the integrand of the last integral in (35) is pointwise nonnegative. �
Proposition 3.14. (Lower Bound on Area Ratio) Let Σt be n-dimensional closed submanifolds
evolving by mean curvature flow in an (n+ k)-dimensional manifold M for t ∈ [0, t0). Assume
that M is either a closed manifold or a direct product of a closed manifold with some Euclidean
space and M has nonnegative sectional curvature and parallel Ricci curvature. If there are
xj ∈ Σtj and xj → x0 as tj → t0, then for any α ∈ (0, 1) there exists a positive constant
C(α, n, M) such that for all ρ2 in [0,min{r2

0,
1+cα

α t0,
1+cα

α τ(M)}),
(38) Vol(Σt0− α

1+cα
ρ2 ∩Bx0(ρ)) ≥ C(α, n, M)ρn
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where c is a positive constant which depends on n, k, M and r0, τ(M) are positive constants
depending on M .

Proof. We seek a time dependent test function which is a nonnegative subsolution to the heat
equation on Σ and has support in geodesic balls. Let us first recall some standard results about
distance function on Riemannian manifolds (see [15] for example). For each x0 let r(x, x0) be
the distance function and define

ϕ(x, x0) = r2(x, x0).
Assume the sectional curvature of M satisfies

−a2 ≤ K ≤ b2

for some nonnegative constants a, b in the geodesic ball Bx0(r1) where r1 < π
2b if b > 0. Then

ϕ is smooth on Bx0(r1) and its Hessian satisfies

br
cos(br)
sin(br)

≤ 1
2
∇dϕ(v, v) ≤ ar

ear + e−ar

ear − e−ar

for any unit tangent vector v ∈ TxM where r = r(x, x0) < r1. Therefore there exists a positive
number r0 < r1, which may depend on a and b, such that for all r < r0 the following inequalities
hold on Bx0(r0)

(39) 1− 2b2r2 ≤ 1
2
∇dϕ(v, v) ≤ 1 + 2a2r2.

Now we modify Brakke’s spherical shrinking test function in the Euclidean case [1] by setting

f(x, x0, t, t0, σ) =

{ (
1− ϕ(x,x0)+c(t−t0)

σ2

)3
if it is nonnegative

0 otherwise

where c is a positive constant which will be determined later. Note that f ∈ C2
0 with support

in the ball Bx0(
√

σ2 + c(t0 − t)) which we require to be contained in Bx0(r0) in order to have
(39).
Along mean curvature flow,

df

dt
=

∂f

∂t
+Df ·H

and when f is restricted to any immersed submanifold Σt

ΔMf = ΔΣtf + gαβDαDβf −Df ·H
So we are led to (

d

dt
−ΔΣt

)
f =

∂f

∂t
−ΔMf + gαβDαDβf

=
3
σ2

f
2
3

(
−c+ΔMϕ− gαβDαDβϕ

)
.

The bounds on the Hessian of ϕ in (39) imply

ΔMϕ− gαβDαDβϕ ≤ (n+ k)(2 + 4a2r2)− k(2− 4b2r2)

= 2n+ 4r2((n+ k)a2 + kb2).

Then by setting
c = 2n+ 4r2

0

(
(n+ k)a2 + kb2

)
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we see that (
d

dt
−ΔΣt

)
f ≤ 0.

Applying the weighted monotonicity formula (36) to the function f defined above, we have
d

dt

∫
Σ

fΦ(x0,t0) ≤ 0.

Thus
lim
t↗t0

∫
Σ

f(x, t)Φ(x0,t0)dμ(x)

exists. For any α ∈ (0, 1) and ασ2 < t0, there is j0 ∈ N such that tj > t0 − ασ2 for all j > j0.
Integrating the above differential inequality over (t0 − ασ2, tj), we see

(40)
∫

Σtj

fΦ(x0,t0) ≤
∫

Σt0−ασ2

fΦ(x0,t0)

Note that the nonnegative continuous function f is defined globally on M . By the arguments
in the proof of Proposition 3.11,

(41) f(xj , tj) ≤ f(xj , tj)mj = lim
t↗tj

∫
Σ

f(x, t)Φ(xj ,tj)

where mj is the volume density of Σtj at xj . For each pair (xj , tj), we also have

d

dt

∫
Σ

fΦ(xj ,tj) ≤ 0.

Thus for any fixed t < tj the inequality below holds and the limit therein exists

(42) lim
t↗tj

∫
Σ

f(x, t)Φ(xj ,tj) ≤
∫

Σt

f(x, t)Φ(xj ,tj).

Combining (41) with (42), we obtain

f(xj , tj) ≤
∫

Σt

f(x, t)Φ(xj ,tj).

Now by letting tj ↗ t0 in the inequality above, we conclude

(43) f(x0, t0) ≤ lim
tj↗t0

∫
Σtj

fΦ(x0,t0)

By (40), (43) and the fact
f(x0, x0, t0, t0, σ) = 1

we have

(44) 1 ≤
∫

Σt0−ασ2

fΦ(x0,t0).

Since M is compact or M = M1 × R
p, there exist positive constants C1(M) and τ(M)

depending only on M such that

(45) Vol(Bx(τ)) ≥ C1(M)τn+k

for all x ∈ M and τ ≤ τ(M). Then the heat kernel upper bound yields

Φ(x0,t0)(x, t0 − ασ2) ≤ C(ασ2)
k
2

Vol(Bx0(
√

ασ2))
≤ C

C1α
n
2 σn
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for
√

ασ < τ(M). Applying the estimate above to (44) and noting that

0 ≤ f ≤ (1 + cα)3

and f is supported in Bx0(
√

σ2 + cασ2) at t = t0 − ασ2, we obtain

C1α
n
2 σn

C(1 + cα)3
≤ Vol(Σt0−ασ2 ∩Bx0(

√
1 + cασ)).

To simplify the expression, we set ρ =
√
1 + cασ. It follows that ασ2 = α

1+cαρ2. Finally, we
recall all restrictions on ρ:

(i) ασ2 < t0 implies ρ2 < 1+cα
α t0

(ii) ασ2 < τ(M) implies ρ2 < 1+cα
α τ(M)

(iii) (1 + cα)σ2 < r0 implies ρ2 < r0

This means ρ2 < min{r0,
1+cα

α t0,
1+cα

α τ(M)}. �
3.7. Mean Value Inequality. Let Σ = F (Σ, t) be immersed submanifolds moving by mean
curvature flow in M for t ∈ [0, T ). There are two ways to obtain continuous functions f on Σ.
One is by restricting continuous functions on M to Σ, so the functions are defined extrinsically.
The other one is by taking continuous functions on Σ × [0, T ) and at the points where Σ is
immersed but not embedded the functions may take different values to ensure continuity, so
the functions are defined intrinsically. To be more precise, if F (p, t) = x0 = F (q, t) for p �= q
there exist neighborhoods Dp and Dq of p and q in Σ respectively such that F (·, t) embeds
Dp and Dq into M . When f is regarded as a function on Σ, its continuity and its value
at x0 are determined by the neighborhoods Dp and Dq. Extrinsically or intrinsically defined
functions arise naturally when we study mean curvature flow. On an immersed submanifold
Σt0 , if x0 ∈ Σt0 is an immersed point, then there exist at most mx0 points p in Σ satisfying
F (p, t0) = x0 where mx0 is the volume density of Σt0 at x0 and it counts the number of sheets
containing x0 inside a small ball.
The arguments in the proof of Proposition 3.11 let us to conclude

Lemma 3.15. Let Σ = F (Σ, t) for t ∈ [0, T ) and M be as in Proposition 3.12. Let f be a
continuous function on Σ× [0, T ]. Then for any t0 ∈ (0, T ) and any xt0 ∈ Σt0

(46) f(p1, t0) + ...+ f(pmt0
, t0) = lim

t↗t0

∫
Σ

f(x, t)Φ(xt0 ,t0)dμ(x)

holds, where mt0 is the volume density of Σt0 at xt0 = F (pj , t0) for j = 1, ...,mt0.

Proposition 3.16. (Mean Value Inequality) Let M be a smooth Riemannian manifold with
parallel Ricci curvature and nonnegative sectional curvature. Assume that M is either closed or
a direct product M1 × R

p of a closed manifold M1 with a Euclidean space R
p. Let Σ = F (Σ, t)

be closed submanifolds evolving by smooth mean curvature flow in M for t ∈ [0, T ). Let f be a
function on Σ which is a subsolution of the heat operator on Σ(

d

dt
−ΔΣ

)
f ≤ 0

for all t ∈ [0, T ). Then there is a positive constant τ(M) depending only on M such that for
all ρ ∈ (0,min{τ(M),

√
t0}) and t0 < T such that

(47)
mx0∑
i=1

f2(pi, t0) ≤ C(M)
ρn+2

∫ t0

t0−ρ2

∫
Σ∩Bx0 (ρ)

f2



22 JINGYI CHEN

where pi are distinct points in Σ with F (pi, t0) = x0 and mx0 is the volume density of Σt0 at
x0.

Proof. We observe that for any smooth function φ on M × (t0 − ρ2, t0)(
d

dt
−Δ

)
(f2φ2) = φ2

(
d

dt
−Δ

)
f2 + f2

(
d

dt
−Δ

)
φ2 − 8fφ∇φ · ∇f

≤ −2φ2 |∇f |2 + f2

∣∣∣∣( d

dt
−Δ

)
φ2

∣∣∣∣+ 8φf |∇φ| |∇f |

≤ f2

∣∣∣∣( d

dt
−Δ

)
φ2

∣∣∣∣+ 8f2|∇φ|2

by using the fact that f is a subsolution and Young’s inequality. Choose φ such that

0 ≤ φ ≤ 1 in M × (t0 − ρ2, t0)
φ ≡ 1 in Bx0(

ρ
2)× (t0 − ρ2

4 , t0)
φ ≡ 0 in M\Bx0(ρ)× (t0 − ρ2, t0)

and

ρ|Dφ|+ ρ2
∣∣D2φ

∣∣+ ρ2

∣∣∣∣∂φ

∂t

∣∣∣∣ ≤ C0(M)

for some constant C0(M) which depends on (M, g). For φ so chosen, we have

(48)
(

d

dt
−Δ

)
(f2φ2) ≤ C0

ρ2
f2

in M × (t0 − ρ2, t0) and

(49)
(

d

dt
−Δ

)
(f2φ2) ≡ 0

in Bx0(
ρ
2)× (t0 − ρ2

4 , t0).
Since Ric(M) ≥ 0, it follows from the heat kernel upper estimate

K(x, x0, t0 − t) ≤ C(n+ k)√
Vol(Bx0(

√
t0 − t))

exp
(
−r2(x, x0)
5(t0 − t)

)
that as long as ρ ≤ τ(M), where τ(M) is defined in (52), and t0 − t > ρ2/4, then

(50) K(x, x0, t, t0) ≤ C(M)
ρn+k

holds for some positive constant C(M) depending only on M .
We now estimate the backward kernel by decompose Bx0(ρ)×(t0−ρ2, t0)\Bx0(

ρ
2)×(t0− ρ2

4 , t0)
into two disjoint regions. First, when ρ2/4 < t0− t < ρ2 it follows directly from the heat kernel
upper estimate (50) that

Φ(x0,t0)(x, t) = (4π(t0 − t))
k
2 K(x, x0, t, t0) ≤ C(M)

ρn
.
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Second, when 0 < t0 − t ≤ ρ2/4,

Φ(x0,t0)(x, t) ≤ C(t0 − t)
k
2

Vol(Bx0(
√

t0 − t))
exp

(
−r2(x, x0)
5(t0 − t)

)
≤ C(M)

(t0 − t)
n
2

exp
(
− ρ2

20(t0 − t)

)
≤ C(M)

ρn

because
√

t0 − t < ρ/2 < τ(M). In the last step above, we have applied the following elementary
fact to y = ρ2/(t0 − t): for any c > 0, there exists a positive constant C(n, c) such that for all
y ≥ 0 the inequality below holds

yn ≤ C(n, c)ecy.

Recall f2φ2 is supported in M\Bx0(ρ)× [t0− ρ2

4 , t0). By the weighted monotonicity formula
(36) together with (48), (49) and the estimate on Φ(x0,t0) above, we have

d

dt

∫
Σ

f2φ2Φ(x0,t0) ≤
C0(M)C(M)

ρn+2

∫
Σ∩Bx0 (ρ)

f2.

Noting φ(x, t0 − ρ2) = 0 for all x ∈ M , integrating the inequality above over (t0 − ρ2, t) yields∫
Σ

f2φ2Φ(x0,t0) ≤
C0(M)C(M)

ρn+2

∫ t

t0−ρ2

∫
Σ∩Bx0 (ρ)

f2.

Since φ(x0, t0) = 1, by Lemma 3.15 we obtain that for any p ∈ Σ with F (p, t0) = x0

mx0∑
i=1

f2(pi, t0) =
mx0∑
i=1

f2(p, t0)φ2(x0, t0)

= lim
t↗t0

∫
Σ

f2φ2Φ(x0,t0)

≤ C0(M)C(M)
ρn+2

∫ t0

t0−ρ2

∫
Σ∩Bx0 (ρ)

f2.

The proof is now complete. �
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4. A Maximum Principle for evolution equations

We discuss a useful maximum principle for evolution equations on a complete Riemannian
manifold with time dependent metrics. The theorem below is due to Ecker-Huisken [8] which is
based on an earlier work of Liao-Tam [16] on the maximum principle on complete noncompact
manifolds with time independent metric.

Theorem 4.1. Let M be a manifold with Riemannian metrics g(t). Suppose that

(51)
∣∣∣∣ d

dt
g

∣∣∣∣
g

≤ α < ∞.

and the following volume growth condition holds:

(52) vol(Br(p), g(t)) ≤ ec(1+r2)

for some uniform constant c > 0 and some p ∈ M , B(r, p) is the geodesic ball at the t. Let
f ∈ C0(M × [0, T ]) ∩ C∞(M × (0, T ]). Assume

(53)
∂

∂t
f ≤ Δg(t)f + a · ∇f +Bf

where |a| < β < ∞ and |B| ≤ γ < ∞ on M × [0, T ]. Assume f ≤ 0 on M × {0} and

(54)
∫ T

0

∫
M

e
−δr2

g(t)
(x,p)|∇f |2(x)dμg(t)dt < ∞

for some δ > 0. Then f ≤ 0 on M × [0, T ].

Proof. From (51), g(t) are uniformly equivalent to g(0): ∃C1, C2 depending on T such that

(55) C2 g(0) ≤ g(t) ≤ C1 g(0).

Following Liao-Tam, fix η with 0 < η < min {T, 1/64c, 1/32α, 1/32δ}. Set

h(y, s) = −
θr2

g(s)(y, p)

4(2η − s)
, 0 < s < η

where θ is yet to determined and rg(s)(y, p) is the distance between points y and p in g(s). Then

dh

ds
= −

θr2
g(s)(y, p)

4(2η − s)2
− θrg(s)

2(2η − s)
drg(s)

ds

= −θ−1|∇h|2 − θrg(s)

2(2η − s)
drg(s)

ds
.

For any fixed curve with length l(s) measured in g(s), we have∣∣∣∣dl(s)
ds

∣∣∣∣ = ∣∣∣∣ d

ds

∫ √
g(C ′(τ), C ′(τ))dτ

∣∣∣∣ ≤ 1
2
αl(s)

where we have used (51)

d

ds
g(s)(C ′(τ), C ′(τ)) ≤ αg(s)(C ′(τ), C ′(τ)).

In particular, ∣∣∣∣ d

ds
rs

∣∣∣∣ ≤ 1
2
αrs.
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Therefore, for θ = 1
4 , η ≤ 1

4α ,

d

ds
h ≤ −θ−1|∇h|2 + θ−1α|∇h|2(2η − s) ≤ −2|∇h|2.(56)

As in [16], for K > 0 define fK = max{min(f, K), 0} and take a smooth time independent
function φ with compact support. For 0 < ε < η, by (53) we have

0 ≤
∫ η

ε
e−bs

∫
M

φ2ehfK

(
Δf − ∂f

∂s

)
+ β

∫ η

ε
e−bs

∫
M

φ2ehfK |∇f |+ γ

∫ η

ε
e−bs

∫
M

φ2ehfKf

where b will be chosen later and we have used fKf ≥ 0. Integrating by parts,

∫ η

ε
e−bs

∫
M

φ2ehfKΔf = −
∫ η

ε
e−bs

∫
M

φ2eh∇fK∇f

−
∫ η

ε
e−bs

∫
M

φ2ehfK∇h∇f − 2
∫ η

ε
e−bs

∫
M

φehfK∇φ∇f

= I + II + III

Observe

I = −
∫ η

ε
e−bs

∫
M

φ2eh|∇fK |2

II ≤ 1
4

∫ η

ε
e−bs

∫
M

φ2eh|∇f |2 +
∫ η

ε
e−bs

∫
M

φ2ehf2
K |∇h|2

III ≤ 1
2

∫ η

ε
e−bs

∫
M

φ2eh|∇f |2 + 2
∫ η

ε
e−bs

∫
M

ehf2
K |∇φ|2.

Note

fK =

⎧⎨⎩
K, if f ≥ K
f, if 0 < f < K
0, if f ≤ 0

Hence

(57)
∂fK

∂s
(fK − f) = 0

whenever ∂fk/∂s exists, and we have by using (57)

−ehfK
∂f

∂s
= −ehfK

∂fK

∂s
+

∂

∂s
{ehfK(fK − f)} − ∂eh

∂s
fK(fK − f)

≤ −ehfK
∂fK

∂s
+

∂

∂s
{ehfK(fK − f)}(58)

Note fK is uniformly Lipschitz continuous on compact subsets of M × [0, T ]. Note∣∣∣∣ ∂

∂s

√
g

∣∣∣∣ ≤ nα
√

g
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where
√

g =
√
det g. Therefore, from (58)

−
∫ η

ε
e−bs

∫
M

φ2ehfK
∂f

∂s
≤ −1

2

∫ η

ε
e−bs

∫
M

φ2eh ∂f2
K

∂s
+
∫ η

ε

∂

∂s

(
e−bs

∫
M

φ2ehfK(fK − f)
)

+b

∫ η

ε
e−bs

∫
M

φ2ehfK(fK − f)−
∫ η

ε
e−bs

∫
M

φ2ehfK(fK − f)
∂s
√

g√
g

= −1
2

∫ η

ε

∂

∂s

(
e−bs

∫
M

φ2ehf2
K

)
− b

2

∫ η

ε
e−bs

∫
M

φ2ehf2
K +

1
2

∫ η

ε
e−bs

∫
M

φ2ehf2
K

∂s
√

g√
g

+
1
2

∫ η

ε
e−bs

∫
M

φ2ehf2
K

∂h

∂s
+ e−bs

∫
M

φ2ehfK(fK − f)
∣∣∣∣s=η

s=ε

+b

∫ η

ε
e−bs

∫
M

φ2ehfK(fK − f)−
∫ η

ε
e−bs

∫
M

φ2ehfK(fK − f)
∂s
√

g√
g

≤ −1
2
e−bs

∫
M

φ2ehf2
K

∣∣∣∣s=η

s=ε

+
1
2
(nα− b)

∫ η

ε
e−bs

∫
M

φ2ehf2
K

+
1
2

∫ η

ε
e−bs

∫
M

φ2ehf2
K

∂h

∂s
+ e−bs

∫
M

φ2ehfK(fK − f)
∣∣∣∣s=η

s=ε

+(b− nα)
∫ η

ε
e−bs

∫
M

φ2ehfK(fK − f)

≤ −1
2
e−bs

∫
M

φ2ehf2
K

∣∣∣∣s=η

s=ε

− b

4

∫ η

ε
e−bs

∫
M

φ2ehf2
K

+
1
2

∫ η

ε
e−bs

∫
M

φ2ehf2
K

∂h

∂s
+ e−bs

∫
M

φ2ehfK(fK − f)
∣∣∣∣s=η

s=ε

by noting fK(fK − f) ≤ 0 and taking b ≥ 2nα+ 4γ. It then follows from (56)

−
∫ η

ε
e−bs

∫
M

φ2ehfK
∂f

∂s
≤ −1

2
e−bs

∫
M

φ2ehf2
K

∣∣∣∣s=η

s=ε

− γ

∫ η

ε
e−bs

∫
M

φ2ehf2
K

−
∫ η

ε
e−bs

∫
M

φ2ehf2
K |∇h|2 + e−bs

∫
M

φ2ehfK(fK − f)
∣∣∣∣s=η

s=ε

(59)

We also esitmate

β

∫ η

ε
e−bs

∫
M

φ2ehfK |∇f | ≤ 1
4

∫ η

ε
e−bs

∫
M

φ2eh|∇f |2 + β2

∫ η

ε
e−bs

∫
M

φ2ehf2
K .

We therefore have

0 ≤
∫ η

ε
e−bs

∫
M

φ2ehfK

(
Δf − ∂f

∂s

)
+ β

∫ η

ε
e−bs

∫
M

φ2ehfK |∇f |+ γ

∫ η

ε
e−bs

∫
M

φ2ehfKf

= I+II+III−
∫ η

ε
e−bs

∫
M

φ2ehfK
∂f

∂s
+
1
4

∫ η

ε
e−bs

∫
M

φ2eh|∇f |2 + β2

∫ η

ε
e−bs

∫
M

φ2ehf2
K

+γ

∫ η

ε
e−bs

∫
M

φ2ehfK |∇f |

≤ −
∫ η

ε
e−bs

∫
M

φ2eh|∇fK |2 +
∫ η

ε
e−bs

∫
M

φ2eh|∇f |2

+2
∫ η

ε
e−bs

∫
M

eh|∇φ|2f2
K −

e−bs

2

∫
M

φ2ehf2
K

∣∣∣∣s=η

s=ε
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Letting ε → 0, using fK = 0 at s = 0 because f ≤ 0 at s = 0 and fK(fK − f) ≤ 0, taking φ
to be the cut-off function which is 1 in B0

R(p), 0 outside B0
R+1(p) and 0 ≤ φ ≤ 1, |∇φ|0 ≤ 2, we

have

(60)
e−bη

2

∫
B0

R(p)
ehf2

K

∣∣∣∣∣
s=η

≤
∫ η

0
e−bs

∫
B0

R+1(p)
eh(|∇f |2−|∇fK |2)+2C1

∫ η

0
e−bs

∫
B0

R+1(p)\B0
R(p)

ehf2
K

Since 0 < η < min(T, 1/64c, 1/32α, 1/32δ), one checks h(y, s) ≤ −2cr2
s(y, p) and h(y, s) ≤

−δr2
s(y, p) for all 0 < s < η. Since f2

K ≤ K2, we have, for each fixed K > 0, from the volume
growth condition (52) that

(61) lim
R→∞

∫ η

0
e−bs

∫
B0

R+1(p)\B0
R(p)

ehf2
K = 0

Note 0 ≤ |∇f |2 − |∇fK |2 ≤ |∇f |2 and let R →∞ in (60)

(62)
e−bη

2

∫
M

ehf2
K

∣∣∣∣
s=η

≤
∫ η

0
e−bs

∫
M

eh
(|∇f |2 − |∇fK |2

)
< ∞

by (61) and the assumption (54).
Letting K → ∞, we see f2

K → (f+)2, and |∇fK |2 → |∇f |2 for all s. By the dominated
convergence theorem, ∫

M
eh(f+)2|s=η ≤ 0

hence f+ = 0 at t = η. Since η is arbitrary with 0 < η < min(T, 1/64K, 1/32δ) we conclude
f ≤ 0 on M × [0, T ], by an inductive argument. �

We now apply this maximum principle to MCF.

Theorem 4.2. Let F0 : Mn → R
n+1 be a smooth MCF of a complete hypersurface with bounded

C2,α-norm. Suppose the initial hypersurface F0(M) has nonnegative mean curvature. Then the
smooth solution to MCF from F0 over [0, T ] has nonnegative mean curvature, where T depends
on n and the initial curvature bound.

Proof. The equation we deal with is(
∂

∂t
−Δ

)
H = |A|2H.

Because C2,α-norm of F0 is bounded, the initial surface has bounded curvature and supM0
|A| ≤

c0. One can bound supMt
|A| in terms of c0 on some small interval [0, T ]. Since RicMt ≥ −2|A|2,

the uniform volume growth condition (52) holds on [0, T ] as Ricci curvature has a lower bound
on this interval. From the parabolic theory, we have

sup
Mt

t1−α|∇H|2 ≤ C(n, T, c0, ‖F0‖C2,α)

which in turn, together with the volume growth condition, implies (54). Recall

∂

∂t
gij = −2Hhij .

So (51) holds. Now with b = |A|2 in (53), Theorem 4.1 implies the desired result. �
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