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An important question in complex geometry is to char-

acterize those topological manifolds that admit a com-

plex structure. Once a complex structure is found, one

wants to search for the existence of algebraic or geo-

metric structures that are compatible with the complex

structure.
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Most geometric structures are given by Hermitian met-

rics or connections that are compatible with the com-

plex structure. In most cases, we look for connections

with special holonomy group.

A connection may have torsion. The torsion tensor is

not well-understood. Much more research need to be

done especially for those Hermitian connections with

special holonomy group.
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Karen Uhlenbeck Simon Donaldson

By using the theorem of Donaldson-Uhlenbeck-Yau, it

is possible to construct special holonomy connections

with torsion. Their significance in relation to complex

or algebraic structure need to be explored.
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Kähler metrics have no torsion and their geometry is

very close to that of algebraic geometry. Yet, as was

demonstrated by Voisin, there are Kähler manifolds that

are not homotopy equivalent to any algebraic manifolds.

The distinction between Kähler and algebraic geometry

is therefore rather delicate.

Erich Kähler
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Algebraic geometry is a classical subject and there are

several natural equivalences of algebraic manifolds: bi-

rational equivalence, biregular equivalence, and arith-

metic equivalence.

In this talk, we shall explore several important questions

that need to be solved.
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I. Finding the necessary and sufficient conditions for a

smooth even dimensional manifold to admit an almost

complex structure (up to deformation).

This is a problem in algebraic topology. One needs to

understand how to lift the classifying map from M2n to

SO(2n) to a map from M2n to U(n). For n small, this

was solved by the method of Postnikov tower construc-

tion. But no general condition for arbitrary n has been

found.
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II. What are the conditions for a manifold to have an

integrable almost complex structure?

Once an almost complex structure J is found, it may

not be deformable to an integrable J. There are plenty

of examples of such manifolds for n = 2. In this dimen-

sion, the Hirzebruch-Riemann-Roch gives very strong

constraints. I found four-dimensional manifold with

trivial tangent bundle which admits no integrable com-

plex structure. My example have large fundamental

group. It will be nice to find simply connected exam-

ples.
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Friedrich Hirzebruch

For n > 2, the Hirzebruch-Riemann-Roch formula is

not powerful enough. I conjectured that every almost

complex manifold admits an integrable almost complex

structure (which may not be deformable to the original

one).
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Potentially, one can try to deform an almost complex

structure to an integrable one by certain parabolic equa-

tion. In the process of deformation, it is quite likely

that certain bubbling process may occur and the final

obtained integrable complex structure is not necessarily

homotopic to the initial almost complex structure.
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III. Moduli space of integrable complex structure

It is a difficult problem to determine the moduli space of

integrable complex structure over a fixed smooth man-

ifold. Potentially there can be an infinite number of

components of such structures. Perhaps one should fix

the Chern classes of such complex structures. In that

case, one knows that the moduli space of algebraic

manifolds of general type is a bounded family. Hence,

there are only a finite number of components and each

component form a quasi-projective manifold. This fol-

lows from the works of D. Gieseker and E. Viehweg.
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IV. Classification of complex surfaces

Complex surfaces were classified by Kodaira, general-

izing the work of the Italian algebraic geometers. His

basic tool came from the Atiyah-Singer index formula.

Kunihiko Kodaira
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Most complex surfaces are deformable to algebraic sur-

faces. All surfaces are classified except class V II0. It

was conjectured that class V II0 surfaces are those that

were constructed by Bombieri and Inoue.

Enrico Bombieri
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For class V II0 surfaces that admit no holomorphic curves,

this was proved to be true by the works of Bogomolov,

and Li-Yau-Zheng, based on different arguments. It is

likely that the method of Li-Yau-Zheng, which is based

on Hermitian-Yang-Mills connections, can be general-

ized to cover the case of class V II0 with curves. If this

can be done, it will give a complete classification of

complex surfaces that cannot support Kähler metrics.
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V. Classification of higher dimension complex mani-

folds

For complex manifolds with dimension greater than

two, the space of integrable compelx structures are

much more flexible. Many examples were constructed.

A large class of complex manifolds are obtained from

the twistor space of anti-self-dual four-manifold (con-

structed by Taubes) and the Clemens-Friedman con-

struction of complex three-folds by blowing down ra-

tional curves and smoothing.
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Based on the Clemens-Friedman construction, Reid spec-

ulated that every Calabi-Yau threefold can be deformed

to each other through non-Kähler complex manifolds.

This speculation demonstrates the potential role of non-

Kähler complex manifolds.

Eugenio Calabi
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In order to understand non-Kähler complex manifolds,

we need to construct geometric structures. Naturally,

we have Hermitian (1,1)-forms ω which may not be

closed.

There are many possible conditions we can impose on

ω so that the Riemannian structure given by ω is more

compatible with the complex structure.

17



We can require the following conditions:

Ak: ∂∂̄(ωk) = 0 for k < dim M ;

Bk: d(ωk) = 0 for k < dim M .

Condition An−1 is the Gauduchon metric condition. It

was proved by Gauduchon that any Hermitian metric

can be deformed conformally to such a metric. Jost and

I studied An−2 where harmonic map arguments work

well. There are obstructions to the existence of An−2

metrics.
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Condition Bn−1 is the balanced metric condition and

was studied by Michelsohn. Its existence is invariant

under birational change. Balanced metrics have be-

come more popular because of the consideration of su-

persymmetry in string theory.
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Andrew Strominger

In 1986, Strominger made a proposal for supersym-

metric compactification in the theory of the heterotic

string.
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It requires the manifold to admit a non-vanishing holo-

morphic n-form Ω and the Hermitian form ω is required

to satisfy

d(‖Ω‖ω ωn−1) = 0 .

The existence of supersymmetry is an important and

useful tool. It would be highly desirable to explore the

consequence of supersymmetry.
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The existence of balanced manifolds with trivial canon-

ical line bundle is not clearly understood. The con-

struction of Calabi-Eckman suggested many such ex-

amples that are torus bundles over Calabi-Yau mani-

folds. These appeared in physics in the works of Dasgupta-

Rajesh-Sethi, and Becker-Dasgupta. On such mani-

folds, Fu and I were able to construct solutions for the

heterotic compactifaction proposed by Strominger.
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In order to understand the conjecture of Reid and to

study tunneling between Calabi-Yau manifolds of dif-

ferent topological type, Fu-Li-Yau proved that when

we smooth out the blown down of rational curves in a

Calabi-Yau manifold, the resulting manifold also admits

a balanced metric.

The concept of a balanced manifold with a trivial canon-

ical line bundle can be considered as a natural general-

ization of the Calabi-Yau manifold. We shall consider

the case of n = 3.
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The Hermitian metric ω can be required to satisfy the

following equations.

1. The above equation d(‖Ω‖ω ω2) = 0 .

2. The tangent bundle admits a Hermitian-Yang-Mills

connection with respect to the polarization ‖Ω‖ω ω2 so

that the curvature F satisfies the condition

F ∧ ω2 = 0 ,

F2,0 = F0,2 = 0 .

3.
√−1∂∂̄ω = tr(R ∧ R) − tr(F ∧ F )
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This is the Strominger system of equations that is stan-

dardly solved by taking the Yang-Mills bundle to be the

tangent bundle. In general, we can take a holomorphic

bundle different from the tangent bundle in the above

equations with the requirement that the second Chern

form of the bundle is equal to the second Chern form

of the manifold within the ∂∂̄ cohomology.
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It is important to find out whether the above equa-

tions determine ω uniquely or not (as long as we fix the

cohomology class of ‖Ω‖ω ω2).

Would the existence of ω follow from some stability

condition of the manifold, besides the obvious require-

ment that the holomorphic bundle has to be stable with

respect to ‖Ω‖ω ω2 ?

One may try to use the fixed point argument for this

problem.
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The Strominger system is more general than what we

just described. It consists of a coupled system of holo-

morphic bundles with Hermitian metrics. Hence, unique-

ness is more complicated.

It would be useful to find interesting quantities that are

invariant under deformation of complex structures in

the Strominger system. Such invariants would be very

useful for studying Calabi-Yau manifolds.
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For complex three manifolds, it should be interesting to

consider Hermitian metrics ω such that
√−1∂∂̄ω equals

to some combination of Chern forms and delta function

forms supported on cycles of algebraic curves.
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VI. Kähler metrics

Kähler metric is of course one of the most beautiful

metric in geometry. The fact that it is parametrized by

the Kähler cone in H1,1(M, R) plus a function enables

us to write many difficult geometric systems in terms

of some scalar (non-linear) elliptic equation. This is

precisely the reason why the Einstein metric in Kähler

geometry is much easier to handle than in general Rie-

mannian geometry.
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A fundamental question is to solve my conjecture that

a Kähler manifold admits a Kähler metric with a con-

stant scalar curvature in the Kähler class if the manifold

is stable with respect to this class. The precise defini-

tion of stability should come from geometric invariant

theory and presumably is given by Donaldson’s stability.

Donaldson has verified this statement for toric surfaces.
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Another fundamental question is to understand the struc-

ture of the Kähler cone. There is an important theo-

rem of Demailly on the cohomological characterization

of the Kähler class. However, it is important to un-

derstand the following question on the boundary of the

Kähler cone:

When will the class on the boundary of the Kähler cone

support a non-negative smooth (1,1)-form ω ?

Naturally the degeneracy of ω will be important and will

be reflected by studying ωk for k > 0.

31



The study of such forms are important for understand-

ing the boundary of the moduli space of Kähler metrics

with constant scalar curvature. In the case when the

manifold is Calabi-Yau, the Kähler cone should be mir-

rored to the Teichmüller space of complex structures

on the mirror manifold, perhaps with quantum correc-

tions. Hence, it is rather interesting to understand the

Kähler cone.
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There is a natural geometric flow given by Calabi which

may deform Kähler metrics to those with constant scalar

curvature. Unfortunately, it is an equation of higher or-

der. Not much is known about them.
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Richard Hamilton

In 1981, when Hamilton started his research on Ricci

flow, I suggested my two students Bando and Cao to

study the Kähler analogue.
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Bando studied the flow for three dimensional Kähler

manifolds with non-negative bisectional curvature. He

proved that the Ricci flow preserves the curvature con-

dition. His result was generalized by Mok-Zhong to

higher dimension.

I suggested Cao to prove the Frenkel conjecture based

on Ricci flow. Despite some beautiful work of Perel-

man, this task has not been achieved. Much more work

and new ideas are needed in this subject.
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VII. Birational geometry

As mentioned earlier, Voisin gave a counterexample to

the conjecture of Kodaira that every Kähler manifold

can be deformed into a projective algebraic manifold.

Nevertheless, it is still a nice problem to find the con-

ditions so that a Kähler manifold can be be deformable

to a projective one.
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It is interesting to note that for manifolds of dimension

≥ 3, birational geometry is much richer than that for

surfaces.

Chen-Yu Chi and I have initiated a program to study

problems in birational geometry. This approach will be

more geometric than other more algebraic approaches.

Most of the arguments can be phrased in a purely al-

gebraic manner, however, it is quite likely that some of

them can be applied to deal with the geometry over

different fields.
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Given a projective variety M , we have studied the ge-

ometric information that can be provided by the pluri-

canonical space H0(M, mKM). The minimal model pro-

gram led by Mori, Kawamata, Kollár and others had

achieved great success.

Shigefumi Mori

38



While earlier workers had solved the problem for three-

folds completely, the spectacular finite generation ques-

tion was recently solved by several people, using differ-

ent approaches: the analytic approach of Siu and the

algebraic approach of Birkar, Cascini, Hacon and McK-

ernan.

Yum-Tong Siu
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In our approach, instead of using the full canonical ring,

we have focused our study on the pluricanonical space

for a fixed m.

Ideally, we would like to determine the birational type

of our algebraic variety based on the information on

this space only. Any birational transformations of al-

gebraic manifolds will induce a linear map between the

corresponding pluricanonical spaces (for each fixed m).
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The pluigenera are of course invariant under the bi-

rational transformations. But more importantly, there

are other finer invariants that are preserved by these

transformations.

The most important one are the natural norm-like func-

tions (called “norms”) induced by integrating over M

the m-th root of the product of a m-pluricanonical form

and its conjugate. The norm defines an interesting ge-

ometry which has not been explored extensively before.

We have initiated a program to study this geometry.
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The first major questions we addressed is the following

Torelli type theorem:

Given two algebraic varieties M and M ′, suppose there

is a linear map that defines an isometry (with respect to

the norm mentioned above) between the two normed

vector spaces H0(M, mKM) and H0(M ′, mKM ′). We

claim that with a few exceptional cases of M and M ′,

the linear isometry is induced by a birational map be-

tween M and M ′. This can be considered as a Torelli

type theorem for birational geometry.
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We call this kind of theorem a Torelli type theorem

because the classical Torelli theorem says that the pe-

riods of integrals determine an algebraic curve, except

for hyper-elliptic curves. This remarkable theorem was

generalized to higher dimensional algebraic varieties.
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Ilya Piatetski-Shapiro Igor Shafarevich

The most notable one was the work of Piatetski-Shapiro

and Shafarevich for algebraic K3 surfaces, which was

generalized to Kähler K3’s by Burns-Rappaport, where

they proved the injectivity of period maps.
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The surjectivity of period maps for K3 surfaces was

shown using Ricci flat metrics by Siu and Todorov fol-

lowing the work of Kulikov and of Perrson and Pinkham.

This phenomenon of surjectivity is known to be rather

generic, and in many cases the period map can be

proved to have degree one for hypersurfaces (as in Don-

agi’s work).
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