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Summary

By learning to discriminate among visual stimuli, hu-
man observers can become experts at specific visual

tasks. The same is true for Rhesus monkeys, the major
animal model of human visual perception. Here, we

systematically compare how humans and monkeys
solve a simple visual task. We trained humans and

monkeys to discriminate between the members of
small natural-image sets. We employed the ‘‘Bubbles’’

procedure [1] to determine the stimulus features used
by the observers. On average, monkeys used image

features drawn from a diagnostic region covering
about 7% 6 2% of the images. Humans were able to

use image features drawn from a much larger diagnos-
tic region covering on average 51% 6 4% of the images.

Similarly for the two species, however, about 2% of the
image needed to be visible within the diagnostic region

on any individual trial for correct performance. We

characterize the low-level image properties of the diag-
nostic regions and discuss individual differences

among the monkeys. Our results reveal that monkeys
base their behavior on confined image patches and es-

sentially ignore a large fraction of the visual input,
whereas humans are able to gather visual information

with greater flexibility from large image regions.

Results and Discussion

We investigated the performance of monkey observers
trained to discriminate among natural images. Natural
images contain structure at many spatial scales distrib-
uted nonhomogenously across the image and are thus
good examples of complex, redundant visual forms.
The monkeys were trained to discriminate between
three natural images by performing a saccade task
with these stimuli (see Figure 1). Every stimulus presen-
tation was followed by the presentation of three re-
sponse targets, each of which was associated with one
of the stimuli. Upon presentation of a particular stimulus,
a saccade to the associated target was rewarded with
a drop of juice.

After the monkeys reached a performance level of at
least 80% correct for a particular stimulus set, ‘‘Bub-
bles’’ was used to identify the diagnostic regions for
each stimulus in the set. In Bubbles, stimuli are sampled
from a parametric search space. Here, we search the im-
age space by presenting the stimuli behind occluders,
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which consist of a mid-gray mask punctured by a num-
ber of randomly located windows (‘‘bubbles’’) through
which the occluded image was visible (see Experimental
Procedures for details). Unique occluders were gener-
ated on every trial by randomly placing the bubbles.
The monkeys continued to perform their discrimination
task on the partially visible images. Whether they could
identify the partially visible stimuli depended on whether
the occluder uncovered image parts critical for task per-
formance. For quantitative analysis, we grouped the oc-
cluders from trials in which a stimulus was correctly
identified. We similarly grouped occluders from incor-
rect trials, and we determined diagnostic regions by
comparing these two groups. At each pixel, the distribu-
tions of occluder values for correct and incorrect trials
were compared with the Kolmogorov-Smirnov test. Im-
age pixels at which occlusion systematically influenced
performance should show a different distribution of oc-
cluder values in correct and incorrect trials, whereas
similar distributions should arise for pixels with no influ-
ence of occlusion. The p values of the Kolmogorov-
Smirnov test were Bonferoni corrected for the number
of image pixels, and diagnostic regions were taken to
be image regions where the corrected p values were
below 0.01.

Because monkeys had not been tested with Bubbles
before, we first established that the technique is suitable
for the study of visual recognition in monkeys. For this
purpose, we used a custom-designed set of geometrical
shapes for which we a priori determined the diagnostic
regions. The results of this experiment are reported in
the Supplemental Data available online. We then pro-
ceeded to use Bubbles to study visual-information use
in a task that required the discrimination among the
members of natural-image sets. The diagnostic regions
for two image sets and both monkeys are shown on the
left side of Figure 2. Diagnostic regions covered on aver-
age 7% 6 2% of each image and were similar in size for
the two monkeys [G00: 4.5%; B98: 9.3%; paired t test:
t(5) = 21.34, p = 0.24]. Note that no diagnostic region
could be determined for one of the images in monkey
B98, suggesting that the monkey used no region consis-
tently to identify the image.

Whereas the size of the diagnostic regions was similar
for the two monkeys, their diagnostic regions tended to
contain different amounts of spatial structure and cover
different image locations. For monkey B98, diagnostic
regions were located closer to the image border and con-
tained image regions that largely lacked spatial struc-
ture. In contrast, G00 used image regions with more spa-
tial structure, located near the center of the images.
Accordingly, diagnostic regions for the two monkeys dif-
fered in terms of their distance from the image center [av-
erage distance for B98: 2.93º of visual angle; G00: 1.99º;
paired t test: t(4) = 25.67, p < 0.01]. Image structure was
characterized by luminance and amount of edges. Both
parameters were computed at four decreasing levels of
spatial scale (see Experimental Procedures). The mean
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Figure 1. Task Design for the Monkey Observers

Each task began with the presentation of a central fixation spot, which the monkeys had to fixate. While the monkey continued to fixate, the fix-

ation spot was replaced by the stimulus for 300 ms, after which time the fixation spot reappeared. Finally, three targets appeared in the periphery,

each of which was associated with one of the stimuli. The monkey had to make a saccade to the correct target to receive a reward.
luminance of the diagnostic regions was similar for both
monkeys, independent of spatial scale [paired t test:
t(4) % 0.75, p R 0.5 for the four scales]. However, the di-
agnostic regions of B98 contained significantly fewer
edges at the finest resolution [paired t test: scale 1:
t(4) = 3.33, p = 0.03; scale 2: t(4) = 2.63, p = 0.06; scale 3:
t(4) = 2.05, p = 0.11; scale 4: t(4) = 2.63, p = 0.06], confirm-
ing that the diagnostic regions of monkey B98 contained
less spatial structure. Thus, diagnostic-region size, but
not its location or spatial structure, was consistent
across both monkeys. During task performance, we in-
troduced catch trials on which the unoccluded images
were shown to ensure that monkeys were maintaining
high performance discriminating the unoccluded im-
ages. Both monkeys performed equally well on these
catch trials [G00: 95% correct, B98: 98% correct, paired
t test: t(5) = 21.24, p = 0.27].
Do the diagnostic regions identified by Bubbles bear
any relation to performing the task outside the Bubbles
paradigm? To address this question, we investigated
whether monkeys could correctly identify images when
presented with their diagnostic regions alone. For this
purpose we constructed ‘‘diagnostic’’ stimuli that con-
sisted of image regions with high diagnosticity by re-
vealing the 10%, 30%, and 50% most diagnostic pixels
(see Figure 3). Similarly, we constructed ‘‘nondiagnos-
tic’’ stimuli consisting of the 10%, 30%, and 50% least
diagnostic pixels. A unique stimulus set was generated
for each monkey on the basis of that monkey’s Bubbles
results. All six stimuli thus constructed were matched
to the original image in terms of mean luminance and
contrast. Monkeys performed the discrimination task
with the modified stimuli with no additional behavioral
training.
Figure 2. Diagnostic Regions in Natural Scenes for Monkeys and Humans

The left side shows the results for the two monkey observers, the right side for the human observers. Lines encircle the diagnostic regions, with

each color corresponding to one observer (observer identity is given in the legend below each plot).
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Figure 3. Verification of the ‘‘Bubbles’’ Results

(A) Exemplar stimuli showing a ‘‘diagnostic’’ and a ‘‘nondiagnostic’’ stimulus. These stimuli were generated based on the Bubbles results for the

first scene in the first image set for monkey G00. In both stimuli, 50% of the original stimulus are exposed.

(B) Performance of the monkeys with the control stimuli. Data are averaged across both monkeys and stimulus sets. Black bars correspond to

the performance for diagnostic stimuli, open bars to the performance for nondiagnostic stimuli. The dashed line shows the chance level (33.3%).

Stars indicate deviations in the performance from chance level significant at p < 0.05, as assessed by a c2 test.
Performance levels were averaged across all six im-
ages in the two sets and both monkeys (see Figure 3).
All performance levels were compared against the
chance level of 33% correct responses with a c2 test.
Monkeys performed significantly better than chance
for all diagnostic stimuli (c2 tests: c2 R 37.6, p < 1028

for the three stimulus sizes). However, monkeys per-
formed at chance level for the three nondiagnostic stim-
uli (c2 % 2.48, p > 0.16 for the three tests). This indicates
that when monkeys were confronted with image regions
of high diagnosticity, they treated these as the un-
occluded images and were able to perform the task. In
the absence of high-diagnosticity regions, monkeys
were unable to perform above chance.

To compare the visual information use of monkeys
with that of humans, we tested human observers with
Bubbles on the identical image sets. The diagnostic re-
gions for human observers are shown on the right side of
Figure 2. With an average size of 51% 6 4% of the full
image, diagnostic regions for human observers were
an order of magnitude larger than the diagnostic regions
determined for the monkeys. A t test showed this differ-
ence to be significant [t(28) = 29.44, p < 0.001]. These re-
sults are summarized in Figure 4A, which contrasts the
diagnostic-region size for the two species.

On most of the trials, the diagnostic regions were not
completely exposed, but only a small portion of them
was visible. To analyze how much of the diagnostic re-
gion was visible on an average correct trial, we focused
on the last trials of each testing session. Performance
levels were similar for monkeys and humans for this
data set [t test on the performance levels, t(25) = 0.05,
p = 0.96]. For each trial, we then computed what fraction
of the diagnostic region was visible through the oc-
cluder. These data, averaged across correct and incor-
rect trials separately, are plotted in Figure 4B, showing
that monkeys needed to see more of their diagnostic
regions to identify an image than human observers. On
average, 42.9% of a diagnostic region needed to be vis-
ible for the monkeys to correctly identify a scene,
whereas on incorrect trials only 32.9% of the diagnostic
region was visible. This difference was statistically sig-
nificant [t(8) = 2.67, p = 0.03]. For human observers,
only an average of 4.2% of the diagnostic region was
visible on correct trials, compared to 2.1% on incorrect
trials. This difference was also statistically significant
[t(17) = 8.60, p < 0.001], as were the differences between
monkeys and human observers [correct trials: t(25) =
12.65, p < 0.001; incorrect trials: t(25) = 11.98, p < 0.001].

The results imply that monkeys needed to see more of
the diagnostic image regions for a correct identification.
However, the diagnostic regions of monkeys cover
a smaller extent of the full image. Considering of each
occluder only the bubbles that fall into the diagnostic re-
gions, we found that for the monkeys, on average 2.0%
of an image was visible on correct trials. This value was
similar to the result for humans, for which 2.2% of an im-
age was visible on an average correct trial [t(25) = 20.41,
p = 0.69]. On the incorrect trials performed by monkeys,
only 1.4% of the images was visible, whereas 1.1% of
the images was visible on incorrect trials for human ob-
servers. Again, the two values were not significantly dif-
ferent [t(25) = 0.91, p = 0.37]. In conclusion, when only
the diagnostic image regions are considered, monkeys
and humans required the same amount of the full stimu-
lus to be exposed for a similar performance.

Finally, we examined individual differences among
human and monkey observers. We estimated the de-
gree to which the diagnostic regions of different ob-
servers overlapped. Averaged across the two image
sets, the diagnostic regions of the two monkeys over-
lapped in 1.2% of the full image, or 17.3% of an average
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Figure 4. Comparison of the ‘‘Bubbles’’ Results between Monkeys and Humans

(A) Size of the diagnostic regions in percentage of original image size. The bars indicate the mean across all observers and images. Symbols

indicate the values for individual diagnostic regions.

(B) Percentage of the diagnostic region visible on an average correct (black bar) or incorrect (open bar) trial. Bars show the average across all

observers and images. The error bars correspond to the standard error of the mean.
diagnostic region. In contrast, the diagnostic regions of
human observers overlapped on average in 35.6% of the
full image, i.e., in 69.2% of the diagnostic regions. Thus,
diagnostic regions of individual human observers
tended to be more similar to each other than the diag-
nostic regions of the two monkeys. This raised the ques-
tion of to what extent the behavior of human observers
can be used to predict the monkey observers’ behavior.
We computed the overlap between the human ob-
servers’ consensus diagnostic region and a monkey ob-
server’s diagnostic region. Across the two scene sets,
the common diagnostic region for the human observers
overlapped with 77.2% of a diagnostic region of monkey
G00. For monkey B98, the data from human observers
could be used to predict about 19.3% of the monkey’s
diagnostic region. This indicates that diagnostic regions
estimated in human observers are not in general a good
predictor for diagnostic regions in monkeys.

We have trained human and monkey observers to dis-
criminate between natural images. Such images contain
a wealth of features that observers might use to dis-
criminate among them. Are observers using all available
features in the images equally, or are they preferentially
relying on certain features to guide their behavior? To
answer this question, we used the Bubbles technique
to determine diagnostic regions for each image. These
diagnostic regions delineate the spatial location of the
features that significantly contributed to observer per-
formance in the discrimination task. Generally, diagnos-
tic regions covered only a fraction of the entire visual
stimulus, suggesting that observers were not drawing
information equally from the entire image, but sampling
preferentially from restricted image portions. Unavail-
ability of diagnostic regions due to occlusion was asso-
ciated with observers’ inability to perform the discrimi-
nation task.

We observed robust differences in diagnostic-region
size between monkey and human observers. Whereas
monkey diagnostic regions covered only a small fraction
of the images, they were approximately an order of mag-
nitude larger for human observers, where they covered
around half of the images. Diagnostic regions represent
the image parts from which observers draw information,
but how much visual information do observers need to
see on an individual trial to enable them to perform cor-
rectly? Intriguingly, taking into account the diagnostic-
region size, we found that around 2% of the entire image
was visible on the average correct trial in both monkeys
and humans. Thus, although the actual amount of visual
information required for correct performance was simi-
lar for monkeys and humans, humans were able to
gather this information from a much larger region. This
suggests that human observers could extract task-
relevant information from the visual environment with
greater flexibility. A recent study applied the Bubbles
technique to a face-classification task in human ob-
servers and pigeons and found general agreement be-
tween diagnostic regions in terms of size and location
for those two species [2]. To what degree this is a result
of the different visual stimuli used in that and our study
remains to be determined.

Although diagnostic-region size was similar for both
monkeys, they showed significant individual differences
in location and image statistics of the diagnostic re-
gions. Diagnostic regions in one monkey were located
close to the image center and contained lots of spatial
structure, whereas in the other monkey they were
located close to the image border and contained little
spatial structure. These differences in the diagnostic re-
gions cannot be explained by different training histories,
because the two monkeys received the same training.
Our results therefore imply that the monkeys’ individual
biases led them to choose different strategies. Note that
both monkeys performed the discrimination task with
unoccluded images at similarly high levels. As our find-
ings suggest, they achieved this performance by using
very different strategies and focusing on different image
regions. There is no way to infer this rather striking
difference in visual information use on the basis of per-
formance data on the discrimination task, and it can
be detected only with a method, such as Bubbles, that
directly visualizes information use.

We demonstrate that trained observers use partic-
ular spatial regions in complex scenes to perform
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a discrimination task. Other forms of perceptual learning
are based on enhancing sensitivity for orientation, spa-
tial frequency, or other stimulus dimensions [3]. The spa-
tial version of Bubbles employed here does not tell us
whether observers are relying specifically on certain
spatial frequency or orientation channels; however, in
principle Bubbles can readily be adapted for the study
of such effects. Indeed, it has already been used to iden-
tify how the performance of a task depends on different
spatial-frequency channels [1], as well as on their phase
[4]. The version of Bubbles we used relies on occlusion to
study the contribution of image features to behavioral
performance, raising the question how relevant our re-
sults are to real-world vision. Occlusion is common in ev-
eryday life, and we are generally able to recognize ob-
jects despite the fact that they are partially occluded.
Thus, Bubbles can be thought of as a parametric unbi-
ased method for simulating the occlusion that occurs
in many real-world situations. In addition, several behav-
ioral studies have provided evidence for the idea that
chimpanzees [5], as well as macaque monkeys [6, 7],
are able to recognize familiar stimuli despite partial
occlusion.

Our findings reveal which features of a set of learned
visual stimuli observers actually use during the perfor-
mance of a task. In brain regions such as area TE of
the inferior temporal cortex, learning has been associ-
ated with long-lasting modifications in neural activity
to represent task-relevant attributes of visual stimuli
[8]. After training, TE neurons become tuned to features
diagnostic for a categorization or discrimination task
[9, 10], or to the trained views of three dimensional ob-
jects [11]. Most previous studies on the effects of train-
ing on the perception of complex stimuli have used stim-
uli with predefined dimensions (for example, [12–14]). In
these studies, stimuli are assigned to different classes
according to experimenter-defined parameter ranges.
For example, observers learned to sort Greeble stimuli
into different classes based on the shapes of their com-
ponents [15], or to sort face and fish stimuli into cate-
gories based on dimensions such as nose height or fin
size [16]. Investigators have generally inferred that after
learning, observer performance must be based on ac-
quired expertise about which aspects of the stimuli are
diagnostic. However, most complex visual stimuli are
not parametrically defined according to simple genera-
tive models and contain many elements that are at
different spatial scales and could be employed by ob-
servers. Direct methods such as Bubbles may thus
prove particularly useful for understanding how such
complex stimuli are encoded in the brain.

Experimental Procedures

Subjects

Two adult male Rhesus monkeys (Macaca mulatta) weighing 10 and

13 kg participated in the experiments. Before the experiments, a

metal head post and a scleral search coil [17] were implanted under

aseptic conditions [18]. Monkeys received their daily amount of

liquid during the experimental sessions and were provided with

dry food ad libitum. The monkeys were tested daily and performed

between 500 and 1000 trials per day. About 20 sessions were col-

lected per monkey for each stimulus set. All studies involving the

monkeys were approved by the local authorities (Regierungspräsi-

dium Tübingen) and were in full compliance with the guidelines of
the European Community (EUVD, European Union directive 86/609/

EEC) and the National Institutes of Health for the care and use of

laboratory animals.

A total of eight human observers (3 males, 5 females) were tested.

All subjects were naive as to the purpose of the experiments. In-

formed consent was obtained from all subjects. Subjects had nor-

mal or corrected-to-normal vision. Testing sessions usually lasted

between 1 and 3 hr, with subjects completing between 1000 and

2000 trials in this time. Subjects returned to the lab for additional

sessions, until a total of 3000 to 6000 trials had been collected.

Task and Stimuli

Two stimulus sets of three natural scenes each were used. All stimuli

had a size of 256 3 256 pixels, corresponding to 6º 3 6º of visual

angle. The natural scenes were taken from Corel PhotoCDs and

normalized to have equal Fourier amplitude spectra [19]. All stimuli

were presented centrally. Both monkey and human observers

worked with one stimulus set at a time. During each trial, one of the

stimuli was randomly chosen and presented to the observer. Ob-

servers had to indicate which of the three stimuli they had just seen.

For monkeys, each trial began with the presentation of a yellow

fixation spot in the center of the screen, combined with the sounding

of a tone. After 100 ms fixation time, the spot was turned off and the

stimulus was presented for 300 ms. During stimulus presentation,

the monkeys had to maintain fixation at the center of the screen in

a window with a radius of 3º. After another 100 ms of central fixation,

three small white squares (the targets) were presented at 6º eccen-

tricity. Each of the three members of a stimulus set was associated

with one of the targets. A saccade to the correct target was

rewarded by a drop of juice.

For human observers, trials began with the presentation of a yel-

low fixation spot for 500 ms, followed by one of the stimuli for

500 ms. Observers responded after the presentation of the stimulus

by pressing designated keys on the numerical keypad of a standard

computer keyboard. Each of the images in a stimulus set was asso-

ciated with a specific response key. No constraints were imposed on

reaction time. For the data described above, no fixation constraints

were imposed because of the brief presentation time, and observers

were not given feedback about the correctness of their answer to

prevent learning and behavioral nonstationarity during ‘‘Bubbles.’’

To ensure that these factors did not significantly contribute to the

differences between humans and monkeys, we performed control

experiments during which three human observers were required to

maintain fixation within 3º of the center of the screen. The control

experiments were performed with the second natural-scene set.

The tested subjects did not participate in the previous experiments.

During these control experiments, stimuli were presented for

300 ms, and we provided human observers with performance feed-

back such that after each trial a ‘‘+’’ or ‘‘2’’ sign on the screen indi-

cated correctness of the response. These conditions thus recreated

the exact parameters we used for the monkeys. We found that the

characteristics of the diagnostic regions were not changed by these

additional controls. In particular, the diagnostic-region size was

33.5% 6 5% and thus statistically indistinguishable from that ob-

tained in the original experiments [46.1% 6 7%, t test, t(16) =

21.54, p = 0.14]. There was a 73% overlap between diagnostic re-

gions determined in these control experiments and the regions

obtained in the original experiment.

All observers were initially trained to associate each of the unoc-

cluded stimuli with its assigned saccade target or button press.

For monkeys, this was done by introducing a brightness cue in the

saccade targets, with the correct target being brighter than the in-

correct targets. This cue was gradually removed as the monkeys’

performance improved. Monkeys were always trained with the entire

stimulus set. Monkeys initially learned to associate visual stimuli

with saccade directions prior to the stimulus sets reported here.

This initial training lasted for a period of several months. Once the

monkeys had learned the rules of the task, they quickly acquired

new stimulus sets. Humans were provided with a printout that

showed both the stimuli and their associated buttons in order to

inform them about the mapping between stimuli and response

buttons. They were then given a training period of 20 trials, in which

they could use the printout to guide their responses. After these

training trials, the printout was removed. All subjects performed
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better than 90% correct on the original stimuli after these training

trials.

After observers had acquired the task with unoccluded stimuli, we

additionally introduced stimuli with occluders. The presentation of

unoccluded images was maintained (10% of trials for human ob-

servers, 40% for monkeys) as a baseline control of the performance.

The occluders were constructed as described in [1]. In brief, each

occluded image appeared to be shown behind a surface punctured

by round windows (‘‘bubbles’’), through which parts of the image

were visible. Bubbles had the profile of a 2D Gaussian, so that

they smoothly merged into the nontransparent background. Bub-

bles were randomly positioned, with the restriction that the center

of each bubble fell onto an image pixel, and two bubbles could not

have identical center coordinates. All bubbles had the same size,

which was determined by setting the standard deviation of the 2D

Gaussian profile to 14 pixels. For the human subjects, bubbles num-

bers were adapted to each subject’s performance by a staircase

protocol. Staircases were run independently for each image in a

stimulus set and converged to a performance of 75% correct. After

every fourth trial of an image, the bubbles number was updated. The

number was decreased by three if the image had been identified cor-

rectly in the last four trials, and it was increased by two if fewer than

three trials had been correct. For the monkeys, we employed the

same staircase procedure in most sessions. As an additional con-

trol, we used a modified staircase procedure for one dataset (sec-

ond set of natural images for monkey B98). During these sessions,

the bubbles numbers were identical for all images, rather than adap-

ted to each stimulus independently as in the original staircase pro-

cedure. The modified procedure thus showed all stimuli through

the same bubbles number, preventing the number of bubbles itself

from serving as a potential cue to the stimulus. They were initialized

to a value at which the monkeys could perform the task at ceiling

performance. After 15 trials, the bubbles numbers were successively

decreased by a fixed amount until the monkey’s performance drop-

ped below 70% correct. At this point, the numbers of bubbles were

reset to the initial value and the cycle was restarted.

Setup

Monkeys performed experiments in acoustically shielded cham-

bers. Eye movements were monitored with the scleral-search-coil

technique [20] and digitized at 200 Hz. Stimuli were presented on a

21’’ monitor (Intergraph 21sd115, Intergraph Systems, Huntsville)

with a resolution of 1024 by 768 pixels and a refresh rate of 75 Hz.

Background luminance of the monitor was set to 41 cd/m2, and

the monitor was g corrected. The monitor was placed at a distance

of 95 cm from the monkey. Stimuli were generated in an OpenGL-

based stimulation program under Windows NT. Similar equipment

was used for human observers, who were seated 85 cm from the

monitor (background luminance of 27 cd/m2). When eye movements

of human observers were measured, the head position of the ob-

servers was restrained by using a chinrest. Eye movements were

measured with iView 1.1 (SensoMotoric Instruments GmbH, Teltow,

Germany).

Data Analysis

Analyses were carried out in Matlab (The Mathworks, Natick). To de-

termine how much of the diagnostic regions was visible through the

occluder on any trial, we analyzed the last 40 trials of each staircase

session for each stimulus. Bubbles numbers were stable throughout

these trials. Monkey B98 was tested on the second set of natural

scenes with a method of constant stimuli; therefore, this data set

was excluded from the analysis. Because only four to six sessions

were run for human subjects, we used only the last four testing ses-

sions for the monkeys. An image pixel was considered to be visible

when the occluder value for this pixel was equal to or larger than 0.5.

Physical properties of an image were characterized as the distri-

bution of luminance, as well as edges across the image [21]. Both

parameters were computed at four spatial resolutions, which were

generated through progressively low-pass filtering and subsam-

pling the image. The four resolutions corresponded to horizontal

and vertical image-reduction factors of 1, 0.5, 0.25, and 0.125. Lumi-

nance information was computed at each resolution by convolution

of the image with a 2D Gaussian with a kernel size of 20 by 20 pixels

and a standard deviation of 4 pixels. Edges of four different
orientations (0º, 45º, 90º, 135º) were detected at each resolution.

They were extracted by applying quadrature filter pairs to the

images, i.e., pairs of similarly oriented sine and cosine Gabor filters.

The standard deviation of the filters was set to 4 pixels, and the fre-

quency to 1/10 pixels. Artifacts at the image borders were avoided

by appending copies of an image to its borders. These copies

were only present while convolutions were computed. All computed

luminance and edge maps were rescaled to half the size of the orig-

inal image, i.e., to 128 by 128 pixels.

Supplemental Data

Supplemental Data include Supplemental Results, one figure, and

one table and are available with this article online at: http://www.

current-biology.com/cgi/content/full/16/8/814/DC1/.
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Dissociation Between Local Field Potentials and Spiking
Activity in Macaque Inferior Temporal Cortex Reveals
Diagnosticity-Based Encoding of Complex Objects

Kristina J. Nielsen, Nikos K. Logothetis, and Gregor Rainer
Max Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany

Neurons in the inferior temporal (IT) cortex respond selectively to complex objects, and maintain their selectivity despite partial occlu-
sion. However, relatively little is known about how the occlusion of different shape parts influences responses in the IT cortex. Here, we
determine experimentally which parts of complex objects monkeys are relying on in a discrimination task. We then study the effect of
occlusion of parts with different behavioral relevance on neural responses in the IT cortex at the level of spiking activity and local field
potentials (LFPs). For both spiking activity and LFPs, we found that the diagnostic object parts, which were important for behavioral
judgments, were preferentially represented in the IT cortex. Our data show that the effects of diagnosticity grew systematically stronger
along a posterior–anterior axis for LFPs, but were evenly distributed for single units, suggesting that diagnosticity is first encoded in the
posterior IT cortex. Our findings highlight the power of combined analysis of field potentials and spiking activity for mapping structure
to computational function in the brain.

Key words: monkey; visual cognition; object recognition; electrophysiology; psychophysics; behavior

Introduction
Because we live in a three-dimensional world, distant objects are
often only partially visible, and in part covered by closer objects.
Under most circumstances, partially occluded objects are recog-
nizable despite the lack of information about the occluded shape
regions. However, it has been demonstrated previously that oc-
clusion of specific, behaviorally relevant shape regions renders
both humans and monkeys unable to perform tasks on partially
occluded shapes (Biederman, 1987; Gosselin and Schyns, 2001;
Nielsen et al., 2006). Occlusion of other shape regions leads to no
behavioral impairments. In this study, our goal is to systemati-
cally examine how occlusion of visual shape regions of differing
behavioral relevance impacts the neural representation of these
shapes in the inferior temporal (IT) cortex of the macaque
monkey.

The IT cortex is thought to play a major role in object recog-
nition processes and contains many neurons that respond to
ethologically relevant objects such as faces (Perrett et al., 1982;
Desimone et al., 1984), but also to arbitrary shapes after the mon-
key has learned to identify them (Logothetis and Sheinberg, 1996;
Tanaka, 1996). IT neurons have been shown to retain their shape
selectivity despite occlusion of randomly selected shape portions
(Kovács et al., 1995). However, it has not been tested whether

occlusion effects depend on which parts of a shape are occluded,
taking the behavioral relevance of the occluded shape parts into
account. Yet, several studies have provided evidence that parts of
objects can be sufficient to evoke responses from IT neurons
(Tanaka et al., 1991; Tsunoda et al., 2001; Baker et al., 2002).
Furthermore, it has been shown that learning modifies neural
responses in the IT cortex. Learning of associations between dif-
ferent shapes (Sakai and Miyashita, 1991; Messinger et al., 2001)
and learning of task-relevance of shape features (Baker et al.,
2002; Sigala and Logothetis, 2002; Sigala, 2004) are both reflected
in IT cortical neural activity. As different shape regions acquire
behavioral relevance because of training on a task, and are thus
the outcome of a learning process, it is likely that the effects of
occlusion will depend on the behavioral relevance of the occluded
shape parts.

Materials and Methods
Behavioral and electrophysiological methods. Two adult male monkeys
(Macaca mulatta) participated in the experiments. All studies were ap-
proved by the local authorities (Regierungspräsidium, Tübingen, Ger-
many) and were in full compliance with the guidelines of the European
Community (European Union directive 86/609/EEC) for the care and
use of laboratory animals. Stimuli were presented on a �-corrected 21
inch monitor, placed at a distance of 97 cm from the monkeys. Each
image subtended 6 by 6° of visual angle. Stimuli were generated as de-
scribed in a previous study (Nielsen et al., 2006). Of the six natural scenes
used in the previous study, we chose four scenes for each monkey. The
average gray-scale value of each stimulus was set to the same value to
control overall luminance. Furthermore, all modifications of an image
had the same overall contrast as the original image (measured as the SD
of the gray-scale values). For occluded images, only unoccluded image
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parts were considered when computing the mean and SD of the gray-
scale values.

During the recording sessions, the monkeys performed a fixation task.
Each trial began when the monkeys acquired fixation on a central fixation
point. After a variable baseline duration of at least 100 ms, a stimulus was
presented for 500 ms. The monkeys were required to maintain fixation
within 1° of the center of the screen for the whole trial. Fixation was
monitored with a scleral search coil and sampled at 200 Hz (CNC Engi-
neering, Enfield, CT). Successful fixation was rewarded with a drop of
juice delivered 1 s after stimulus offset. The monkeys completed at least
10 repetitions for each condition during a recording session.

Single-cell activity and the local field potential (LFP) were recorded
from a recording chamber consisting of a ball-and-socket joint with an
18-gauge stainless-steel tube passing through its center (Schiller and Ko-
erner, 1971). Horsley–Clark coordinates for the chambers were antero-
posterior (AP), 18.1, mediolateral (ML), 17.7 for monkey 1, and AP, 15.4,
ML, 16.8 for monkey 2. Neural signals were recorded using a five-channel
electrode drive (Thomas Recording, Giessen, Germany), and platinum/
tungsten electrodes coated with quartz glass with an impedance between
1 and 2 M� (ESI2ec; Thomas Recording). The recorded signal was di-
vided into multiunit activity (band-passed signal between 500 Hz and 10
kHz) and LFPs (band-passed signal between 1 Hz and 100 Hz). From the
multiunit activity, the activity of single neurons was extracted using stan-
dard spike-sorting techniques (Offline Sorter; Plexon, Dallas, TX). To
ensure an unbiased estimate of neural activity, we made no attempt to
select neurons based on task selectivity. Instead, we advanced each elec-
trode until the activity of one or more neurons was well isolated and then
began collecting data. The position of each electrode in terms of AP and
ML coordinates and distance from the superior temporal sulcus was
noted. We sampled different AP positions in a systematic manner in both
monkeys. In monkey 1, initial recording positions were anterior; over the
course of the experiments, the recording positions were moved more and
more posterior to minimize structural brain damage caused by guide
tube movement. In monkey 2, we proceeded in the opposite way, and
recording locations were moved from posterior to anterior locations.

Data analysis. Single-unit activity was analyzed in a 300 ms time win-
dow beginning 100 ms after stimulus onset to account for neural latency.
Baseline activity was determined in a 100 ms time window preceding
stimulus onset. Spike density functions were computed by convolution
of the spike trains with a Gaussian kernel (� � 10 ms), using a resolution
of 1 ms. Spike density functions of different modifications of the same
scene were normalized by the maximal value observed across all modifi-
cations. The diagnostic variance was computed as VGroup/Vtotal � 100%,
where Vtotal is the total firing rate variance,

Vgroup � 1⁄2 � [(f�diag � f�)2 � (f�ndiag � f�)2],

where f�diag, f�ndiag, and f� represent the diagnostic, nondiagnostic, and
overall firing rate mean, respectively (Bortz, 1993).

The LFP, which was originally sampled at a rate of 4.46 kHz, was first
downsampled to 1 kHz. A bandpass filter (first order Butterworth filter,
bandpass between 5 and 80 Hz) was applied to remove slow drifts. Fi-
nally, each LFP channel was z-transformed using the mean LFP ampli-
tude and SD of the channel in the 100 ms baseline period preceding
stimulus onset. Visual evoked potentials (VEPs) were computed by
stimulus-locked averaging of the LFP data. Individual sites were identi-
fied as responsive to a particular stimulus if the absolute VEP amplitude
was larger than 1.5 SD at three consecutive time bins during the stimulus
presentation. Computation of the variance explained by diagnosticity
was based on the mean LFP amplitude in an interval of 20 ms duration
centered on the maximum of a positive VEP peak at �140 ms (P140).
The same formula was used as for the single units, but replacing mean
firing rate with mean LFP amplitude. The P140 latency depended on the
visible stimulus size; it also differed between monkeys. We therefore used
a different interval for each condition and monkey. Because the visible
stimulus size seemed to be the major determinant of the peak latency, the
same interval was used for diagnostic and nondiagnostic conditions of
the same visible stimulus size. Intervals were always 20 ms long. Their
placement was determined by computing the grand average VEP over all

responsive LFP cases from one monkey for one particular stimulus size
(either full, 10, 30, or 50%). The latency of the peak of the P140 was
determined, and used as the center for the 20 ms interval.

Results
In a previous study, two Rhesus monkeys (Macaca mulatta) were
trained to discriminate between the members of small sets of
natural scenes. We used natural scenes because they are good
examples of complex visual stimuli, and contain information at
many different spatial scales. After training, we systematically
determined the parts of each scene that the monkeys relied on to
perform the discrimination task (Nielsen et al., 2006). To inves-
tigate how occlusion of different scene parts influenced neural
responses in the IT cortex, we used these results to split each scene
into parts with and without behavioral relevance. By constructing
appropriate masks, we generated three occluded versions of each
scene which revealed only the behaviorally relevant parts of the
scene (diagnostic conditions). We similarly constructed three oc-
cluded versions in which only behaviorally irrelevant scene parts
were visible (nondiagnostic conditions). Across the three diag-
nostic versions of each scene, and similarly across the three non-
diagnostic versions, we varied how much of the original scene
remained visible (visible stimulus size: 10, 30, or 50%). Exemplar
stimuli are shown in Figure 1. To avoid low-level differences
between conditions, all stimuli were adjusted to have the same
mean luminance, as well as the same overall contrast. Because
each of the monkeys relied on different image regions to perform
the discrimination task, each monkey had its own stimulus set.
We verified that the monkeys could correctly identify a scene
when presented with any of the diagnostic, but not when pre-
sented with any of the nondiagnostic conditions (Nielsen et al.,
2006).

Using these behaviorally defined stimuli, we recorded the ac-
tivity of well isolated single neurons in area TE in the two mon-
keys. During the recording sessions, the monkeys viewed a set of
28 stimuli, consisting of four scenes and the corresponding diag-
nostic and nondiagnostic conditions. Activity of 423 neurons was
recorded from both monkeys. Neural responses to the different
scenes were treated independently. For each neuron, the re-
sponses to all versions of a scene were included in the analysis if at
least one version (either the original scene or one of the modifi-
cations) evoked significant excitatory responses from the neuron
(t test vs baseline activity, p � 0.05 corrected for the 28 compar-
isons). Thus, each neuron could contribute between one and four
“cases” (the responses to all versions of one scene) to the group
analysis. By these criteria, 220 cases generated by 135 neurons
were selected for additional analysis.

The activity of an exemplar neuron from this group is shown
in Figure 1. Presentation of the full natural scene elicited a visual
response from the neuron (t test vs baseline activity, p � 10�6), as
did all diagnostic conditions ( p � 0.0004, p � 10�4, and p �
10�4 for the three conditions). In contrast, only the largest non-
diagnostic condition triggered a significant response from the
neuron ( p � 0.54, p � 1.0, and p � 0.003 for these conditions).
The visible stimulus size also influenced the neural firing rates,
with larger responses to stimuli that revealed more of the original
natural scene. However, responses to the diagnostic conditions
were always larger than to the nondiagnostic conditions
(ANOVA with factors diagnosticity and size: main effect size, p �
0.001; main effect diagnosticity, p � 0.001; interaction, p � 0.29).

Similar effects were seen across the whole population of neu-
rons. The population spike density function (Fig. 2a) showed a
response to the full stimulus that began with the typical latency of
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TE neurons of �100 ms (Baylis et al., 1987; Tamura and Tanaka,
2001) and lasted throughout the stimulus presentation period. As
shown in Figure 2b, the corresponding diagnostic and nondiag-
nostic conditions evoked significantly less activity than the full
stimulus (paired t tests between the full and other conditions, p �
0.001 in all cases). Thus, occlusion of parts of the original scenes
in general reduced the response rate of TE neurons. Similar ef-
fects of occlusion on responses of TE neurons have been reported
previously (Kovács et al., 1995). In addition, we found that re-
sponses to diagnostic stimulus parts were greater than responses
to nondiagnostic parts. Diagnostic conditions resulted in larger
mean firing rates than nondiagnostic conditions at all visible
stimulus sizes (paired t tests between conditions of the same vis-
ible stimulus size, p � 0.02 in all three cases). Interestingly, re-
sponses in the diagnostic conditions were on average indepen-
dent of the visible stimulus size (one-way repeated measures

ANOVA, p � 0.9). Revealing 10% of the
image with high behavioral relevance trig-
gered the same responses as revealing 50%
with high behavioral relevance. The differ-
ences between diagnostic and nondiagnos-
tic conditions were seen in many individ-
ual neurons. For 90 cases, firing rates in at
least one diagnostic condition were signif-
icantly different from the matching non-
diagnostic condition (t test, p � 0.05
adjusted for the three comparisons). Fur-
thermore, we plotted the net firing rate of
each case to a diagnostic stimulus condi-
tion against the net firing rate for the
matching nondiagnostic condition (for the
visible stimulus size of 10%, see Fig. 2c). At
all visible stimulus sizes, more cases had
higher firing rates in the diagnostic than in
the nondiagnostic condition (� 2 test, visi-
ble stimulus size of 10%, 147 vs 70 cases,
p � 0.001; 30%, 129 vs 87, p � 0.004; 50%,
127 vs 90, p � 0.01). Diagnostic regions
were determined in experiments in which
the monkeys performed a discrimination
task. In contrast, we used a passive fixation
paradigm for the neurophysiological re-
cordings. We verified in a separate control
experiment that our findings were not in-
fluenced by the different tasks (supple-
mental experiment 1, Fig. 1, available at
www.jneurosci.org as supplemental mate-
rial). In conclusion, our results indicate
that the behavioral relevance of a scene
part is a major determinant for the influ-
ences of occlusion in area TE. Note that
many neurons also responded to nondiag-
nostic parts, suggesting that learning the
visual discrimination task led to a relative
reweighting of neural representations of
parts according to their diagnosticity, but
did not completely abolish responses to
nondiagnostic regions.

Given the robust influences of diagnos-
ticity on occlusion effects on the popula-
tion level, we investigated how different
subregions of TE were influenced by diag-
nosticity. A subdivision of TE into smaller

subregions has been suggested based on anatomical data (Seltzer
and Pandya, 1978; Iwai and Yukie, 1987; Yukie et al., 1990), but
also because a functional specialization of neurons has been ob-
served in different parts of TE (Hasselmo et al., 1989; Janssen et
al., 2000; Perrett et al., 1991, 1992; Tamura and Tanaka, 2001). To
map the influences of diagnosticity across TE, we quantified the
effect of stimulus diagnosticity on each case by computing how
much of the total trial-by-trial variance in firing rate could be
explained by diagnosticity (the “diagnostic variance”). If the fir-
ing rate of a neuron for the occluded conditions was solely deter-
mined by the diagnosticity of the visible parts, then the diagnostic
variance equals 100%, whereas a diagnostic variance of 0% would
indicate equal responses to diagnostic and nondiagnostic
conditions.

Cases with high diagnostic variance values responded prefer-
entially to diagnostic scene parts. To show this, we selected the

Figure 1. Responses of an exemplar single unit. a, Raster plots. In these plots, each line denotes the occurrence of an action
potential generated by the selected neuron (stimulus onset at 0 ms). Each plot summarizes the responses in one of the seven
conditions, using the stimuli shown next to each raster plot (occluded image parts are shown as hatched regions; they were gray
in the actual stimuli). The labels next to each raster plot indicate the type of condition (D, diagnostic; ND, nondiagnostic; numbers
correspond to the visible stimulus size). The gray region in each raster plot corresponds to the time window used for computing
the stimulus evoked firing rate. b, Average net firing rate for the selected neuron. Error bars denote SEM, asterisks indicate
conditions for which a t test between stimulus and baseline firing rate yielded p � 0.05. As a reference, the diagnostic variance
for this case is given in the plot.
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cases for which the diagnostic variance
value was above the 90th percentile of all
diagnostic variance values. The average
spike density function for these 22 “high-
diagnosticity cases” is plotted in Figure 3a,
showing that the neurons with high diag-
nostic variance values indeed responded
more strongly to diagnostic than to nondi-
agnostic conditions (repeated measures
ANOVA on the mean firing rates with fac-
tors diagnosticity and size; significant
main effect of diagnosticity, p � 0.001,
with no interaction with size, p � 0.92).
Similarly, across all cases, higher diagnos-
tic variance values were associated with in-
creasingly larger responses to diagnostic
than to nondiagnostic conditions (supple-
mental Fig. 2, available at www.jneuro-
sci.org as supplemental material).

To study the influences of diagnosticity across TE, we plotted
the recording locations of the high diagnosticity cases. Figure 4a
shows their distribution along the AP dimension of the recording
region for one of the monkeys. The results for the other monkey
were similar (supplemental Fig. 3, available at www.jneurosci.org
as supplemental material). For each monkey, we divided the re-
cording region into two halves with an equal extent along the AP
axis. We found that high-diagnosticity cases were evenly distrib-
uted across the posterior and anterior half of the recording region
(monkey 1, � 2 test, p � 1; monkey 2, � 2 test, p � 1). As a second
step, we plotted the diagnostic variance of each case as a function
of its AP recording location (Fig. 4c). There was no influence of
the recording location on the diagnostic variance. This was the
case for each monkey individually, as well as for the data of both
monkeys combined (Pearson correlation coefficients not signif-
icantly different from zero; monkey 1, p � 0.5; monkey 2, p � 0.9;
combined data, p � 0.6). We similarly tested for differences along
the ML axis (data not shown). Again, no consistent influence of
recording location on the diagnostic variance could be observed
(Pearson correlation coefficients not significantly different from
zero; monkey 1, p � 0.1; monkey 2, p � 0.8; combined data, p �
0.8). Furthermore, we investigated whether cases in the lower
bank of the superior temporal sulcus (STS) and ventral TE were
differently influenced by stimulus diagnosticity. These TE re-
gions have been shown previously to be differently involved in
the encoding of three-dimensional objects; they also differ in
their connection pattern with other brain regions (Janssen et al.,
2000). Here, no differences were found between cases located in
the lower bank of the STS or ventral TE. Critically, the depen-
dency of the diagnostic variance on AP position remained the
same in both regions. The correlation coefficients computed be-
tween diagnostic variance and AP position were not significantly
different between the lower bank of the STS and ventral TE, both
for the combined data as well as both monkeys individually
(monkey 1, p � 0.7; monkey 2, p � 0.6; combined data, p � 0.3).
Thus, across the tested region, TE neurons were homogeneously
influenced by stimulus diagnosticity.

Spike counts capture local processing as well as long range
outputs of neurons in a brain region. However, the LFP is a mass
signal that is influenced by currents originating from axons, so-
mata, and dendrites around the electrode (Mitzdorf, 1987; Logo-
thetis, 2002; Logothetis and Wandell, 2004), and thus reflects
local neural processes as well as the inputs from other brain re-
gions to the region under study. It has been shown previously that

the LFP recorded from individual sites in the IT cortex carries
object-selective information (Kreiman et al., 2006). Here, we
study the influence of diagnosticity on the LFP. If task-related
neural signals can be observed at the level of spiking activity but
not LFP, it suggests that these signals are locally computed rather
than relayed to the region under study from other brain areas.
The relation between spiking activity and LFP can thus provide
useful information about the localization of particular computa-
tions. We subjected LFP signals recorded concurrently with the
spiking activity discussed above to an analysis that was similar to
the previous analysis, but took into account the continuous and
time-varying nature of the LFP. We first selected LFP sites exhib-

Figure 2. Population response. a, Average normalized spike density function for the 220 visually responsive cases. Spike
density functions are averaged across the three diagnostic and nondiagnostic conditions. Dashed lines correspond to the SEM. The
stimulus onset occurs at time 0 ms. b, Mean net firing rate for the complete population. Errors bars show the SEM and asterisks
indicate conditions with a mean significantly different from zero (t test, p � 0.05). Labels for conditions are as in Figure 1. c, Net
firing rate in a diagnostic condition (visible stimulus size 10%) versus the net firing rate in the matching nondiagnostic condition.
Each point represents one case. A minority of cases had firing rates higher than 20 spikes/s or lower than �10 spikes/s. These
cases are plotted overlying the corresponding axis. The square represents the example neuron depicted in Figure 1. The dashed
line indicates equal responses in the diagnostic and nondiagnostic condition. The numbers list the cases above and below this line.

Figure 3. Population average for the high diagnosticity cases. a, Average normalized spike
density function, computed across the 22 single-unit cases for which the diagnostic variance
exceeded the 90th percentile of all cases. b, Average VEP for the 23 LFP cases for which the
diagnostic variance exceeds the 95th percentile. The VEP component labeled with an arrow is
the P140. For spiking activity and LFP, the diagnostic and nondiagnostic conditions are plotted
separately; the response to the full condition is repeated in the two plots. Labels indicate the
condition (D, diagnostic; ND, nondiagnostic; numbers correspond to the visible stimulus size).
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iting a visual response to at least one stim-
ulus, as indicated by the VEPs (Materials
and Methods). Responses to different
scenes were again treated as separate cases,
and a total of 458 cases from 214 LFP sites
were analyzed further.

The grand average VEP of these cases
showed three prominent peaks in the time
interval from 100 to 200 ms after stimulus
onset (data not shown). A negative deflec-
tion �100 ms after stimulus onset (N100)
was followed by a positive peak at �140 ms
(P140), and finally, a second negative de-
flection at 200 ms (N200). To characterize
activity at each LFP site, we analyzed the
LFP amplitude in a 20 ms bin around the
peak time of the most prominent compo-
nent, which was the P140 (Materials and
Methods). An analysis of the N200 ampli-
tudes yielded similar results, whereas the
N100 amplitude exhibited no systematic
effects (supplemental Fig. 4, available at
www.jneurosci.org as supplemental mate-
rial). To illustrate the behavior of individ-
ual LFP sites, the VEP and the P140 ampli-
tude of an exemplar site are plotted in
Figure 5.

The P140 amplitude of this LFP site
clearly distinguished between diagnostic
and nondiagnostic conditions. All diag-
nostic conditions generated a P140 with an
amplitude significantly larger than zero (t
test, p � 0.006, p � 0.003, and p � 0.001
for the three conditions), as did the full
condition ( p � 0.003). However, none of
the nondiagnostic conditions evoked a
P140 with an amplitude larger than the
baseline level (t test against 0, p � 0.83, p �
0.20, and p � 0.23 for the three condi-
tions). The visible stimulus size had no in-
fluence on the P140 amplitudes for this site
(ANOVA with factors diagnosticity and
size: main effect size, p � 0.61; main effect
diagnosticity, p � 0.001; interaction, p �
0.15).

Based on the P140 amplitudes, we com-
puted the percentage of trial-by-trial vari-
ance in the LFP, which could be explained
by influences of diagnosticity. As was the
case for spiking activity, LFP cases with
high diagnostic variance values responded
preferentially to diagnostic conditions.
Figure 3b plots the average VEP for the 23
LFP cases with high diagnostic variance
values (above the 95th percentile). For
these cases, the amplitude of the P140 was
significantly greater in diagnostic than in
nondiagnostic conditions (repeated mea-
sures ANOVA with factors diagnosticity
and size; significant main effect of diag-
nosticity, p � 0.001, with no interaction
with size, p � 0.39). In addition to the in-
fluences of diagnosticity, the visible stim-

Figure 4. Influence of recording position on the properties of single units and the LFP. a– b, Location of high diagnosticity
cases in monkey 1, shown on a sagittal view of parts of the temporal lobe. In a, the two small brain pictures on the left indicate the
location of the selected brain region. This region is indicated in black in the upper image; it is generated by slicing along the line
depicted in the lower image. The right side in a shows the distribution of single-unit high-diagnosticity cases. b, Distribution of the
high-diagnosticity LFP cases. In these plots, each dot corresponds to one case recorded from this monkey. Large dots show the
location of the diagnosticity cases; small dots show the locations of the rest of the cases. To allow a better separation of different
cases, the AP position of each case was randomly jittered by a small amount for display purposes only. The dashed line divides the
recording region into a posterior and anterior half with equal extent along the AP axis; numbers list the diagnosticity cases in each
half. Thick black lines indicate the location of the STS and the ventral end of the brain. The white matter (WM), which separates the
lower bank of the STS from ventral TE in the selected slice, is shown by the gray region. The position of these landmarks is plotted
as estimated during recordings. c– d, Diagnostic variance as a function of recording location. In these plots, the diagnostic variance
of each case is plotted as a function of its AP position. Symbols indicate the monkey in which a case was recorded; the thick line
plots the regression computed between diagnostic variance and AP position. c, Single unit data. d, LFP data. In all plots, Post and
Ant label the posterior and anterior end of the recording region, respectively.

Figure 5. Responses of an exemplar LFP site. a, Visual evoked potentials. The P140 is labeled with an arrow. Diagnostic
and nondiagnostic conditions are plotted separately; the response to the full condition is repeated in both plots. Condi-
tions are labeled as in Figure 3. b, Amplitude of the P140, averaged across trials. Error bars denote the SEM; asterisks
indicate the conditions for which a t test of the peak amplitude against 0 yielded p � 0.05. As a reference, the diagnostic
variance for this site is also given.
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ulus size also had an effect on the P140, as its latency depended on
the visible stimulus size. In all diagnostic conditions, the latency
of the P140 (computed as the latency of the positive peak between
100 and 200 ms after stimulus onset) was significantly longer than
in the full condition (paired t tests, p � 0.001, p � 0.001, and p �
0.005 for the three conditions). We did not determine the laten-
cies of the P140 in the nondiagnostic conditions, as the peak
amplitudes in these conditions were too small to allow a reliable
measurement of latencies. A high diagnostic variance was not
only linked to larger P140 amplitudes in the diagnostic condi-
tions for the high diagnosticity cases; a positive correlation be-
tween the diagnostic variance and stronger responses to diagnos-
tic conditions was also obtained at the population level,
suggesting that in general higher explained variance values were
linked to stronger responses in diagnostic conditions (supple-
mental Fig. 1, available at www.jneurosci.org as supplemental
material).

Using the diagnostic variance values, we then mapped across
TE how occlusion effects observed in the LFP depended on stim-
ulus diagnosticity. Figure 4b shows the locations of the LFP cases
strongly influenced by diagnosticity in one monkey. It can be seen
that high-diagnosticity LFP cases clearly clustered in the anterior
half of the recording location (� 2 test, p � 0.008). The same was
the case for the other monkey (� 2 test, p � 0.005). Figure 4d plots
the diagnostic variance as a function of AP position for the entire
population of LFP cases. Across all LFP cases, there was a signif-
icant correlation between the AP location of a LFP case and its
diagnostic variance. This was the case for each monkey individ-
ually, as well as for the combined data from both monkeys (Pear-
son correlation coefficient, monkey1, r � 0.16, p � 0.04; monkey
2, r � 0.31, p � 0.001; combined data, r � 0.33, p � 0.001). This
indicates that the influence of diagnosticity on LFP responses
grew systematically stronger the more anterior in TE the LFP
responses were recorded.

Learning effects can modify the responses of TE neurons
during individual recording sessions (Messinger et al., 2001).
The observed gradient in the LFP responses could thus have
been generated because of a systematic sampling of the record-
ing locations. Recording from posterior locations in the initial
sessions of the experiment, and from anterior locations in the
final sessions could have made a learning effect appear as a
spatial gradient. Whereas the recording location was slowly
moved from posterior to anterior locations across the differ-
ent sessions for one monkey, we used the opposite direction
for the other monkey. Because we find the same gradients for
both monkeys, learning-dependent changes occurring during
the recording sessions cannot account for the spatial gradient
in LFP responses.

As for the single units, we tested whether this relationship was
similarly present in the lower bank of the STS and ventral TE, and
computed correlation coefficients separately for cases located in
these two regions. The correlation coefficients were not signifi-
cantly different between the two regions (monkey 1, p � 0.7;
monkey 2, p � 0.4; combined data, p � 1). We also tested
whether the position of an LFP case along the ML axis had an
influence on the diagnostic variance of the case. Across the whole
population of LFP cases, we observed a significant correlation
between ML location and diagnostic variance (r � 0.26; p �
0.001). However, this effect was caused by a strong correlation
observed for monkey 2 (r � 0.27; p � 0.001). In monkey 1, there
was no significant correlation between ML position and diagnos-
tic variance (r � �0.04; p � 0.6).

Discussion
We have experimentally determined which parts of natural
scenes monkeys are using in a visual task. Occlusion of these
diagnostic parts had a larger influence on neural responses in area
TE of macaque cortex than occlusion of nondiagnostic parts, at
the level of individual single neurons as well as at the level of local
populations as measured by the LFP. This suggests that not all
aspects of learned stimuli are encoded equally, but instead that
those parts are preferentially represented which are diagnostic for
the behaviors associated with these stimuli. Thus, we find signa-
tures of a scene encoding in IT which is based on the diagnosticity
of scene parts. In our case, monkeys learned to perform a partic-
ular saccadic eye movement associated with each member of a
small set of natural images. In learning this task, each of the
monkeys came to rely on particular features in each image and
these behaviorally relevant or diagnostic features were preferen-
tially encoded in the IT cortex. This lends support to the notion
that the neural representation of objects in IT may be not be fixed
but instead strongly influenced by the visual experience and view-
ing history of each observer.

Extensive studies of how single-cell responses in area TE to
whole objects can be understood in terms of the responses to
object parts have been performed in anesthetized monkeys
(Tanaka et al., 1991; Tanaka, 2003). In these studies, experiment-
ers used a reductive determination procedure to identify optimal
features for each neuron under study. Our approach is different
in that we rely on the monkeys’ performance to systematically
determine for each stimulus the parts that allow correct recogni-
tion behavior. Our results show that this behavioral relevance or
diagnosticity is a major determining factor of how learned stimuli
are encoded in memory. There has also been published work with
behaving monkeys that more indirectly speaks to the issue of
parts based representation. For example, TE neurons tended to
show systematic tuning for dimensions in parametrically defined
line-drawing stimuli that were important for the performance in
a categorization task, but not for unimportant features (Sigala
and Logothetis, 2002; Sigala et al., 2002). Similarly, TE neurons
selectively represented feature conjunctions in visual stimuli
composed of two parts, when these were relevant for correct task
performance (Baker et al., 2002). In these studies, behaviorally
relevant parts exerted a greater influence on neural responses
consistent with our findings, but responses to whole stimuli were
never directly compared with the responses to the parts alone.

We have observed effects of diagnostic parts-based encoding
not only at the level of spiking activity, but also at the level of local
populations as measured by the LFP. The LFP is a mass signal that
originates from current flow in dendrites and somata in neural
populations near the tip of the electrode. It is estimated that
between 60 and 70% of excitatory connections of a given pyra-
midal cell remain local and only between 30 and 40% project to
other cortical area (Braitenberg and Schüz, 1998; Binzegger et al.,
2004). The LFP thus provides a combined measure of local pro-
cessing, as well as the inputs from other brain regions. Spiking
activity, however, can be considered to provide a combined mea-
sure of local processing and outputs to connected target areas.
Our results reveal that diagnosticity-related spiking activity was
found evenly along the posterior to anterior progression of area
TE. Critically, diagnostic LFP activity was only observed in the
anterior part of the recording area. To our knowledge this is the
first such dissociation between spiking and LFP activity as a func-
tion of anatomical recording area. This finding has two major
consequences. In posterior TE, diagnosticity was represented
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only at single cell but not LFP level. Thus, absence of task-relevant
signals in the LFP of a given brain region does not necessarily
imply that no single neuron in that region shows such task-
relevant signals. Posterior TE regions project strongly to the an-
terior TE, where we did find evidence of diagnostic parts-based
encoding in both LFP and single cell activity. Our findings are
consistent with the idea that diagnosticity is first represented by
select populations of neurons in the posterior TE, and then trans-
mitted to the anterior TE. We suggest that observation of task-
relevant effects at the LFP level does not necessarily imply that the
associated functions are performed in the region under study, but
rather that they may be computed in brain areas that project to
the region under study. Because the LFP is closely related to EEG
signals recorded in human subjects, this has profound effects on
the interpretation of related findings in humans. For example,
EEG studies in humans have been used to link activity in the
human lateral occipital complex to the perception of coherent
objects from their isolated parts (Doniger et al., 2000; Murray et
al., 2004). Our work suggests that this may underestimate the size
of the computational network underlying this function. Thus, in
general, brain areas where correlates of cognitive functions are
actually computed should show effects at the single unit but not
LFP level, whereas regions where this information is dynamically
routed should show effects at both the single cell and LFP levels.
Combined single-cell and LFP recordings thus provide more in-
formation than each kind of signal alone, and analysis of the
relationship between these signals can provide a novel and pow-
erful method for mapping structure to function in the brain.
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Introduction 

Traditionally, neurophysiological investigations in awake non-human primates have 

largely focused on the study of single unit activity (SUA), recorded extracellularly in 

behaving animals using microelectrodes.   The general aim of these studies has been to 

uncover the neural basis of cognition and action by elucidating the relation between brain 

activity and behavior.   This is true for studies in sensory systems such as the visual 

system, where investigators are interested in how SUA covaries with aspects of visually 

presented stimuli, as well as for studies in the motor system where SUA covariation with 

movement targets and dynamics are investigated.  In addition to these SUA studies, there 

has been increasing interest in the local field potential (LFP), a signal that reflects 

aggregate activity across populations of neurons near the tip of the microelectrode.  In 

this chapter, we will describe recent progress in our understanding of brain function in 

awake behaving monkeys using LFP recordings.  We will show that the combination of 

recording the activity of single neurons and local populations simultaneously offers a 

particularly promising way to gain insight into cortical brain mechanisms underlying 

cognition and memory. 

Measures of neural activity at the level of neurons and networks 

The activity of single neurons (SUA) is estimated by amplifying and collecting the 

comprehensive broadband electrical signal, which can be detected in the brain by using 

microelectrodes. This signal is digitized at rates of 20kHz or higher, and high-pass 

filtering to remove its low frequency components at a typical cutoff frequency of 300Hz.  

Clustering methods are then used to extract the times of action potentials generated by 

one or more neurons near the electrode tip, by identifying and gathering the occurrence of 

waveforms with a particular, predefined shape corresponding to the signature of action 
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potentials emitted by the neuron being studied.  The part of the comprehensive signal that 

has often been filtered away to identify and sort action potentials has received 

comparatively little attention, but recent accumulating evidence suggests that it carries 

potentially very useful information.  When the unfiltered broadband signal picket up at 

the microelectrodes is considered, it becomes clear that it actually consists of several 

components (for a review, see (Logothetis 2002; Logothetis and Wandell 2004)).  To 

extract these components, the broadband signal is usually split into two different 

frequency bands by high- and lowpass filtering, respectively.  Highpass filtering is used 

to extract the multiunit activity (MUA), while lowpass filtering isolates the local field 

potential (LFP).  The MUA, obtained by bandpass filtering the comprehensive signal in a 

frequency range of 400 Hz to about 3 kHz, represents the weighted average of the spiking 

activity within a sphere of about 200 – 300 μm around the electrode tip.  This MUA bears 

close resemblance to SUA, but it differs in that it represents average action potential 

activity generated by neurons close to the electrode tip rather than those of an individual 

single neuron.  Another difference between the signals is that there tends to be an 

overrepresentation of large excitatory pyramidal cells in SUA estimates (Henze et al. 

2000) due to sampling biases related to the recording technique, whereas MUA is less 

susceptible to this limitation.  According to current estimates, over 70% of excitatory 

synapses in the cortex remain local, and only about 30% target distant brain regions 

(Binzegger et al. 2004; Braitenberg and Schüz 1998).  Since both MUA and SUA capture 

spiking activity, they thus represent local processing within a cortical column as well as 

the long-range output that targets distant brain regions.  The LFP, on the other hand, is 

extracted from the broadband signal picked up at an electrode by lowpass filtering below 

about 300 Hz.  It measures extracellular fields generated by membrane currents 

originating from axons, somata and dendrites surrounding the electrode tip(Logothetis 

2002; Logothetis and Wandell 2004; Mitzdorf 1985).  Synchronized dendritic activity is 

thought to have the largest contribution to the LFP (Mitzdorf 1985), making the LFP a 

measure of the local processing in a brain region, as well as of the inputs that the brain 

region receives.  The LFP is a mass signal, representing the weighted average of the 

synaptic signals of a neuronal population within 0.5 – 3 mm of the electrode tip 

(Logothetis 2002).  Accordingly, LFPs depend on temporal synchronization between 
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dendritic events in the sampled population, as well as on the spatial alignment of the 

constituting neurons.  Furthermore, the LFP may not only reflect the activity of the large 

pyramidal neurons, but also the interneuronal activity within a cortical volume.  In 

summary, MUA and SUA capture different aspects of neural processing than the LFP.  

On the one hand, MUA and SUA contain signals related to the spiking output of a brain 

region, along with signatures of local processing carried out in that region.  On the other 

hand, the LFP reflects dendritic input to the region near the electrode tip, as well as local 

processing in that region.  The spiking output of a single neuron is related to the synaptic 

input by a nonlinear transformation, and the same is true at the level of neuronal 

populations.  Thus systematically comparing the input to a brain region to its output 

represents valuable information.  Using appropriate experimental designs, one can 

directly compare neural activity at the level of LFP to MUA/SUA, and the differences 

between these measures can be thought of as representing the local operations carried out 

by a particular brain structure.   

 When comparing LFP and SUA, the different nature of the two signals has to be 

kept in mind.  SUA consists of the occurrence of action potentials from a particular 

neuron, and is thus a discrete signal.  In most cases, SUA is summarized by computing 

the mean firing rate of a neuron in a selected time interval.  In contrast, the LFP is a 

continuous signal.  The LFP is commonly analyzed either in the spectral or the temporal 

domain.  Spectral analysis consists of computing the power spectrum of the LFP, 

possibly in a time-resolved manner by computation of the spectrogram.  The power in 

selected frequency bands, or the overall shape of the spectrum is then analyzed further.  

Analysis in the temporal domain is usually performed by computing the averages of the 

LFP across multiple trials of the same condition.  Before averaging, trials are aligned to a 

selected time point, such as the onset of a stimulus or a movement.  The resulting evoked 

potentials usually show a series of positive and negative peaks, whose amplitudes can 

then be analyzed further.  MUA is a continuous signal like the LFP, which is often 

analyzed by computing its average amplitude in a selected time interval. 
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Previous work on LFP and SUA 

Throughout the last years, a number of studies have performed detailed comparisons 

between the LFP and SUA or MUA in the macaque monkey.  Comparisons were carried 

out across a number of brain regions, as well as a number of tasks.  Many of these studies 

have largely focused on describing similarities between these signals during various 

cognitive tasks.  Such similarities emerged for example when studying the LFP responses 

in area V1, the initial cortical stage of visual processing.  In agreement with the behavior 

of single neurons, LFPs recorded in area V1 display sensitivity to the orientation of a 

grating pattern, as well as the grating’s contrast (Frien et al. 2000; Henrie and Shapley 

2005).  In both cases, it seems that LFP components with frequencies in the gamma band 

(i.e. above about 30 Hz) are most sensitive to stimulus parameters.  Similar results have 

been obtained for area MT in the visual cortex, which is strongly implicated in motion 

perception based on the response properties of single MT neurons (for a review, see 

(Born and Bradley 2005)).  The LFP recorded in MT, specifically its frequency 

components above 40 Hz, also carries information about the direction and speed of a 

moving stimulus (Liu and Newsome 2006).  Agreement between LFP and MUA could be 

observed at individual recording sites, as the preferences for particular stimulus speeds 

and motion directions were highly correlated between LFP and MUA signals recorded 

from the same electrode.  Furthermore, variability in both LFP and MUA correlated well 

with the monkey’s trial-to-trial performance in a speed discrimination task.  LFPs were 

also recorded in the inferotemporal (IT) cortex, which represents the final stage of the 

ventral visual processing stream.  Neurons in this area show a strong preference for 

complex objects including faces (for reviews, see (Logothetis and Sheinberg 1996; 

Tanaka 1996)).  Again, the LFP recorded in area IT is in agreement with the behavior 

established for individual neurons, and LFPs recorded from sites in IT show selectivity 

for complex objects (Kreiman et al. 2006).  In further agreement with the behavior of 

single neurons, the LFP recorded in IT also shows tolerance to changes in an object’s 

position in space, as well as the object’s size.  Object selectivity can be observed by 

analyzing the LFP either in the temporal or in the spectral domain.  In the temporal 

domain, the range of the LFP signal (the difference between the maximum and minimum 

LFP amplitude) differs between objects, which correlates with a modulation of LFP 
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broadband power in the spectral domain.  Finally, a number of studies have assessed the 

LFP signals related to the planning and execution of hand and eye movements.  The LFP 

recorded in the arm regions of the primary motor area M1, as well as of the 

supplementary motor area (SMA) has been found to convey information about arm 

movements.  The evoked potentials in these areas contain components that are influenced 

by the direction of an arm movement.  Evoked potentials are furthermore sensitive to 

which hand is used for a task, and whether the monkey moves only one or both hands 

(Donchin et al. 2001; Mehring et al. 2003).  The same response properties are displayed 

by single neurons recorded in M1 and SMA (Donchin et al. 1998).  Further similarities 

between LFP and SUA have been documented for the parietal reach region (PRR) and the 

lateral intraparietal area (LIP) in the posterior parietal cortex.  Analyses of single neuron 

responses have established that these areas contain maps for the direction of either arm or 

eye movements that the monkey is intending to perform (for a review, see (Andersen and 

Buneo 2002)).  The LFP in areas PRR and LIP also encodes the direction of planned arm 

and eye movements (Pesaran et al. 2002; Scherberger et al. 2005).  In area LIP, tuning 

widths for movement directions are similar for the LFP and SUA.  Consistent with the 

results obtained for the visual cortex, planning either an eye or an arm movement is most 

strongly reflected in LFP components with frequencies in the gamma range.   

 In conclusion, many of the studies performed so far have revealed that the LFP in 

general shows response properties similar to that of the neurons recorded in the same 

brain region.  However, experiments have also documented interesting differences 

between LFP and SUA or MUA behavior.  A number of these differences could be due to 

the fact that the LFP pools signals over a larger neuronal population than the other two 

signals.  This means that the neurons contributing to the LFP signals have more diverse 

response properties than the ones contributing to either SUA or MUA.  For example, it 

has been demonstrated that the LFP recorded on an electrode is a poor predictor of the 

behavior of single neurons recorded from the same electrode.  Instead, the LFP correlates 

better with the average signal of the neuronal population within a 3 mm radius around the 

electrode tip (Kreiman et al. 2006).  An example of such a discrepancy between LFP and 

SUA is shown in Figure 1, which illustrates the lack of agreement between LFP and SUA 

recorded from the same electrode using data collected during an experiment performed 
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by our group.  LFP and SUA were recorded in IT while monkeys were presented with 

four different natural scenes, which were matched in overall contrast and luminance (see 

(Nielsen et al. 2006b) for details on the stimuli).  LFP responses were characterized by 

analyzing the amplitude of a positive peak occurring at about 140 ms after stimulus onset 

in the visual evoked potentials (VEP).  For individual neurons, the mean firing rate in a 

300 ms interval during stimulus presentation was used to compute responses to the 

natural scenes.  To test for similarities between the LFP and SUA recorded at the same 

electrode, we determined the agreement in the stimulus preferences of the two signals.  

For this purpose, the natural scene evoking the largest response from a single neuron was 

determined.  The scenes were also rank ordered according to their peak amplitudes 

determined from the VEP.  The rank of the best single neuron stimulus was then 

determined for the LFP signal recorded at the same electrode.  Figure 1 plots the 

distribution of ranks across the population of 54 IT neurons, which responded excitatory 

to at least one of the full scenes, and their corresponding LFP sites.  LFP-SUA pairs were 

only considered if the LFP was also responsive to at least one stimulus.  If stimulus 

preferences were similar for SUA and LFP, then the best SUA stimulus should rank first 

for the LFP signal.  However, we observed an almost equal distribution of all ranks.  

There was no indication of a similar scene preference for SUA and LFP.  Most 

importantly, the number of rank 1 cases (i.e. the number of LFP-SUA pairs with the same 

scene preference) was not significantly lager than chance (χ2 test, p=.9).  The stimulus 

preference of the LFP can thus in general not be inferred from the stimulus preference of 

a locally recorded single neuron.  It is possible that this is a consequence of the fact that 

the LFP pools across substantial brain regions, and thus individual stimulus preferences 

of local neurons are lost in this averaging process.  

 Pooling signal from neurons with various orientation preferences may similarly 

explain why the LFP recorded in V1 is less orientation selective than the MUA (Frien et 

al. 2000).  It may also be the reason for the fact that less LFP than MUA sites are tuned 

for stimulus speed (17.3% vs. 2.2%) and motion direction (22.1% vs. 3.4%) in MT (Liu 

and Newsome 2006), and that in IT less LFP sites than MUA sites are object selective 

(44% vs 72%) (Kreiman et al. 2006).  It becomes more difficult to explain how averaging 

over a diverse population of neurons can be linked to the finding that about 20% of the 
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LFP sites in MT are not visually responsive, as almost all MUA sites respond visually 

(Liu and Newsome 2006).  It is likely that the local three dimensional structure of cortex 

is responsible for this, since dendritic dipoles can cancel each other if oriented opposite 

one another.  Yet, there are a number of additional results that cannot be easily explained 

by assuming that the LFP is simply an average over a larger neuronal population than 

MUA or SUA.  These findings hint at the different sources generating LFP and SUA or 

MUA, and highlight the importance of performing combined analyses of these signals.  

First, both SUA and MUA recorded in area V1 show strong adaptation effects, with 

responses to a continuously presented stimulus ceasing after about 3 s.  The LFP 

response, on the other hand, remains elevated above baseline level throughout the 

presentation duration (Logothetis et al. 2001).  Another discrepancy between the SUA 

and LFP recorded in V1 pertains to their dependency on stimulus contrast.  V1 neurons 

initially increase their responses to a grating whose contrast is increasing.  After a 

threshold contrast has been reached, the responses of most V1 cells saturate.  The LFP 

shows a similar dependency on stimulus contrast, with increases in responses with 

increasing contrast.  However, the LFP keeps increasing at contrast levels at which the 

single cell responses have already saturated (Henrie and Shapley 2005).  Furthermore, the 

comparison of LFP and SUA in M1 and SMA shows that correlations between LFP and 

SUA recorded from the same electrode may be absent in one brain area, but present in 

another (Donchin et al. 2001). 

 Differences between LFP and SUA and MUA have also turned up when these 

signals were used to predict monkey behavior.  In the motor cortex, the LFP can be used 

to successfully decode a movement direction about 50 ms after this is possible based on 

SUA and MUA.  Furthermore, combining LFP and SUA or LFP and MUA results in 

higher decoding accuracy than possible based on any signal alone, suggesting 

independent information in these signals (Mehring et al. 2003).  In LIP, both SUA and 

LFP components with frequencies above 30 Hz can be used to predict the direction of an 

eye movement.  However, only the LFP can be used to decode the transition from 

planning an eye movement to executing it.  Interestingly, a different frequency band in 

the LFP carries this information, as decoding performance for the behavioral state is best 

when based on LFP components with frequencies below 20 Hz (Pesaran et al. 2002).  
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Differences between LFP and SUA were also observed in the parietal reach region 

(PRR).  Here, SUA could predict better than the LFP which direction a planned eye or 

arm movement was going to have.  In contrast, the LFP was better at distinguishing 

between eye and arm movements (Scherberger et al. 2005). 

 Most recently, a study has described interesting differences between LFP and 

MUA in V1 (Wilke et al. 2006), confirming earlier findings (Gail et al. 2004).  Monkeys 

were trained to indicate the presence of a large circle by pulling a lever.  By adding small 

dots in the periphery around the large circle, the circle could be made to disappear 

perceptually, despite its continuous physical presence on the screen.  At the level of the 

MUA, effects of the perceptual stimulus disappearance were first observed in V4.  MUA 

in V1 and V2 did not reflect the perceptual disappearance.  A largely similar result was 

obtained when the gamma frequency components of the LFP were analyzed.  However, 

the LFP power in the alpha-band range (9 – 14 Hz) was modulated by perception in V1, 

V2, and V4.  Interestingly, the modulation in LFP power was observed later than the first 

influence of perceptual disappearance on the MUA in V4. 

 All these findings highlight the fact that LFP and SUA or MUA indeed reflect 

different brain processes.  As mentioned at the beginning of the chapter, the LFP reflects 

input and local processing to a brain region, whereas SUA and MUA represent the output 

of that region.  The similarities between LFP and SUA or MUA therefore suggest a high 

degree of similarity between the inputs to a brain region and its outputs.  The listed 

discrepancies between LFP and SUA or MUA in contrast are instances where input and 

output are not this closely related.  These are cases that may allow us to identify the 

unique contributions of individual brain regions.  The data from Scherberger et al. for 

example indicate that while information about the movement type is already present in 

the input to PRR, the direction of the movement becomes more precisely defined in this 

area.  On the other hand, the results reported by Wilke et al. represent a case in which 

information is initially absent in the output from a brain region, but is later relayed to the 

brain region from a different source – likely activated after additional processing.  In 

conclusion, a combined analysis of LFP and SUA or MUA has the power to reveal how 

different brain regions interact with each other to process information. 
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Combining LFP to SUA to reveal computational networks across the brain 

Recent results from our group provide a compelling example of how a comparison 

between LFP and SUA can be used to identify how different brain regions participate in 

the extraction of information from a visual scene (Nielsen et al. 2006b).  In this study, 

two monkeys were trained to discriminate between natural scenes.  We then determined 

the regions of each natural scene on which the monkeys relied to perform the 

discrimination task.  These diagnostic regions were determined by using a behavioral 

paradigm called ‘Bubbles’ (Gosselin and Schyns 2001).  During each trial of the Bubbles 

paradigm, the scenes appeared behind randomly constructed occluders, which consisted 

of a non-transparent surface punctured by randomly placed, round windows.  The 

monkeys continued to perform the discrimination task on the occluded scenes.  

Depending on which scene regions were occluded on a trial, the monkeys could or could 

not identify a scene correctly.  Occlusion of diagnostic scene regions rendered the 

monkeys unable to perform the task correctly, while occlusion of nondiagnostic scene 

regions did not.  By collecting performance data for a large number of different 

occluders, and determining the scene regions that were systematically occluded during 

incorrect responses, we could determine how relevant each scene region was for the 

monkeys’ behavior (Nielsen et al. 2006a). 

 Based on the behavioral results, we then constructed unique stimulus sets for each 

monkey.  Stimulus sets consisted of four natural scenes, presented either as their original 

version, or as one of six modifications.  Three modifications showed diagnostic scene 

regions (diagnostic conditions), and three modifications showed nondiagnostic scene 

regions (nondiagnostic conditions).  All scene regions except the selected ones were 

covered by an occluder.  The three diagnostic conditions varied in how much of the 

original scene remained visible (10, 30 or 50%); the same was the case for the non-

diagnostic conditions.  All stimuli were matched in luminance and overall contrast.  We 

used this stimulus set to probe the influence of diagnosticity on the responses of single 

neurons and the LFP in the IT cortex.  Monkeys passively viewed the stimuli during the 

recording sessions.  Figure 2 shows the responses of a selected neuron, as well as a 

selected LFP site to the different versions of one natural scene.  In this figure, the LFP 

responses are shown in form of the trial averaged visual evoked potential (VEP).  As can 
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be seen, the VEP contains a prominent positive peak at about 140 ms after stimulus onset 

(the P140), whose amplitude differs between diagnostic and nondiagnostic conditions.  

We quantified single neuron responses to different stimuli by computing the mean firing 

rate in a 300 ms interval beginning 100 ms after stimulus onset.  For the LFP, stimulus 

responses were determined as the mean LFP amplitude in a 20 ms bin centered on the 

P140 maximum.   

 We could establish that stimulus diagnosticity is represented at the level of SUA 

in IT as the average response to the diagnostic conditions was significantly larger than the 

average response to the nondiagnostic condition in the tested single neuron population 

(paired t tests between diagnostic and nondiagnostic conditions showing the same amount 

of the original scene, p≤.02 in all three cases).  We then mapped the influences of 

diagnosticity across IT.  For each single neuron, we quantified the influence of 

diagnosticity on its responses by computing the amount of variance in the firing rate that 

could be attributed to differences in responses to diagnostic and nondiagnostic conditions 

(diagnostic variance).  We performed the same analysis on the LFP responses.  Using this 

measure, we could locate the single neurons that were most strongly influenced by 

diagnosticity.  Figure 3A plots their location within the recording region for one of the 

monkeys.  We similarly located the LFP sites most strongly influenced by diagnosticity.  

The location of these sites for the same monkey is also plotted in Figure 3A.  As can be 

seen, diagnosticity strongly influences single neurons throughout the whole recording 

region.  In contrast, the influence of diagnosticity on the LFP increases from posterior to 

anterior recording locations, as all LFP sites with strong diagnosticity influences cluster 

in the anterior half of the recording region.  We confirmed these conclusions by plotting 

the diagnostic variance of all single neurons as a function of their anterior-posterior 

location (see Figure 3B).  The diagnostic variance for the LFP sites was plotted in the 

same way (Figure 3C).  While the diagnostic variance did not depend on the recording 

location for the single neurons, it increased from posterior to anterior locations for the 

LFP.  Both findings were obtained by analyzing the data from each monkey individually, 

as well as combining their results (SUA: Pearson correlation coefficients r not 

significantly different from 0 for each monkey individually and the combined data, p≥.1 

for the three tests; LFP: r≥.16, p≤.04 for the three tests). 
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 In summary, these data suggest that diagnosticity is encoded in the output of 

single neurons throughout IT.  However, the encoding of diagnosticity at the input level – 

as indicated by the LFP – increases from posterior to anterior IT.  Our findings highlight 

a novel way to combine LFP and SUA recordings to reveal computational networks 

underlying a particular cognitive function, in the present case the neural encoding of 

diagnostic elements in complex visual displays.  Diagnosticity is first encoded by neurons 

in posterior IT, and then transmitted to more anterior regions.  The extraction of 

diagnosticity is accomplished by neural networks in posterior IT, since its signatures can 

be seen in the spiking output (SUA) from that region, but not in their input (LFP).  Thus 

even though anterior IT contains signals of diagnosticity at both LFP and SUA levels, 

extraction of diagnosticity is largely not accomplished in that region itself but is already 

present in its input signals.  The assignment of computational functions to connected 

brain networks is possible only by having LFP and SUA signals available during a 

suitable experimental paradigm, which is designed in such a way that critical parametric 

task condition variations are detectable at the level of LFPs.  The insights given by these 

joint LFP/SUA analyses go a step beyond traditional brain-behavior correlations based on 

each of the signals considered alone.  Our approach can generalize to other behavioral 

tasks, and promises to allow a delineation of functional networks with far greater 

accuracy than has previously been possible.  
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Figure Legends 

Figure 1: Agreement in stimulus selectivity between single IT neurons and the LFP 

signals recorded at the same electrode.  Only visually responsive neurons and LFP sites 

were considered for this analysis.  We first identified the best stimulus (out of a set of 

four natural scenes) for each single neuron.  It was then determined how strong the LFP 

responses to this stimulus were in comparison to the other stimuli.  For this purpose, the 

natural scenes were rank ordered according to the LFP responses that they evoked, and 

the rank of the best single neuron stimulus was determined for the LFP.  Rank 1 cases are 

cases in which the best single neuron stimulus evokes the largest responses from the LFP.  

Rank 4 cases imply that the best single neuron stimulus was the worst stimulus for the 

LFP.  The histogram shows the percentage of LFP sites for each rank, the dashed line 

indicates the chance level of 25%. 

Figure 2: Responses of an exemplar single neuron and an exemplar LFP site.  A, 

Exemplar stimuli.  The three images show one of the natural scenes in its original 

version, the diagnostic version of this image as constructed for one of the monkeys, and 

the matching nondiagnostic scene version.  In the latter two images, occluded image parts 

are indicated by hatched regions.  The diagnostic and nondiagnostic stimulus show 30% 

of the original scene.  B, Responses of an exemplar neuron.  The two plots summarize the 

responses to the seven versions of one natural scene by plotting spike density functions 

(spike trains were smoothed with a Gaussian kernel with a standard deviation of 30 ms).  

The stimulus appeared at time 0 ms and stayed on the screen for 500 ms.  Spike density 

functions were normalized so that the maximum across all conditions equaled 1.  The plot 

on the left shows the responses to the original (full) scene and the three diagnostic 

versions.  The right side plots the responses to the nondiagnostic stimulus versions, the 

response to the full stimulus is repeated as a reference.  In the legend, ‘D’ indicates 

diagnostic, ‘ND’ nondiagnostic conditions; the numbers correspond to the amount of the 

original image visible in a condition.  C, Responses of an exemplar LFP site.  These plots 

show the VEP for each condition.  VEPs are plotted in units of standard deviation.  These 

units are computed by subtracting the mean LFP amplitude in a 100 ms window 

preceding stimulus onset from the LFP of each trial, and dividing this signal by the 
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standard deviation calculated from the same baseline period.  The arrow points at the 

P140.  The layout of these two plots as is in B. 

Figure 3: Influence of recording position on the properties of single neurons and the LFP.  

A, Location of high diagnosticity cases in one monkey, shown on a sagittal view of parts 

of the temporal lobe.  The two small brain pictures on the left indicate the location of the 

selected brain region.  This region is indicated in black in the upper image; it is generated 

by slicing along the line depicted in the lower image.  The right side shows the location 

of the single neurons (circles) and LFP sites (triangles) strongly influenced by 

diagnosticity.  To allow a better separation of different cases, the AP position of each 

case was randomly jittered by a small amount for display purposes only.  Thick black 

lines indicate the location of the superior temporal sulcus (STS) and the ventral end of the 

brain.  The position of these landmarks is plotted as estimated during recordings.  B-C, 

Diagnostic variance as a function of recording location.  In these plots, the diagnostic 

variance of each case is plotted as a function of its AP position.  Symbols indicate the 

monkey in which a case was recorded; the dashed line plots the regression computed 

between diagnostic variance and AP position.  B, Single unit data.  C, LFP data.  In all 

three plots, “Post” and “Ant” label the posterior and anterior end of the recording region, 

respectively. 
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Figure 2: 
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Figure 3: 
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Local field potentials (LFPs) and spikes are two signals that can be recorded from the brain using extracellular
microelectrodes. A study by Monosov et al. in this issue of Neuron using timing relations between these
signals suggests that selection of a target from an array of distractors is a computational operation performed
specifically and locally in the frontal eye field (FEF).
Much of what we know about the func-

tional organization of the brain comes

from single-unit activity recording studies,

which have examined how spiking activ-

ity in given brain regions correlates with

sensory, motor, or cognitive aspects of

behavioral tasks. Spiking activity recorded

using extracellular microelectrodes mea-

sures the output of neurons near the tip

of the electrode. It is estimated that for

cortical pyramidal cells well over 60%

of connections remain local and generate

synaptic activity in the same cortical

region (Braitenberg and Schüz, 1998).

The remaining connections are with re-

mote cortical areas, to which the results

of the cortical computations are transmit-

ted (see Figure 1). The demonstration that

a given task attribute is represented in

spiking activity in a given brain region,

however, does not mean that this task at-

tribute is actually computed there. It could

have been present already in the synaptic

inputs, and therefore the computational

work might have been performed else-

where, and is merely being transmitted

to further stages of processing. In princi-

ple, one might rule this out by simulta-

neously recording not only from the brain

region of interest, but also from the major

regions which provide its synaptic input.

This is feasible for early sensory cortices,

as demonstrated for example by joint re-

cordings from the LGN and V1. For higher

cortical areas, it cannot be done, mainly

due to the large number of connections

among cortical areas (Felleman and Van

Essen, 1991). It is simply not feasible to

record simultaneously from the required

number of brain regions. It turns out, how-

ever, that considering the local field po-

tential (LFP) together with spiking activity

is an approach that can be used to resolve

this question. Because LFPs reflect syn-
480 Neuron 57, February 28, 2008 ª2008 Els
aptic processing in a volume around the

electrode tip, they are influenced by

synaptic inputs arriving from other brain

regions as well as by local processing

(see Figure 1). In this scheme, spikes are

related to local processing and output,

whereas LFPs are related to local pro-

cessing and input. Simultaneous mea-

surement of spikes and LFPs in appropri-

ate behavioral tasks could thus be used

to compare these two measurements of

neural activity, and thus provide estimates

of which signals are already present in

the inputs to the brain region under study

and which signals are computed there

de novo.

In this issue of Neuron, Monosov et al.

(2008) report on joint LFP and spike

recordings during spatial selection in the

frontal eye fields (FEFs). During their spa-

tial selection task, monkeys had to report

the orientation or location of a target stim-

ulus embedded in a visual array of distrac-

tors. They compared timing of LFP and

Figure 1. Simple Scheme Describing
Relation of LFP and Spike Signals
to Information Flow
LFPs are related primarily to local processing in
synaptic inputs from other brain areas, whereas
spikes are related to local processing and spike
outputs.
evier Inc.
spike responses in relation to two impor-

tant events during each trial: array onset

and selection time. In relation to the onset

of the array, LFP latencies were shorter

than spike latencies, as one expects since

the visual inputs arriving from the sensory

periphery first cause synaptic activity

in the FEF before this synaptic activity is

converted to spike output. In relation to

selection time, i.e., the time the neural re-

sponse first distinguishes the target from

the distractors, they observed the oppo-

site pattern: selection times occurred

earlier in spikes than in LFPs. This sug-

gests that information related to the target

is not received from distant brain regions,

but rather computed locally in the FEF.

The results of the local computations are

first visible in FEF spiking activity, and

subsequently amplified in recurrent cir-

cuits such that they are later measurable

also at the level of the LFP in the same

brain area. This is a particularly exciting

finding, because it allows us to consider

a brain area as a computational unit that

transforms incoming input signals to out-

puts, and to actually estimate both inputs

and outputs directly from extracellular

recordings. The implication is that timing

differences between LFP and spike-re-

lated task-relevant neural signals can be

used to distinguish whether the brain

region under study is performing compu-

tational operations on incoming neural

signals or simply acting to relay this activ-

ity to other brain regions.

The LFP is a mass signal that is related

to synaptic activity in large populations

of many thousands of neurons near the

electrode tip. By contrast, spiking activity

represents the output of a single neuron.

This raises methodological concerns; for

example, LFPs might be poorly selective

to target location, and therefore selection
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times estimated from LFP signals might

be delayed compared with single-unit

values. This was not the case in the study

from Monosov and colleagues: although

LFP tuning width for target location

tended to be somewhat larger than those

estimated from spiking activity, there was

highly robust directional tuning present

in both signals. In addition, directional

preference was highly correlated across

the two signal types, suggesting that the

LFP measurements were not spatially

broadly distributed and unselective, but

rather precisely related to the properties

of single neurons encountered at the

same site. Related findings have been

reported in area MT for speed and direc-

tional tuning (Liu and Newsome, 2006),

and in the posterior parietal cortex for

movement direction (Scherberger et al.,

2005). In these cases authors examined

oscillatory LFP activity and not evoked

responses as in the present study, but

found robust tuning for task parameters

in the LFPs as well as correlations to unit

activity. How does the FEF take nonselec-

tive inputs and convert them to directional

signals for eye movement control? If the

interpretation of the authors is correct,

the neural signals entering the FEF upon

array onset already contain information

about the distractors and the target in

their respective locations, as well as the

current behavioral goals of the animal.

Presumably, the job of the FEF in this con-

text is to extract target information and

convert it to an explicit representation

suitable for control of action. How this

conversion is achieved by FEF neural net-

works still needs to be worked out, but the

general approach now provides a method

that can be used to address this question.

In the context of understanding cortical

information processing, it is of great inter-

est whether particular influences on a

given brain region have a bottom-up or

top-down origin, because this would

allow a dissociation between effects of

sensory origin and those derived from in-

ternal representations of task demands.
A recent study has presented evidence

that top-down and bottom-up communi-

cation in the brain might be supported

by different frequency bands of the LFP

(Buschman and Miller, 2007). During an

easy visual search task, the target was re-

flected first in the lateral interparietal (LIP)

cortex and subsequently in a frontal corti-

cal region that included the FEF, whereas

the opposite was true during difficult vi-

sual search. At the same time, the authors

found task-dependent differences in LIP-

frontal LFP coherence, such that a 22–

34 Hz LFP band showed greater activity

during the difficult search task, whereas

a 35–55 Hz band showed less activity.

The authors suggest that LIP identifies

the target first in the easy task and com-

municates this information to the frontal

cortex in a bottom-up fashion, whereas

during the hard task, the target is first

reflected in frontal activity and then sent

to LIP in a top-down manner. Joint LFP-

spiking analyses of the kind employed

by Monosov and colleagues could be

used to directly test this idea; during the

easy task, frontal target-related signals

should appear first in the LFP, and later,

in spiking activity. More generally, it is

known that top-down and bottom-up pro-

jections tend to have different projection

patterns, forming synapses preferentially

in apical and proximal parts of dendrites,

respectively. This makes it particularly

appealing to extend electrical recordings

of neural activity with imaging methods

such as Ca+2 imaging (Stosiek et al.,

2003), particularly if these can be further

developed to examine layer-specific syn-

aptic activity in populations of neurons.

Such an approach would yet further refine

our picture of information processing by

including the measurement of top-down

and bottom-up inputs into the brain region

under study, in addition to electrical neu-

ronal activity measurements.

The approach used by Monosov and

colleagues is related to one used in a re-

cent study of inferior temporal (IT) cortex

(Nielsen et al., 2006). That study de-
Neuron 57,
scribed a dissociation between spiking

and LFP activity as a function of recording

location in IT cortex. For posterior sites,

learning-dependent object selectivity

was seen in spiking activity, but not LFP

activity, whereas at anterior sites this

selectivity was present in both LFP and

spiking activity. The interpretation of this

result was that the learning-dependent

signals were first generated in posterior

IT and thus present in the output of that

brain area and not in the input. Anterior

IT sites already showed these signals in

their inputs, consistent with receiving sig-

nals from posterior IT regions. This repre-

sents in a sense an orthogonal approach

to one used in the study by Monosov

and colleagues. The two studies have

applied a similar logic to describe differ-

ences between LFP and spiking activity

as a function of brain topography and

temporal response dynamics. Both of

these approaches can in principle also

be applied together, and this combination

promises substantial further advances in

our understanding of computational and

informational flow in cortex.
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SUMMARY

The frontal eye field (FEF) participates in selecting
the location of behaviorally relevant stimuli for guid-
ing attention and eye movements. We simulta-
neously recorded local field potentials (LFPs) and
spiking activity in the FEF of monkeys performing
memory-guided saccade and covert visual search
tasks. We compared visual latencies and the time
course of spatially selective responses in LFPs and
spiking activity. Consistent with the view that LFPs
represent synaptic input, visual responses appeared
first in the LFPs followed by visual responses in the
spiking activity. However, spatially selective activity
identifying the location of the target in the visual
search array appeared in the spikes about 30 ms be-
fore it appeared in the LFPs. Because LFPs reflect
dendritic input and spikes measure neuronal output
in a local brain region, this temporal relationship sug-
gests that spatial selection necessary for attention
and eye movements is computed locally in FEF
from spatially nonselective inputs.

INTRODUCTION

Visual spatial selection describes the process that guides visual

attention (Serences and Yantis, 2006) and selectively couples

perception to action (Allport, 1987). Understanding the time

course of this process is key to understanding the neural compu-

tations that underlie it. Typically, this question has been ad-

dressed by analyzing event-related brain potentials (ERPs)

recorded from scalp electrodes in humans (Hillyard and Anllo-

Vento, 1998; Luck et al., 2000) and neuronal spiking activity in

behaving primates (Schall and Thompson, 1999). In visual

search studies, in which subjects are required to discriminate

a target among distractors, human ERPs (Luck and Hillyard,

1994) and single units recorded in primate frontal eye field

(FEF) (Sato et al., 2001; Thompson et al., 1996), lateral intrapar-

ietal area (LIP) (Ipata et al., 2006; Thomas and Pare, 2007), and

superior colliculus (McPeek and Keller, 2002) exhibit an initial pe-
614 Neuron 57, 614–625, February 28, 2008 ª2008 Elsevier Inc.
riod of nonselective activation followed by a discrimination pro-

cess that identifies the location of the target in the search array.

Local field potentials (LFPs) are electrical potentials recorded

with an electrode positioned in the brain. The LFP signal repre-

sents the summed synaptic activity occurring near the tip of

the electrode. It is a combined measure of local processing

and synaptic inputs from other brain regions regardless of

whether or not spikes are generated (Chen et al., 2007; Cruik-

shank et al., 2002; Juergens et al., 1999; Kaur et al., 2004; Krei-

man et al., 2006; Logothetis and Wandell, 2004; Mitzdorf, 1985,

1987; Nielsen et al., 2006). In contrast, spiking activity represents

the results of local neural processing and is the output signal

from the neurons near the tip of the electrode. Although both

LFPs and spiking activity have been used to measure the time

course of spatial attention processes, the relationship between

these neurophysiological signals is still unclear. Analysis of con-

currently recorded LFP and spiking activity can shed light on how

sensory representations in dendritic input are transformed into

cognitive signals (Kreiman et al., 2006; Nielsen et al., 2006).

The FEF is a brain area in monkeys and humans that partici-

pates in the visual spatial selection process (Awh et al., 2006;

Pessoa et al., 2003; Schall and Thompson, 1999; Serences

and Yantis, 2007). The spatial selection process localizes behav-

iorally important objects in a complex visual scene and is neces-

sary for guiding visual attention and goal-directed behaviors. In

a previous report we showed that spiking activity in monkey

FEF reflects the locus of spatial attention during covert visual

search tasks in the absence of eye movements (Thompson

et al., 2005b). During the collection of these neuronal spiking

data, LFPs were also recorded simultaneously from the same

electrodes. The goals of this study were to determine whether

LFP responses were spatially selective, and if so, to compare

the time course and spatial tuning of the spatially selective sig-

nals in neuronal spiking activity with LFP responses.

We found that in the covert visual search task, both the LFPs

and the spiking activity exhibited initial nonselective visual re-

sponses that evolved into significant spatial tuning in the time

period before the monkeys’ behavioral report. The directional

tuning of the spatially selective responses in the visual search

task matched the directional tuning of the visually evoked

responses to a single visual stimulus in the memory-guided sac-

cade task. Although the initial visual responses appeared first in

the LFP signals in both tasks, the spatially selective responses in

mailto:kgt@lsr.nei.nih.gov
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the visual search task appeared first in the spiking activity. These

results suggest that during visual search, spatial selectivity is

generated in FEF from spatially nonselective inputs.

RESULTS

Spiking activity and LFP responses were recorded concurrently

on single electrodes inserted into the FEF of two monkeys in 43

separate recording sessions. The monkeys performed a mem-

ory-guided saccade task (Figure 1A) and one of two covert visual

search tasks (Figure 1B). In the covert visual search tasks, the

monkeys made a manual lever turn as the behavioral report.

Monkey S was required to report the location of the singleton tar-

get in the search array (20 recording sites) and monkey C was re-

quired to report the orientation of the C among Os in the search

array (23 recording sites). Single-neuron activity recorded with

this task was described previously (Thompson et al., 2005b).

For this study we combined the activity from simultaneously

recorded single neurons into a single representation of spiking

Figure 1. The Tasks

(A) The memory-guided saccade task. After the monkey fixated on a central

spot, a peripheral stimulus identical to the fixation spot was flashed for 50 ms

randomly at one of the six or eight locations matching the stimulus locations

in the covert visual search task. After a delay, the fixation spot disappeared,

and the monkey was rewarded for making a saccade to the remembered

target location.

(B) The covert visual search tasks. After the monkey grasped the lever in the

vertical position, a small fixation cross appeared. After fixating the central

cross, a search array appeared in which one of the stimuli was different. Mon-

key S was rewarded for turning the lever in the same direction as a different-

colored stimulus in relation to the fixation cross. Monkey C was rewarded

for turning the lever in the same direction as the gap in the C target stimulus

regardless of its location in the search array. The depiction of the lever at the

bottom shows the correct behavioral responses for the example trials shown

in the search displays.
activity at each recording site. The primary aim of this study

was to compare the times that a spatially selective response first

appeared in the LFPs with spikes in the covert visual search task.

We refer to this time as the selection time. For the data collected

at a recording site to be included in the study, there must have

been measurable visual response onset latencies in both the

LFPs and spikes, and a measurable selection time in the visual

search task for either the LFP response or the spiking activity.

In addition, the visual response latencies and selection times

must have occurred before the average reaction time of the

session. Over all sessions, lever turn reaction times averaged

at 284 ms for monkey S and 297 ms for monkey C.

There were strong correlations between the directional tuning

of the spatially selective responses in the LFPs and spikes within

and across the visual search task and the memory-guided

saccade task, which is consistent with a functional relationship

between the LFPs and spikes (see Figure 8 below). But first we

describe the results of the time course analysis, which is blind

to the preferred target directions of the two signals.

Visual Response Latencies and Spatial
Selection Times of LFPs and Spikes
The spiking activity and LFP signals recorded simultaneously at

each recording site were analyzed using the same methods to

obtain the visual response onset latencies and the time of spatial

selection measured from the time of search array presentation.

Figure 2, Figure 3, and Figure 4 illustrate the analysis applied

to the data collected from a single recording site in monkey S

(see Experimental Procedures for details). Briefly, selection

time was defined as the first time following visual stimulus pre-

sentation that the response differed significantly across target

locations based on an analysis of variance (ANOVA) at each mil-

lisecond (Figure 2 and Figure 3). In the memory-guided saccade

task, spikes and LFPs exhibited initial responses that differed

across target location. Therefore, for the memory-guided

saccade task, selection time measures the initial visual response

latency to a single stimulus. In the visual search task, however,

a visual stimulus appears at all locations on every trial and the ini-

tial responses of spikes and LFPs did not vary with target posi-

tion. Selection time in the visual search task, therefore, measures

the first time that the response differentiates the target stimulus

from the distractors. To get a measure of the visual response

latency in the visual search task, we defined the visual latency

as the first time following the visual search array presentation

that the combined response across all trials differed from base-

line (Figure 4).

Even though visual response latencies were measured using

different visual stimuli and measurement methods in the mem-

ory-guided saccade and visual search tasks, the temporal rela-

tionship between initial visual response latencies measured in

LFPs and spikes was the same across the two tasks. The initial

visual response occurred earlier in the LFPs than in the spikes.

For the memory-guided saccade task, the average ± standard

error (SE) selection time was 63.4 ± 3.2 ms for LFPs, and 72.8 ±

4.3 ms for spikes (paired t test: p < 0.001). For the visual search

task, the average ± SE onset latency was 56.5 ± 2.4 ms for LFPs,

and 71.8 ± 4.0 ms for spikes (p < 0.001). There were also strong

correlations between the selection times obtained from the
Neuron 57, 614–625, February 28, 2008 ª2008 Elsevier Inc. 615
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Figure 2. Spatial Tuning Analysis of Spiking Activity Recorded at the Same Site as the LFP Shown in Figure 3

(A)Spikedensity functions,derived from a filter resembling anEPSP,areplottedabove tick marks representing timesofactionpotentials for three representative trials.

(B) The average target-aligned spiking activity at each target location from the memory-guided saccade task (gray) and the covert visual search task (black). The

box-whisker plot in each panel indicates the median, quartiles, and range of reaction times in the covert visual search task. The neuron’s preferred target

direction (60�) corresponds to the filled circle in the search array at the center.

(C) The superimposed average activity for each target position from the memory-guided saccade task (left) and the visual search task (right). The thick line

represents the average activity on trials when the target was at the preferred spatial location.

(D) The p value (ANOVA) at each millisecond in the memory-guided saccade task (left) and in the visual search task (right) that estimates the probability that the

spiking activity did not vary across target locations. The black triangle at the bottom of the plot marks the selection time (vertical dotted line: memory-guided =

70 ms, visual search = 128 ms), which was defined as the first millisecond that the p value crossed p = 0.05 (horizontal dotted line), but only if it continued past

p = 0.001 and p < 0.05 for more than 20 of the next 25 ms.

(E) The spatially selective response measured from 50–300 ms following the target flash in the memory-guided saccade task (left), and from 100–300 ms fol-

lowing the time of search array presentation (right) as a function of target direction. The time ranges for measuring spatial tuning are indicated by black bars

in (C). The points plot the average response within the time interval at each target location, and the error bars are the 95% confidence intervals. The parameters

of the best-fit Gaussian curve from the memory-guided saccade task (left) are B = 40.26 spikes/second (sp/s), R = 36.54 sp/s, F = 64.42�, and T4 = 38.25�; and

from the covert visual search task (right), they are B = 45.75 sp/s, R = 55.36 sp/s, F = 63.22�, and T4 = 45.02�.
memory-guided saccade task and the visual response onset

latencies obtained from the visual search task at each recording

site (LFPs: r = 0.48, p = 0.001; spikes: r = 0.78, p < 0.001). Be-

cause we were interested in comparing visual onset times to

spatial selection times in visual search, in this study we will focus

mostly on results obtained in the visual search tasks.

Cumulative distributions of onset latencies and selection times

measured in the visual search task are shown separately for the

two monkeys in Figures 5A and 5B. Visual response latencies

were obtained for the spiking activity and the LFP response

from all 43 recording sites. For spiking activity, the average ±

SE onset latency was 68.4 ± 3.5 ms for monkey S, and 74.7 ±

3.3 ms for monkey C. For the LFP response, the average ± SE

onset latency was 53.6 ± 1.0 ms for monkey S, and 59.0 ±

0.9 ms for monkey C. An ANOVA that factored the monkey and

response measure revealed a significant difference in response

latencies between the two monkeys (p = 0.02), and between

spiking activity and LFP response (p < 0.001) with no interaction

between monkey and activity measure (p = 0.86).
616 Neuron 57, 614–625, February 28, 2008 ª2008 Elsevier Inc.
Selection times in the visual search task were obtained for spik-

ing activity from 38 (88.4%) recording sites and for the LFP re-

sponse from all 43 recording sites. For spiking activity, the average

selection time was 124.6 ± 5.1 ms for monkey S, and 113.0 ±

6.2 ms for monkey C. For the LFP response, the average selection

time was 155.2 ± 6.3 ms for monkeyS,and 133.3 ± 7.1 ms for mon-

key C. An ANOVA revealed a significant difference in the selection

times in the visual search taskbetween the twomonkeys (p= 0.01),

and between spiking activity and LFP response (p < 0.001) with no

interaction between monkey and the activity measure (p = 0.43).

The differences in visual response latencies and selection

times between the two monkeys may be due to individual differ-

ences or to the different visual stimuli used in two different visual

search tasks in the two monkeys. It has previously been shown

that a search for a gap in a C among Os is very easy (Treisman

and Gormican, 1988), and the visual system may be able to

resolve a single gap in a circle faster than it can resolve a color

difference in a search array. Nevertheless, the important result

is the absence of significant interaction between monkeys
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Figure 3. Spatial Tuning Analysis of the LFP Response Recorded at the Same Site as the Spiking Activity Shown in Figure 2

Conventions are the same as in Figure 2.

(A) The LFP responses on three representative visual search trials.

(B) The average target-aligned LFP response in the memory-guided saccade task (gray) and in the covert visual search task (black), sorted by target location.

(C) The superimposed average LFP response for each target position from the memory-guided saccade task (left) and the covert visual search task (right).

(D) The p value (ANOVA) at each millisecond that estimates the probability that the LFP response did not vary across target locations. The selection time of the LFP

response at this recording site is 69 ms for the memory-guided saccade task and 142 ms for the visual search task.

(E) The spatially selective response measured from 100–200 ms following the target flash in the memory-guided saccade task (left), and from 180–300 ms fol-

lowing the time of search array presentation (right) as a function of target direction. The time interval used for determining the spatial tuning of the LFP response

was the interval that exhibited the most variability in the ANOVA analysis shown in (D) (see Supplemental Data and Figure S1). The points plot the average

response within the time interval at each target location, and the error bars are the 95% confidence intervals. The parameters of the best-fit Gaussian curve

from the memory-guided saccade task (left) are B = �4.59, R = �33.14, F = 43.05�, and T4 = 59.24�; and from the covert visual search task (right), they are

B = 19.59, R = �16.33, F = 64.05�, and T4 = 62.91�.
performing different visual search tasks and the measured timing

differences between LFPs and spikes. This means that in spite of

the individual differences, the temporal relationships between

LFPs and spikes were the same in the two monkeys.

To summarize the results across the population, we plotted

the percentage of recording sites showing significant modulation

at each millisecond following the presentation of the search ar-

ray, and did so separately for monkey S (Figure 5C) and monkey

C (Figure 5D). These continuous measures of significant modu-

lation across the population are another way to visualize the tim-

ing differences across LFPs and spikes, and they validate the

results obtained from the calculations of initial visual response

onset latencies and spatial selection times. For both monkeys,

significant visual responses are evident in the LFPs before the

spikes and significant spatially selective responses are evident

in the spikes before the LFPs. Because the relationships be-

tween spiking activity and LFP responses were the same for

both monkeys, the data from the two monkeys are combined

in the following analyses.

We compared the response latencies and selection times

measured from the spiking activity with LFP responses recorded
simultaneously at individual recording sites during the visual

search task (Figures 6A and 6B). Significant positive correlations

between spiking activity and LFP responses for onset latencies

(r = 0.46, p = 0.002) and for selection times (r = 0.51, p = 0.001)

support the claim that spiking activity and LFP responses are

related. Spiking activity and LFP response onset latencies for

each recording site are plotted in Figure 6A, and selection times

are plotted in Figure 6B. In both plots, the times from each site

are sorted according to the time measured in the spiking activity,

and a histogram shows the distribution of differences between

the times obtained from the LFPs and spikes. For nearly all

(41/43 = 95%) of the recording sites, the measured response on-

set latency was earlier in the LFP response than in the spiking ac-

tivity. On average, the LFP visual response began 15.3 ± 2.2 ms

earlier than the spike visual response. The visual latencies of the

LFP responses varied less than the spike responses. As a conse-

quence, the difference between visual onset latency measured in

the spikes and in the LFP increased with increasing spike

response latency. Nevertheless, even the recording sites with

the earliest spike responses had LFP response latencies that

were significantly earlier. For the quartile of recording sites with
Neuron 57, 614–625, February 28, 2008 ª2008 Elsevier Inc. 617
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the earliest spike visual response (range: 48–60 ms), the LFP

visual response began on average 2.3 ± 0.7 ms earlier than the

spike visual response (paired t test, p = 0.01). The earlier initial

visual onsets in the LFP signal are consistent with the expected

result that feedforward visual inputs in postsynaptic potentials

precede the visually evoked spiking activity (Schroeder et al.,

1998).

Selection times in the visual search tasks were obtained for the

LFP response from all 43 sites and for spiking activity from 38

sites. For the 38 recording sites with selection times from both

measures, selection times occurred later in the LFP response

than in the spiking activity for 84% (32/38) of the recording sites,

and differed, on average, by 24.7 ± 5.0 ms (Figure 6B). However,

at ten recording sites, the spatial tuning of the LFP response and

spiking activity differed by more than 40� of visual angle (see

Figure 8B); these are indicated in Figure 6B by the filled circles

in the scatter plot and shaded bars in the histogram. It is possible

that at these recording sites the LFP response and spiking activ-

ity were less related to each other than at the sites in which the

spatial tuning of the two signals corresponds. When these ten

sessions were removed from the analysis, the selection times

occurred later in the LFP response than in the spiking activity

at 93% (26/28) of the recording sites, and differed, on average,

by 31.5 ± 5.1 ms.

We also compared the selection times for LFPs and spiking

activity in the memory-guided saccade task (Figure 6C). Selec-

tion time in the memory-guided saccade task measures visual

response latency because it identifies the first time that the

responses differed across target locations for a single visual

stimulus presented alone. It corresponds to the visual response

latency measured in the covert visual search task, and across the

recording sites the two measures were strongly correlated for

both spikes (Pearson’s r = 0.78, p < 0.001) and LFPs (r = 0.60,

p < 0 001). Just like the visual response latencies measured in

the visual search task (Figure 6A), the selection times measured

in the memory-guided saccade task were earlier (9.9 ± 2.5 ms)

for LFPs than for spikes (Figure 6C). The similarity in the results

across the tasks and analysis methods adds to our confidence

in the accuracy of our timing measurements (also see Supple-

mental Data).

Relationship of LFP Visual Response
Latency to Selection Times
Studies have shown that the earliest visual response latencies of

LFPs recorded in dorsal stream areas of visual cortex are in

Figure 4. Visual Response Latency Analysis of the Spike (Left)
and LFP (Right) Responses Recorded during the Covert Visual

Search Task

The activity is from the same recording session as shown in Figure 2 and

Figure 3.

(A) The average spike density function constructed by convolving each spike

with a kernel that resembles an EPSP and averaging across all trials.

(B) The p value (paired t test) at each millisecond that estimates the probability

that the spiking activity is equal to the baseline activity (measured from �50 to

0 ms). The visual response latency was defined as the first time that the p value

crossed p = 0.01 (horizontal dotted lines), but only if it continued past p = 0.001

and p < 0.01 for more than 20 of the next 25 ms. The spiking visual response

latency in the covert visual search task at this recording site is 63 ms (black

triangles and vertical dotted lines).

(C) The average LFP signal across all trials.

(D) The p value (paired t test) at each millisecond that estimates the probability

that the LFP signal is equal to the baseline signal (measured from�50 to 0 ms).

The LFP visual response latency is 53 ms.

Figure 5. Population Results from the Covert Visual Search Tasks

Shown Separately for the Two Monkeys

(A) Cumulative distributions of visual response latencies and spatial selection

times for all recording sites in monkey S performing the ‘‘location’’ version of

the covert visual search task. The average ± SE times, from left to right,

were 53.6 ± 1.0 ms for LFP visual latencies (thin dotted line; median = 53.5),

68.4 ± 3.5 ms for spike visual latencies (thin solid line; median = 65), 124.6 ±

5.1 ms for spike selection times (thick solid line; median = 119), and 155.2 ±

6.3 ms for LFP selection times (thick dotted line; median = 152.5).

(B) The same as (A) but for monkey C performing the ‘‘identity’’ version of the

covert visual search task. The average ± SE times, from left to right, were 59.0 ±

0.9 ms for LFP visual latencies (median = 59 ms), 74.7 ± 3.3 ms for spike visual

latencies (median = 72 ms), 113.0 ± 6.2 ms for spike selection times (median =

102.5 ms), and 133.3 ± 7.1 ms for LFP selection times (median = 129 ms).

(C and D) The percentage of recording sites showing significant modulation at

each millisecond following the presentation of the search array in monkey S

(C) and monkey C (D). The plots were smoothed using a running window of

5 ms for easier viewing. The line types correspond to those in (A) and (B).
618 Neuron 57, 614–625, February 28, 2008 ª2008 Elsevier Inc.
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cortical layer 4, which corresponds to the feedforward projection

of visual inputs (Chen et al., 2007; Schroeder et al., 1998). We hy-

pothesized that if the inputs to FEF from visual cortex were spa-

tially selective, they would be evident first at the recording sites

with the earliest LFP visual response latencies. Therefore, we

examined whether LFP visual response latencies were related

to times of spatial selection (Figure 7). It should be noted that

this analysis does not establish the cortical layer of the recording

sites, but it is motivated by the assumption that recording sites in

FEF with earlier visually evoked LFP activity are functionally

closer to the feedforward visual input from visual cortex. To visu-

alize the data we plotted how the spike visual response latencies

and selection times, and LFP selection times, changed with in-

creasing LFP visual response latency (Figure 7). For statistical

analysis, the recording sites were divided into two groups based

on LFP visual response latency measured in the visual search

task. The sites with LFP visual response latencies between 48

Figure 6. Population Results from the Covert Visual

Search Task at Each Recording Site Combined across

the Two Monkeys

(A) Visual response latencies of the LFP responses in the

covert visual search task (open squares) and spikes (filled di-

amonds) at each recording site, sorted by the visual response

latency of the spikes. LFP and spike visual response latencies

were obtained from all 43 recording sites. The histogram

shows the distribution of LFP visual response latency relative

to spike visual response latency obtained across all recording

sites (LFP – spikes; mean =�15 ± 2.2 ms). Similar results were

obtained from the selection times measured in the memory-

guided saccade task (see Figure 6C).

(B) Selection times in the covert visual search task of the LFP

responses (open and filled circles) and spikes (filled triangles)

at each recording site, sorted by the selection time of the

spikes. LFP and spike selection times were obtained from

38 recording sites. The histogram shows the distribution of

LFP selection time relative to spike selection time obtained

across all recording sites (LFP – spikes; mean = 24.7 ± 5.0 ms).

The filled circles in the scatter plot and filled bars in the his-

togram represent the ten recording sites in which the spatial

tuning of the LFP and spikes differed by more than 40�

of visual angle (see Figure 8B).

(C) Selection times in the memory-guided saccade task, mea-

sured from the LFP responses (open squares) and spikes

(filled diamonds) at each recording site and sorted by the

selection time of the spikes (n = 42). The histogram shows

the distribution of LFP selection time relative to spike selection

time across all recording sites (LFP – spikes; mean = �9.9 ±

2.5 ms). Compare with results in Figure 6A.

and 55 ms were assigned to the ‘‘early’’ group (n =

22), and sites with latencies between 56 and 67 ms

to the ‘‘late’’ group (n = 21). The large symbols

in Figure 7 indicate the average ± SE of each group.

The spike visual response latencies differed signif-

icantly across the early groups (65.0 ± 3.3 ms) and

late groups (79.0 ± 2.9 ms) (t test, p = 0.003). This is

consistent with the result that LFP and spike visual

latencies were positively correlated. LFP response

selection times did not differ significantly between

the early (145.4 ± 6.9 ms) and late (141.5 ± 7.6

ms) groups (p = 0.7). For the spiking activity, the selection times

of the early (109.5 ± 4.7 ms) and late (126.3 ± 6.6 ms) groups

were marginally different (p = 0.04). The surprising result was

that the recording sites with the earliest LFP visual response la-

tencies, and therefore those functionally closest to the feedfor-

ward visual input to FEF, exhibited the earliest spike selection

times and the latest LFP selection times. The difference between

spike and LFP selection times in the early group was highly sig-

nificant (paired t test, p < 10�5). For the late group, the difference

between the LFP and spike selection times did not reach statis-

tical significance (p = 0.07). We also divided the recording ses-

sions into early and late groups based on the selection times

measured in the data collected from the memory-guided sac-

cade task, which were recorded in a separate block of trials in

each session. Note that selection time for the memory-guided

saccade data is determined using the exact same analysis

method as for visual search data, but actually measures the

Neuron 57, 614–625, February 28, 2008 ª2008 Elsevier Inc. 619
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visual onset latency to a single visual stimulus. The results were

statistically identical to those shown in Figure 7.

Comparison of Directional Tuning
The variation of spatially selective LFP and spiking responses

with target direction in the memory-guided saccade and visual

search tasks was characterized with Gaussian functions (Fig-

ure 2E and Figure 3E). The spatial parameters of the best-fit

Gaussian curves provide estimates of the preferred direction

and spatial extent of the LFP and spiking response fields. Details

of the spatial tuning analysis are provided in the Experimental

Procedures. There were no differences in the directional tuning

measures between the two monkeys. The preferred direction

was provided by the optimum direction (F) parameter. The pre-

ferred tuning directions of the spiking activity and LFP responses

in the memory-guided saccade and visual search tasks were

compared by taking the angle difference between the two mea-

sures. Angle differences can range from�180� to +180�. Figure 8

shows the distributions of angle differences between the pre-

ferred target directions of the LFPs and spikes for the memory-

guided saccade and visual search tasks (Figures 8A and 8B),

and between the preferred target directions obtained from the

memory-guide saccade and visual search tasks for spikes and

LFPs (Figures 8C and 8D). All the distributions are peaked near

0� (Rayleigh test, p < 0.001). An analysis that measures the cor-

relation between two circular variables (Mardia and Jupp, 2000)

showed that there were strong correlations between the pre-

ferred directions obtained from LFPs and spikes in the mem-

ory-guided saccade task (Figure 8A; p < 10�9) and in the visual

search task (Figure 8B; p = 0.001). There were also strong corre-

lations between the preferred directions obtained across the two

tasks for both spikes (Figure 8C; p < 10�8) and LFPs (Figure 8D,

p = 0.001). In summary, there were overall strong correlations

between the directional tuning of the LFP and spike response

Figure 7. The Relationship of Selection Time in LFPs and Spikes to
LFP Visual Response Latency

The symbols representing the different times are the same as in Figure 6. The

visual response latencies and selection times across all recording sites are

sorted by increasing LFP visual response latency. Each of the data points plots

the average for a group of eight sorted recording sites. Consecutive data

points represent the average of eight recording sites after shifting the averag-

ing window by one. The statistical comparisons are shown at the top (large

symbols). The averages ± SE of the response latencies and selection times

are plotted after dividing the recording sites into two groups based on LFP

visual response latency. The recording sites with LFP visual response latencies

between 48–55 ms were assigned to the ‘‘early’’ group (n = 22; LFP visual re-

sponse latencies = 51.7 ± 0.5 ms; spike visual response latencies = 65.0 ±

3.3 ms; spike selection times = 109.5 ± 4.7 ms; LFP selection times = 145.4 ±

6.9 ms), and recording sites with visual response latencies between 56–67 ms

to the ‘‘late’’ group (n = 21; LFP visual response latencies = 61.5 ± 0.8 ms; spike

visual response latencies = 79.0 ± 2.9 ms; spike selection times = 126.3 ±

6.6 ms; LFP selection times = 141.5 ± 7.6 ms).

Figure 8. Comparisons of Spatial Tuning in Spiking Activity and LFP

Responses Recorded in the Memory-Guided Saccade and Covert

Visual Search Tasks

(A–D) The distributions of the differences in the preferred target directions

measured from the spiking activity and LFP responses for the recording sites

that exhibited significant spatial tuning in the spiking activity. LFP responses

exhibited significant spatial tuning at all 43 recording sites in both the mem-

ory-guided saccade and the covert visual search tasks. Angle differences

can range from�180� to +180�. All of the distributions are peaked near 0� (Ray-

leigh test, p < 0.001). A circular correlation analysis (Mardia and Jupp, 2000)

showed that the preferred target directions are significantly correlated

between (A) LFPs and spikes recorded in the memory-guided saccade task

(n = 42; p < 10�9); (B) LFPs and spikes recorded in the covert visual search

tasks (n = 38; p = 0.001); (C) spikes recorded in the memory-guided saccade

task and spikes recorded in the covert visual search tasks (n = 37; p < 10�8);

and (D) LFPs recorded in the memory-guided saccade task and LFPs recorded

in the covert visual search tasks (n = 43; p = 0.001).

(E) The distribution of tuning widths of the LFP responses (open bars) and spike

responses (filled bars) in the memory-guided saccade task. Tuning width was

defined as the standard deviation (T4) parameter of the best-fit Gaussian

curves. The average response field width is 38.7� ± 3.7� for spiking activity,

and 64.0� ± 3.0� for LFP responses; and the two distributions differ signifi-

cantly (paired t test, p < 10�7).

(F) The distribution of tuning widths of the LFP and spike responses in the

covert visual search tasks. The average response field width is 26.5� ± 2.6�

for spiking activity, and 44.7� ± 3.3� for LFP responses (paired t test, p < 10�4).
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fields across the memory-guided saccade task, in which a visual

stimulus is presented alone, and the covert visual search tasks,

in which the target must be identified among distractors.

The tuning widths of the LFP and spike response fields were

estimated by the standard deviation (T4) parameter of the

best-fit Gaussian curves. The distributions of tuning widths (in

polar angle coordinates) for the single visual stimulus in the

memory-guided saccade task, and for the target among distrac-

tors in the search tasks, are shown in Figures 8E and 8F, respec-

tively. For the memory-guided saccade task, the average re-

sponse field width is 38.7� ± 3.7� for spiking activity, and 64.0� ±

3.0� for LFP responses. For the visual search tasks, the aver-

age response field width is 26.5� ± 2.6� for spiking activity, and

44.7� ± 3.3� for LFP responses. The results of an ANOVA showed

that LFP tuning widths were significantly larger than spike tuning

widths (p < 0.001), and the tuning widths of responses in the

memory-guided saccade task were significantly larger than

those in the visual search task (p < 0.001). When converted to

visual field angles according to the law of cosines, the width of

receptive fields for a single visual stimulus alone averaged

6.5� ± 0.4� for spikes and 10.4� ± 0.4� for LFPs, and receptive

fields in the visual search task averaged 4.6� ± 0.4� for spikes

and 7.4� ± 0.5� for LFPs. The sizes of receptive fields of the spik-

ing activity and the narrower spatial tuning in the visual search

task (as compared with that of single targets) are similar to

previous reports that used comparable methods (Schall et al.,

1995a; Schall et al., 2004).

DISCUSSION

We show that LFPs in FEF exhibit visually evoked responses that

are spatially selective; they identify the location of a target pre-

sented alone in a memory-guided saccade task, and identify

the location of a behaviorally important stimulus during covert vi-

sual search in the absence of eye movements. We compared the

LFP responses to the single-unit activity recorded concurrently

on the same electrodes (Thompson et al., 2005b). In the covert

visual search task, both the LFPs and spikes exhibited a short-

latency, spatially nonselective visual response followed by a se-

lective response that identified the location of the behaviorally

relevant stimulus that instructed the monkey to manually turn

a lever to the left or right. The spatial selectivity for the behavior-

ally relevant target in the visual search task appeared in the spik-

ing activity before the LFP response. This result is especially

intriguing because it suggests that a cognitive representation

identifying the location of behaviorally important visual stimuli

is computed in the FEF from spatially nonselective inputs

(Thompson and Bichot, 2005; Thompson et al., 2005a).

The spatial tuning for target location was consistent across

tasks and across LFPs and spikes at each recording site, but

was generally broader in the LFP signal than in the spikes. Pre-

vious spike versus LFP comparisons either used full-field visual

stimulation (e.g., Chen et al., 2007; Logothetis et al., 2001) or

placed visual stimuli based on the spatial extent of the spike

receptive fields (Fries et al., 2001; Liu and Newsome, 2006; Pe-

saran et al., 2002). We are not aware of any study that compared

the spatial extent of visual responses of LFPs with that of spikes

recorded on the same electrode. But the broader spatial tuning in
LFPs as compared with that of spikes is consistent with the view

that LFPs reflect synaptic activity over a larger area of cortex

than is reflected in the spiking output of a few localized neurons

(Kreiman et al., 2006; Liu and Newsome, 2006; Logothetis et al.,

2007; Logothetis and Wandell, 2004; Mitzdorf, 1985, 1987).

Nevertheless, the overall strong correlations of spatial tuning be-

tween the LFP responses and spiking activity when a target was

presented alone and when presented among distractors indicate

that the LFP and spike signals originate from the same region of

FEF.

In a recent study, Buschman and Miller (2007) compared the

time course of spatially selective spiking activity recorded simul-

taneously in FEF and the LIP, an area that is interconnected with

FEF, in monkeys performing visual search tasks. Their results

suggest that spatial attention signals appear first in the FEF dur-

ing top-down attention and first in LIP during bottom-up atten-

tion. The implication is that visually driven attention signals

flow from LIP to FEF and cognitively driven attention signals

flow from FEF to LIP. Although simultaneous spike recordings

can be used to compare signals in interconnected areas, this ex-

perimental method does not address whether or how different

brain areas influence each other or how synaptic inputs are

transformed into spiking outputs in a given area. In addition,

the results of Buschman and Miller (2007) have been called

into question mainly due to the difficulty in knowing whether

the neurons recorded in LIP and FEF in that study were those

that received input from or influenced activity in the other brain

area (Schall et al., 2007). The combined LFP-spike analysis

described in this study may be able to address some of these

unresolved issues.

Combined analysis of LFP and spiking activity can provide

information about computations that cannot be obtained when

these signals are considered separately (Kreiman et al., 2006;

Nielsen et al., 2006). In the cerebral cortex, there is strong evi-

dence that the LFP is a mass signal that is primarily influenced

by the excitatory postsynaptic potentials (EPSPs) of dendrites

(Chen et al., 2007; Cruikshank et al., 2002; Juergens et al.,

1999; Kaur et al., 2004; Kreiman et al., 2006; Logothetis and

Wandell, 2004; Mitzdorf, 1985, 1987; Nielsen et al., 2006), and

thus reflects inputs from other brain regions as well as local neu-

ral processes mediated by interneurons. Spiking activity reflects

local processing and the long range outputs of neurons to other

brain regions. Simultaneous LFP and spike recordings provide

a way to compare the dendritic input with the spiking output,

which is required to understand the transformation of neural sig-

nals from one processing stage to the next. In general, brain

areas where cognitive functions are computed should show re-

sponse modulations in the spiking activity of single units before

they appear in the LFP—whereas the brain areas that receive this

information from other areas should show response modulations

first in the LFP, or simultaneously in the LFP and spiking activity

(Nielsen et al., 2006). In this study, we specifically examined the

transformation of a nonselective visual representation of items in

a search array into a cognitive signal that identifies the location of

the behaviorally relevant target stimulus.

The FEF is an important site of convergence in the visual sys-

tem (Jouve et al., 1998; Schall, 1997; Schall et al., 1995b; Vezoli

et al., 2004). The FEF receives retinotopically organized input
Neuron 57, 614–625, February 28, 2008 ª2008 Elsevier Inc. 621
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from dorsal stream visual areas MT, MST, and LIP; ventral

stream visual areas V4, TEO, and TE; and from the supplemen-

tary eye field and prefrontal areas 46 and 12. The dorsal stream

innervation ismost likely responsible for the fastnonselective initial

visual responses we measured in the LFP and spikes (Bisley et al.,

2004; Chen et al., 2007; Pouget et al., 2005; Schmolesky et al.,

1998). The latencies of the initial visually evoked LFP and spike re-

sponses were correlated, appearing in the LFP signals about

15 msbefore the spikes in the visual search tasks,and about 10ms

before the spikes in the memory-guided saccade task. At the

recording sites with the earliest spike latencies, the LFP latency

was about 2 ms earlier. The earlier visually evoked modulation in

the LFP is consistent with studies in visual cortex (Logothetis

et al., 2001; Schroeder et al., 1998), and with the hypothesis that

the LFP signal reflects synaptic input and indicates that the initial

visual response was relayed to the FEF from other brain areas.

The reverse temporal relationship was found in the visual

search data when we compared the time course of spatial selec-

tivity in the LFP response with spiking activity. Following the

initial nonselective visual response, a spatially selective signal

identifying the location of the search array target emerged first

in the spiking activity, and then in the LFP signal about 30 ms

later. The earlier spatially selective signal in the spiking activity

suggests that the representation of the location of the behavior-

ally relevant target stimulus is computed within the FEF rather

than relayed from other brain areas.

The alternative interpretation is that some modulations in syn-

aptic activity cannot be detected in event-related LFPs using the

methods we employed in this study. It is possible that FEF gen-

erates the strong spatially selective spiking signals by amplifying

weak differences in the synaptic inputs. Although the exact na-

ture of the input signals to FEF is currently unknown, they must

contain information about the visual stimuli, and differences be-

tween them. Our results suggest that computations in FEF con-

vert these differences into a strong categorical representation

identifying the target location, regardless of the visual feature

that differentiates the target from distractors. Consistent with

this view, in our study we used two different classes of visual fea-

tures, color and shape, and we obtained the same results.

The recording sites with the earliest LFP visual response laten-

cies tended to have the earliest spatial selection times in the

spiking activity. In dorsal stream visual areas of monkey cortex,

LFPs recorded in lamina 4 have the shortest visual response la-

tencies due to feedforward input from lower areas (Chen et al.,

2007; Schroeder et al., 1998). We therefore made the reasonable

assumption that the FEF recording sites with the earliest LFP

visual response latencies were functionally closer to the feedfor-

ward inputs. Although we cannot identify the cortical layers we

were recording from, the results depicted in Figure 7 suggest

that spatial selectivity in FEF originates first in neurons near the

feedforward input and then is distributed to the functionally

more distant regions in FEF via local connections or feedback

from other areas. Consistent with this view, at the recording sites

with the latest LFP visual response latencies, the selection times

measured in the LFP and spikes did not differ significantly. The

results reported here provide evidence for such a functional ar-

chitecture, though further studies are needed to test this hypoth-

esis in greater detail.
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Our results suggest that spatial selectivity during a pop-out

covert visual task is generated in FEF from spatially nonselective

inputs. A few studies have examined the relationships between

LFP and spiking responses in other areas. In area MT, for exam-

ple, Liu and Newsome (2006) found that tuning for motion direc-

tion and speed in LFP responses is highly correlated with that of

spike activity. In inferotemporal (IT) cortex, Kreiman et al. (2006)

showed a simultaneous time course of object selectivity in LFP

responses and spiking activity. A study by Nielsen et al. (2006)

showed that spikes and LFPs in IT exhibited learned object se-

lectivity, and that the modulation of LFP responses, but not spik-

ing activity, grew stronger from posterior to anterior IT. Because

LFP modulation reflects the synaptic input, they concluded that

learned object selectivity was encoded first in posterior IT and

then transmitted to anterior IT. Only one study, conducted in

area V4, has compared the spatial selection process measured

in LFPs and spikes during visual search (Bichot et al., 2005). In

that study, spatially selective responses appeared in the LFP

and spikes at the same time. Although it was not specifically

addressed in that study, the simultaneous modulation in LFP

and spikes suggests that the spatial selectivity was present in

the inputs.

The combined analysis of LFPs and spikes promises to pro-

vide useful information for understanding computations in the

brain. Also, LFPs recorded in monkeys can be an important

link between monkey single-unit data and human EEG and imag-

ing data (Logothetis and Wandell, 2004; Woodman et al., 2007).

For example, the spatially selective LFP response we report

could be related to the attention-related modulations observed

in human EEG recordings during visual search (Luck and Hill-

yard, 1994). Single units, LFPs, and EEG recordings provide

high temporal resolution. It is more difficult, however, to localize

the source of the computations reflected in EEG recordings than

in the other two signals. EEGs recorded from scalp electrodes

reflect the postsynaptic potentials summed over a large region

of the brain that could include many areas that are related to spa-

tial vision. The FEF is just one of the potential sources of the spa-

tially selective signals necessary for spatial attention (Pessoa

et al., 2003; Serences and Yantis, 2006). Further work is needed

to determine the relationships between LFPs and spikes within

and between the many regions of the brain involved in spatial

attention.

EXPERIMENTAL PROCEDURES

Data Collection

The data were collected from two male monkeys (Macaca mulatta) weighing

8 kg (monkey S) and 6.5 kg (monkey C). All surgical and experimental protocols

were approved by the National Eye Institute Animal Care and Use Committee

and complied with the National Institutes of Health Guide for the Care and Use

of Laboratory Animals.

The surgical procedures, behavioral control, and visual stimulation tech-

niques have been described previously (Thompson et al., 2005b). The sin-

gle-unit spiking activity analyzed in this study is the same as in the previous

study (Thompson et al., 2005b). Often two or three units were recorded simul-

taneously on one electrode and sorted offline. For this study, all the single units

recorded at each site were combined to represent the overall spiking activity at

each recording site.

The LFPs were recorded simultaneously on the same glass-insulated tung-

sten electrodes as the spikes using a Plexon data acquisition system (Plexon
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Inc.). The impedance of the head-stage was 40 MU at 1 kHz. Electrode imped-

ance ranged from 0.5 to 1.5 MU. A stainless steel guide tube resting on the sur-

face of the dura served as the reference. The signals were amplified and fil-

tered between 154 Hz and 8.8 kHz to obtain spike data. LFP signals were

digitized and sampled at 1 kHz after filtering the electrode signal between

3 Hz and 88 Hz. Analog eye position and lever position signals were digitized

and sampled at 1 kHz. A test of the effects of the LFP signal filtering is provided

in the Supplemental Data (see Figure S2 available online). This test showed

that signal distortions from the data acquisition system did not affect the

results.

Behavioral Tasks

At each recording site monkeys performed a memory-guided saccade task

(Figure 1A) and one of two visual search tasks (Figure 1B) in separate blocks

of trials as described in a previous report (Thompson et al., 2005b). In the mem-

ory-guided saccade task, after the monkey fixated on a 0.3� diameter gray

spot for 400–800 ms, an identical gray spot was flashed for 50 ms at one of

six or eight isoeccentric peripheral target locations spaced equally around

the central fixation spot. The eccentricity was adjusted so that at least one

of the stimulus locations was inside the receptive field of the neuron being

recorded. The eccentricities of the stimuli ranged between 8� and 12� across

recording sessions, depending on receptive field location. Monkeys were re-

quired to maintain fixation on the central fixation spot for a random period

ranging from 800 to 1400 ms. After the fixation spot disappeared, the monkeys

were rewarded for making a saccade to the remembered target location.

In the covert visual search tasks, monkeys initiated a trial by grasping a lever

and holding it in a vertical position. Once the lever was within 10� of vertical,

a small central yellow fixation cross (0.3�) appeared. After fixating the cross

for 400 to 800 ms, a search array appeared that was made up of a target ran-

domly placed at one of the locations used in the memory-guided saccade task

and distractors at the remaining locations. Each of the search array stimuli

subtended 1.5� of visual angle. The monkeys were rewarded for maintaining

fixation on the central cross and making the correct lever turn (>15� from ver-

tical) within 2 s after search array presentation; in practice, the monkeys nearly

always turned the lever to the physical limit of 35� from vertical. If the monkey

broke fixation on the central cross, released the lever, or made an incorrect le-

ver turn the trial was aborted immediately. The reward was given after a correct

lever turn; however, the search array remained on for an additional 250–500 ms

to probe for latent saccade plans. The monkeys did not tend to make saccades

to the target of the search array after obtaining the reward (Thompson et al.,

2005b).

Monkey S was trained to report the location of the color singleton target of

the search array (Figure 1B, upper). The stimuli were isoluminant green and red

discs. The target could be either green or red, but within a block of trials the

color of the target and distractors did not change. The singleton target

appeared randomly at one of six stimulus locations, three to the left and three

to the right of the fixation cross. A correct response was a lever turn to the left

or right corresponding to the location of the target stimulus relative to the

fixation cross.

Monkey C was trained to report the orientation of a C among O distractors

(Figure 1B, lower). The stimuli were gray rings with one of them having a 0.5�

gap randomly on the left or right. The C target appeared randomly at one of

eight locations positioned around the fixation cross. A correct response was

a lever turn to the left or right corresponding to the location of the gap in the

C target regardless of its location in the search array.

Data Analysis

The LFP signal is a continuous measure of brain activity. A comparable mea-

sure of spiking activity was obtained by convolving each spike with a function

that resembles an EPSP (Thompson et al., 1996). With this method, each spike

exerts influence only forward in time and represents the postsynaptic conse-

quences of spiking activity. The resulting spike density function reflects the on-

set of spiking activity at a 1 ms time resolution and is comparable to the onset

of activity measured in the LFP signal. Examples of the EPSP spike density

functions are shown in Figure 2A. Below we describe the analytical methods

used to determine the time course of visual activation and spatial selection,
and characterize the spatial tuning of spiking activity and LFP responses

recorded during the memory-guided saccade and covert visual search tasks.

Selection Time

The time course of spatial selectivity in the LFP and spiking activity was deter-

mined with an ANOVA at each millisecond following the target flash in the

memory-guided saccade task and the presentation of the search array in

the visual search tasks (Figure 2 and Figure 3). The running ANOVA estimated

the probability at each millisecond that the response did not vary across target

locations. Figure 2 and Figure 3 illustrate the time course analysis for the spik-

ing activity (Figure 2) and the LFP response (Figure 3) recorded concurrently at

a single site. The selection times of the spiking activity and the LFP response

were determined separately and were defined as the first millisecond that the p

value dropped below the 0.05 level before continuing past the 0.001 level and

remaining below the 0.05 level for more than 20 of the next 25 ms. To obtain the

earliest possible selection times, a threshold of p = 0.05 was used. However,

a threshold of p = 0.01 did not alter the temporal relationship between the se-

lection times of the LFP and spiking activity. Again, the important point is that

the same statistical analysis and threshold was used to determine selection

times in the LFP and spiking activity in the memory-guided saccade task

and in the visual search task. In Figure 2D and Figure 3D, p values obtained

from the running ANOVA are plotted as a function of time on a log axis from

1 to 10�10 for spikes (Figure 2D) and LFPs (Figure 3D) recorded concurrently

at a single site during the memory-guided saccade task (left) and the visual

search task (right).

It is important to note that selection time measured in the memory-guided

saccade task is qualitatively different from that measured in the visual search

task. In the memory-guided saccade task, a single target stimulus is presented

alone and evokes a different initial response across target locations. Therefore,

selection time in the memory-guided saccade task corresponds to the initial

visual response latency to a single visual stimulus. In the visual search task,

however, selection time measures the first time that the responses to the target

of the search array are different from the responses to the distractors. As previ-

ously shown for spiking activity (Thompson et al., 1996), and as we now demon-

strate for LFPs, the initial visually evoked responses in FEF during visual search

do not distinguish the target from the distractors. Therefore we used a different

method to determine visual response latency in the visual search task.

Visual Response Latency during Visual Search

Figure 4 illustrates how we measured the initial visual response latencies of the

spiking activity and the LFP response recorded simultaneously during the

visual search task. A paired t test was performed across all correct trials com-

paring the average activity during the 50 ms preceding the appearance of the

search array on each trial to the activity at each millisecond following the ap-

pearance of the search array. Reliable results were obtained when the visual

response latency was defined as the first time that the p value dropped below

the 0.01 level, but only if it continued past the 0.001 level and remained below

the 0.01 level for more than 20 of the next 25 ms. When the p value threshold

was 0.05, the results were about the same, except that the results from a few of

the recording sites were obviously false. Therefore, a more strict threshold of

p = 0.01 was used to determine visual response latency, as opposed to the

less strict value used to determine selection time (above). The important point

is that the same threshold was used for determining visual response latencies

in the LFP and spiking activity recording during the visual search task.

Spatial Tuning

To describe the variation in the spiking and LFP responses with the location of

the singleton target, the response averaged over a time interval was fit with

a Gaussian function of the form

Að4Þ= B + R,exp
�
� 1=2½ð4� FÞ=T4�2

�
;

where activation (A) as a function of meridional direction (4) depends on the

baseline response (B), peak response (R), optimum direction (F), and tuning

width (T4). Previous reports have shown that this function effectively charac-

terizes the spatial pattern of FEF spiking activity (Bruce and Goldberg, 1985;

Schall et al., 1995a, 2004).

The best-fit Gaussian curve was obtained for the average activity measured

over a time range following visual stimulus presentation. For spiking activity,
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the time range was from 50 ms to 300 ms for the memory-guided saccade

task, and from 100 ms to 300 ms for the visual search task. These time intervals

were used because they encompassed the period of spatial selectivity

observed across the data (Thompson et al., 2005b). For the LFP response in

the memory-guided saccade task, the time range was from 100 ms to 200 ms

because this interval encompassed a strong, spatially selective, negative-

going deflection observed across all the LFP recordings (see Figure 3C, left

panel). For the LFP response in the visual search task, it was necessary to de-

termine the appropriate time interval individually for the different recording

sites. This is because a spatially selective response could emerge in a positive

or a negative difference in the LFP signal. Therefore, to determine the spatial

tuning of the LFP signal, we made the reasonable assumption that the pre-

ferred direction was in the visual hemifield contralateral to the brain hemi-

sphere in which the LFP signals were recorded. In some of the LFP recordings,

spatial tuning was evident in positive tuning during one time interval and in neg-

ative tuning during another time interval that was separated by a nonselective

period during which time the polarity of the spatial tuning switched (see

Figure S1). The time interval we used for determining the directional tuning

was the interval that exhibited the strongest spatial selectivity in the running

ANOVA analysis described above because it was most reliable. In the Supple-

mental Data we show that the spatial tuning during the two time intervals was

essentially the same across the population (see Figure S1). For the recording

site shown in Figure 3, the strongest spatial selectivity was in the interval

between 180 and 300 ms (Figures 3C and 3D), and during this interval the

preferred direction corresponded to the most negative LFP signal (Figure 3E).

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/57/4/614/DC1/.
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Gating of Human Theta Oscillations by a Working Memory Task
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Electrode grids on the cortical surface of epileptic patients
provide a unique opportunity to observe brain activity with high
temporal–spatial resolution and high signal-to-noise ratio dur-
ing a cognitive task. Previous work showed that large-
amplitude theta frequency oscillations occurred intermittently
during a maze navigation task, but it was unclear whether theta
related to the spatial or working memory components of the
task. To determine whether theta occurs during a nonspatial
task, we made recordings while subjects performed the Stern-
berg working memory task. Our results show event-related
theta and reveal a new phenomenon, the cognitive “gating” of

a brain oscillation: at many cortical sites, the amplitude of theta
oscillations increased dramatically at the start of the trial, con-
tinued through all phases of the trial, including the delay period,
and decreased sharply at the end. Gating could be seen in
individual trials and varying the duration of the trial systemati-
cally varied the period of gating. These results suggest that
theta oscillations could have an important role in organizing
multi-item working memory.

Key words: theta oscillations; working memory; Sternberg;
intracranial EEG; brain waves; human

Oscillations in the theta frequency band (4–9 Hz) have been
extensively studied in rats (Vanderwolf, 1969; Bland, 1986;
O’Keefe and Recce, 1993; Skaggs et al., 1996), where they are
especially prominent during spatial exploration. These oscilla-
tions can be seen in the field potential and in the potentials
recorded from individual pyramidal cells (Leung and Yim, 1986;
Fox, 1989; Ylinen et al., 1995; Kamondi et al., 1998). An impor-
tant observation that sheds light on the function of theta is that
hippocampal place cells systematically change their phase of
firing relative to theta as the rat moves through a place field
(O’Keefe and Recce, 1993; Skaggs et al., 1996; Jensen and Lis-
man, 2000). This suggests that one function of theta is to provide
a reference frame for a neural code in which different spatial
information is represented at different phases of the theta cycle.
It remains controversial whether theta oscillations in the rat are
specialized for the organization of spatial information in the
hippocampus or are more generally involved in other functions
(O’Keefe and Burgess, 1999).

Given the importance of theta oscillations in the rat, it has been
of interest to determine whether similar oscillations occur in
humans. Theta band energy can be detected in humans by both
MEG and EEG methods and is evident during working memory
tasks (Gevins et al., 1997; Sarnthein et al., 1998; Klimesch, 1999;
Tesche and Karhu, 2000). It has recently become possible to
observe large-amplitude (.100 mV) theta oscillations in humans

by intracranial EEG (iEEG), a method that uses electrode arrays
to record the EEG directly from the cortical surface (Kahana et
al, 1999a, b; Caplan et al., 2000). These electrodes are implanted
in epileptic patients to determine the location of seizure foci. The
high signal-to-noise ratio of these recordings makes it possible to
detect large-amplitude oscillations with a clear spectral peak in
the theta frequency range and to study the dynamics of these
oscillations during individual trials. This is not generally possible
with the smaller MEG or EEG (1–10 mV) signals recorded from
the scalp. The iEEG study of Kahana et al. (1999b) showed that
theta oscillations occurred in intermittent bouts during a maze
navigation task and that the probability of their occurrence was
related to task difficulty. However, it remains unclear whether
theta was related to the memory or spatial components of the
task.

To determine whether large-amplitude theta can occur in a task
that lacks a spatial component, we have recorded from intracra-
nial electrode arrays while subjects performed the Sternberg task,
a classic test of nonspatial, multi-item, verbal working memory
(Sternberg, 1966). We found that theta oscillations occur during
this task and have investigated its properties. The Sternberg task
is particularly well suited for examining the temporal properties
of theta because each trial has a well defined period over which
working memory must be maintained. Thus, it was possible to
investigate the timing of changes in theta with respect to the
period of working memory.

MATERIALS AND METHODS
Subjects
Our four subjects had normal range of personality and intelligence and
were all able to perform the task within normal limits. Subject 1 (male,
age 23), subject 2 (male, age 18), and subject 3 (female, age 22) had
implanted electrode arrays, whereas subject 4 (male, age 19) had bilateral
depth electrodes in the temporal lobe. The research protocol was ap-
proved by the institutional review board at Children’s Hospital (Boston,
MA), and informed consent was obtained from the subjects.
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Intracranial EEG recording
iEEG signal was recorded from arrays (grids or strips) containing mul-
tiple platinum electrodes (3 mm diameter) with an interelectrode spacing
of 1 cm. Grids varied in size but covered several square centimeters of
the cortical surface. The location of the electrodes was determined using
coregistered postoperative computed tomograms and preoperative MRIs
by an indirect stereotactic technique (Talairach and Tournoux, 1988).
The iEEG signal was amplified, sampled at 200 Hz (Telefactor Corpo-
ration apparatus; band-pass filter: 0.5–100 Hz) for subjects 1 and 2, and
at 256 Hz (Biologic Corp. apparatus; bandpass filter, 0.3–70 Hz) for
subjects 3 and 4. Because of clock time discrepancies between the
recording and experimental computers, our clock calibration was accu-
rate to only 6200 msec.

Sternberg protocol
Lists of 1–4 consonants were presented sequentially on a computer
screen. Although items were presented visually, this form of the Stern-
berg task is nevertheless considered a verbal working memory task
because the stimuli are meaningful linguistic units (Baddeley, 1986). To
start each trial, a visual orienting cue was presented 1 sec before the first
list item (Fig. 1). Items were presented for 1.2 sec each with a 200 msec
interval between items. The termination of the last item in the list was
followed by a delay period of either 0.9 sec (subjects 1 and 2) or 2 sec
(subjects 3 and 4), after which the probe was presented. The probe
consisted of two letters for subjects 1 and 2 (forced choice variant), with
one letter drawn from the presented list. The subject responded by
pressing the left Control key if the first probe item was on the list and the
right Control key if the second probe item was on the list. Subjects 3 and
4 were tested using the standard “yes”/“no” version of the Sternberg task,
with a single probe item (Fig. 1a). The subjects responded by pressing the
left Control key if the probe item was on the list and the right Control key
otherwise. After each response, subjects received accuracy feedback
(correct, incorrect) and latency feedback (very fast, fast, good response
time, slow) via a screen message and then initiated the next trial by
pressing a key. The subsequent trial began 1.6 sec after this key press.
The mean interval between the response for one trial and the start of the
next trial was ;2.5 sec. During each session, trials of each list length were
randomly interleaved. We obtained 50, 96, 140, and 140 trials at each list
length for subjects 1–4, respectively. Only correct trials with RTs ,2.5
sec were used for analysis. Because there was no significant difference in
our results for correct “yes” and “no” trials, data were pooled across
these trial types.

Exclusion criteria
Subjects were excluded from analysis if their behavioral performance was
poor (mean response times .2 sec or had high error rates). Approxi-
mately half the subjects (four of a total of nine subjects) that were tested
were able to perform the task satisfactorily. Sites that were located over
known lesions (determined from clinical records) or were involved in
seizure onsets (identified by examining the seizure records) were ex-
cluded as were sites that showed epileptiform spiking (interictal spikes or
spike-and-waves) activity. A total of 73 such sites (of 320) were rejected.

Data analysis
Power spectra. Because the oscillatory nature of the iEEG data was of
interest, data analysis was done in the frequency domain. The power
spectrum is the Fourier transform of the autocorrelation function. A
simple estimate of the power spectrum, the magnitude-squared Fourier
transform of the data has poor “bias” (the power at nearby frequencies
contribute to the power at any given frequency, distorting the estimate)
and variance (the estimate of the spectrum does not converge to the true
value even if the data length increases) properties (Thomson, 1982).
Multitaper techniques (Thomson, 1982; Mitra and Pesaran, 1999) pro-
vide a formal method to obtain estimates of the spectrum with optimal
bias and variance properties. Briefly, the data set is windowed (tapered)
using a set of special windows (Slepian windows), which are maximally
concentrated in a time duration, T, and a bandwidth in frequency, W
(Thomson, 1982). The time and frequency resolution of the windows
thus fixes the number of windows, K 5 2TW 2 1, that can be used. The
windowed data is then transformed to the frequency domain by calcu-
lating the Discrete Fourier transform, resulting in K estimates of the
spectrum, Sk(f). Averaging these estimates reduces the variance of the
spectrum by =K. Our typical choices for T and W were 1 sec and 2 Hz,
respectively. The averaged power spectra were obtained by averaging the
single trial estimates.

Spectrograms. The spectral properties of stationary data sets do not
change over time, i.e., the power spectrum of any stretch of data is
statistically similar to any other stretch. If however, the spectrum varies
over time, the data set is nonstationary. One method to quantify non-
stationarity is to compute a time-varying spectrum, or spectrogram.
Spectrograms were computed using the squared modulus of the complex
demodulates [projection of the iEEG data onto different frequency bands
using filters (1 sec duration, 4 Hz bandwidth) constructed from the
Slepian windows (Mitra and Pesaran, 1999)]. Estimates from different
Slepian windows were averaged together to obtain the spectrogram for
each trial. The spectrograms for each trial were aligned with the onset of
the first list item and averaged together. Only oscillatory activity with
high signal-to-noise ratio will be apparent in averaged spectrograms
(Tallon-Baudry et al., 1996).

Test for gating. Gating of theta was tested by comparing the energy in
the average spectrogram during the trial to the energy in the 1 sec before
the orienting stimulus. Because the distribution of energies in the spec-
trogram is non-Gaussian, a nonparametric method (Mann–Whitney U
test; p , 0.05) was used to compare the average energy in each 250 msec
epoch during the trial with the intertrial energy. Because the analysis
windows were 1-sec-long, adjacent 250 msec bins are not independent.
Multiple comparisons (for the number of electrodes, frequencies and
bins) were corrected for by a Bonferroni correction.

Nonstationarity test. A second method to quantify nonstationarity is to
expand the spectrogram, S(f, t), along an orthogonal set of basis func-
tions Al(t) such that:

S~ f, t! 5 O
l50

L21

al~ f ! Al~t!,

results in coefficients, al(f) that are functions of the frequency alone, with
L denoting the number of terms retained in the expansion. Quadratic-
inverse theory (Thomson, 1990, 2001) can be used to pick an appropriate
basis set, Al(t), such that the number of terms in the expansion, L is fixed
to be 4TW, where T and W are defined above, fixing the time and
frequency resolution. Coefficients of higher order are identically zero.
The coefficients, al(f), of for the quadratic-inverse basis then take on
special meaning. The 0th order coefficient, a0(f) is approximately S(f), or
the time-averaged spectrum. The first order coefficient, a1(f), is the
time-derivative of the spectrum and so on. Thus, features such as sharp
or gradual changes in power, frequency drifts etc. can be readily identi-
fied in a noisy background.

For a constant amplitude signal of a single frequency, the expansion
coefficients vanish for all orders $1. For a stationary process, the ratio:

J~ f ! 5 SO
l50

L21
al~ f !

S~ f !D 2

,

where S(f) is the mean power, is xL21
2 -distributed. If the signal is

systematically nonstationary at a given frequency f across several trials,
the ratio will be significantly different from the expected value L 2 1 for

Figure 1. Schematic of the Sternberg task illustrating a four-item list
using the “yes/no” procedure. A series of letters was presented after an
orienting cue (1). After a delay period, a probe item was shown. Subjects
indicated whether the probe was on the list, and RT was measured. After
the response, the probe was turned off, and subjects received feedback on
their performance and initiated the next trial by a key press.
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a xL21
2 process. This results in a single number representing the amount

of nonstationarity at each frequency. Consider a stretch of iEEG data
around a trial of the Sternberg task. If the spectral characteristics of the
iEEG change because of the onset and offset of the task, or within the
task itself, the nonstationary index J(f), will be significantly different
from that expected by chance. The degrees of freedom, L for a single trial
is equal to the highest order term retained in the expansion, Lmax. For
multiple trials, this becomes Lmax 3 Ntrials. We considered the signal to
be nonstationary at a given frequency f if the ratio exceeded a percentile
threshold (typically 99.999% or p , 0.00001) of the xL21

2 distribution at
that frequency. It is appropriate in our case to use a high value of
significance given the large number of frequencies (256) and sites that
were tested. This test allows a classification of iEEG data as stationary or
non-stationary at a given frequency.

Test for continuity. To assess the continuity of theta within a trial, the
baseline level of theta was first established by calculating the spectrum for
a 1 sec interval after the response for each trial, and the individual
estimates of the spectrum were log-transformed. The jack-knife variance
(Mitra and Pesaran, 1999) was computed from individual estimates by
leaving out one trial at a time and averaging over the remaining esti-
mates. The resulting jack-knife statistic is t-distributed, and a threshold
value was chosen as the 99.999% point of this distribution. The continu-
ity of theta within a trial was now assessed as the fraction of trials (from
all trials of all list lengths) at which the narrow-band power dipped below
the threshold for any interval of .0.25 sec. The jack-knife statistic is used
because it is a robust measure that does not make any assumptions about
the underlying distribution of the data.

RESULTS
Figure 1 illustrates the structure of each trial of the Sternberg
task. We visually presented lists of one to four consonants. After
a delay period, the subjects’ task was to indicate as rapidly as
possible whether a probe item was on the list. We quantified the
speed of the response by measuring the response time (RT). This
task was administered to three subjects who had intracranial
electrode arrays and one with depth electrodes. Each of these
subjects performed the Sternberg task with very high accuracy;
for subjects 1–4, accuracy was 86, 98, 97, and 96%, respectively.
RT increased significantly with list length (LL) for all subjects
( p , 0.005). This increase, approximated by the equation RT 5
a 3 LL 1 b msec, had coefficients (a, b) 5 (89, 817), (95, 1008),
(40, 463), and (37, 353) for subjects 1–4, respectively. The differ-
ences in RTs between the first two and last two subjects was most
likely a consequence of differences in the design of the trial
structure (see Materials and Methods).

To examine the oscillations occurred during the Sternberg task,
it was desirable to have an unbiased algorithm to detect consistent
task-related changes in several frequency ranges. Because the
data set obtained was extensive (;200 trials/subject; total of 247
sites), examination of the entire data set by eye was impossible.

We adapted a test developed by Thomson (2001) to detect task-
related changes in different frequency bands (see Materials and
Methods). The nonstationarity index, J(f), identifies electrodes
in which the task produces transient or maintained changes in
spectral power at any frequency f. No assumptions are made
about the timing, duration, or sign of the changes. The only
requirement for detection is that the changes be consistent across
trials.

This nonstationarity test was applied to all sites that were not
rejected for epileptic artifacts (see Materials and Methods). Fig-
ure 2, a and b, shows J(f) for two representative electrode
locations. The broken line in the two panels represents the
99.999% confidence level for the statistic. Figure 2a shows an
electrode for which J(f) exceeds this level in the theta, beta, and
gamma frequency bands, indicating consistent task-related
changes at these frequencies. Figure 2b shows an electrode in
which J(f) did not exceed the required significance level at any
frequency, suggesting little or no task-related activity at this site.
We detected a total of 74 electrodes (of a total of 247 across all
subjects) for which J(f) exceeded the 99.999% significance level
at one or more frequencies. The electrode locations of these sites
were widely dispersed over the cortex (24 in the temporal lobe, 18
in the occipital lobe, 18 in the parietal /motor/premotor areas, and
14 in the frontal lobe). Figure 2c shows a plot of the number of
nonstationary electrodes at different frequencies. The majority of
these (60) had significant nonstationarity in the theta frequency
range (4–9 Hz), most prominently between 6 and 8 Hz. We
therefore conclude that there are widespread task-related
changes in theta during a memory task that lacks a spatial com-
ponent. Task-related changes were also observed in the gamma
frequency range, but these will be analyzed elsewhere.

To determine how theta changed during the task, we computed
trial-averaged spectrograms for the nonstationary sites. An exam-
ination of these spectrograms revealed an interesting pattern of
task-related activity at some sites: theta power increased at the
beginning of the trial, was elevated through item presentation and
the delay period, and decreased after the response. Figure 3a
shows the averaged spectrograms from sites that display such a
pattern in each of the four subjects. The average spectrograms for
these sites show a clear peak in the 4–9 Hz range, the theta
frequency band. Although peak frequencies and overall levels of
activity varied across subjects, the general pattern at these gated
sites is similar. Because the pseudocolor plots of the spectrograms
emphasize certain transitions in power while making others less

Figure 2. iEEG data show significant task-related nonstationarity, predominantly in the theta frequency band. To be considered significant, the
nonstationarity index must be higher than the horizontal line, which denotes the 99.999% point of the x2 distribution with the appropriate degrees of
freedom (see Materials and Methods). Nonstationarity index J(f) shown for two representative electrodes. a, Subject 1, Talairach coordinates (left–right,
anterior–posterior, inferior–superior) are 144, 111, 138. This electrode exhibits significant nonstationarity in the theta and beta bands, as well as some
peaks in the 20–30 Hz range. b, Subject 3, Talairach coordinates are 242, 18, 142. This shows an electrode that has no significant peaks. In both cases,
the average power spectrum had peaks in the theta frequency range. For a majority of frequencies, the measure is distributed between the 5 and 95%
confidence intervals with most values around the theoretical mean value, indicating that the method is appropriate. c, Summary plot of the number of
electrodes which showed significant nonstationarity as a function of frequency. A given electrode could show nonstationarity at several different
frequencies.
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visible, it is important to graphically plot changes in theta power
as a function of time. Figure 3b shows the evolution of narrow-
band power at the same four sites averaged over all trials with
two-item lists (4 Hz bandwidth around the peak frequency in the
spectrogram). In all cases, theta power was elevated during the

trial relative to the intertrial period. Note that the falling phase
before trial onset in the bottom left panel occurs because the
average intertrial interval for this subject was unusually brief (2
sec): because this interval was of the same order as the data
window for the spectrogram (see Materials and Methods), the
falling phase can be attributed to the offset of the previous trial.
Note also that the shifts in theta power during the trial were
relatively small. The most prominent feature at these sites is the
gating “on” of theta at the onset of the trial and the gating “off”
at the end of the trial. The average changes in power were high,
increasing by a factor of 2 (top panels, subjects 1 and 2) or 8
(bottom panels, subjects 3 and 4). One question that remains
unclear is whether theta is activated by the cue initiating the trial
or the presentation of the first memory item. Technical limitations
(see Materials and Methods) prevent us from determining the
onset of gating with a precision better than 6200 msec. It is
therefore unclear whether theta turns on with the orienting cue in
anticipation of the need for engaging working memory or whether
it turns on with the presentation of the first memory item. Ex-
periments with longer delays between the orienting cue and the
first list item would be useful in clarifying this issue.

It was desirable to develop a statistical test to determine
whether this gating was statistically significant and whether it
could be seen at a large number of sites. We therefore adopted a
test for gating: that the average theta power (across trials) in
every overlapping 250 msec epoch within the trials exceed the
power during the intertrial period at the 95% confidence level.
Thirty sites (of the 74 classified as nonstationary) met this crite-
rion ( p , 0.01, by a Bonferroni corrected, two-tailed, Mann–
Whitney U test). One or more gated sites was detected in each of
our subjects. It should be emphasized that sites that pass the
gating test necessarily have an increase in theta power during the
“pure” memory period, i.e., the interval after the offset of the last
list-item and the onset of the probe (0.9 sec in the forced-choice
variant and 2 sec otherwise) compared with the baseline power
immediately after the response and before the onset of the
subsequent trial (t test; p , 0.01). This observation indicates that
theta is engaged during the pure working memory period without
possible confounds of item presentation. The remainder of the
electrodes that showed significant nonstationarity in the theta
range typically had elevated theta power during a fraction of the
trial duration, and thus were not classified as gated sites. We will
not discuss these sites further.

To determine whether gating was dependent on the duration of
the task, we examined responses to trials of different list lengths
(and consequently trial duration). Figure 4 illustrates the change
in gating with list length. Two examples are shown, one from a
recording site on the surface of the left parietal lobe and one from
a depth electrode in the left temporal lobe. In both cases, the
duration of sustained theta closely followed the duration of the
trial. It can also be seen that the maximum of the average theta
power at these sites did not vary significantly with list length.
Similarly, the frequency of theta did not change as additional
items were presented (Fig. 3a). The pattern of gating at other sites
was similar. We conclude that theta oscillations of relatively
stereotyped frequency and power were gated by each trial of the
task and that the period of gating coincided well with the duration
of the trial.

Although Figures 3 and 4 indicate that the average theta power
is continuous at gated sites, the possibility remains that theta is
not continuous during individual trials. In fact, this seemed likely,
because previous iEEG recordings (Kahana et al., 1999b) showed

Figure 3. Theta is gated during the Sternberg task. a, Time-frequency
energy averaged over all two-item lists shows sustained theta activity. An
example is shown from each of the four subjects. The data illustrated were
obtained from a right frontal site in subject 1 (Talairach coordinates are
144, 111, 138) (top lef t); a left temporal site in subject 2 (Talairach
coordinates are 242, 29, 210) (top right); a right frontal site (Talairach
coordinates are 252, 234, 138) in subject 3 (bottom lef t); and a depth
electrode in left temporal lobe (Talairach coordinates are 225, 272, 16)
in subject 4 (bottom right). Black bars in the spectrograms denote the trial
duration from the orienting cue to the mean response time for two item
lists. Because of limitations in our synchronization techniques and meth-
ods of time-frequency analysis, the determination of the onset and offset
of theta has a precision of 6200 msec. The color scale represents power
in square microvolts. In subject 1, we also observed similar gating cen-
tered around 18 Hz. However, because this finding was not duplicated
across subjects, we did not analyze it further. b, Evolution of average theta
power in time for the above four electrodes for a bandwidth of 4 Hz
around the peak frequency. The dot–dashed vertical line marks the ori-
enting cue, the two solid lines denote the list items, and the dashed line
denotes the probe. Theta power is elevated throughout the trial, with
fluctuations within the trial. The error bars denote the 95% confidence
intervals.
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that theta occurs intermittently during a spatial maze navigation
task. As seen in Fig. 5a, which shows an unfiltered trace, theta
appears to be continuously elevated during a trial of the Stern-
berg task. Indeed, theta oscillations were similarly gated during
each of five consecutive trials (Fig. 5b). Also shown (Fig. 5c) is the
time evolution of the narrow band power (2 Hz bandwidth) at the
peak frequency (7 Hz) over the course of these successive trials.
This plot shows that theta power during the task was greater than
the level during the intertrial periods for a large fraction of each
trial. In a more rigorous analysis of the ten gated sites with the
largest amplitude theta (central region in subject 3; depth elec-
trodes in subject 4), we calculated the fraction of trials for which
there was a return to baseline theta power (see Materials and
Methods) for any interval .0.25 sec during individual trials. The
fraction of such trials was very low (ranging from 0.05 to 0.1 over

all trials for all three list lengths). We conclude that there are
many sites at which theta is continuous or nearly so during
individual trials.

Several interleaved controls indicate that the signals at theta-
gated sites were not directly related to sensory stimulation or to
the execution of a motor response. Between successive trials,
subjects were given visual feedback regarding their performance
on the previous trial. This information was presented on the same
monitor as the list items. However, as illustrated in Figure 6, this
sensory stimulus did not evoke theta activity at gated sites. A
second issue concerns the possibility that theta might occur in
preparation for motor responses. However, Figure 6 shows that
theta did not occur in anticipation of the motor response (key
press) by which subjects initiated the next trial. More quantita-
tively, we compared the theta power in the 1 sec before the
response at the end of the trial to the theta power 1 sec before the
key press (75 trials of all list lengths in each subject with a 1 sec
interval between the response and the key press). The theta
power before the key press was significantly smaller ( p , 0.01; t
test) than before the response. We conclude that theta activation

Figure 4. Gating varies systematically with list length. Averaged theta
power (5–9 Hz) as a function of time shows that theta is elevated for the
entire duration of the trial. The three different traces are averages over
trials with two-, three- and four-item lists (circles, squares, and diamonds,
respectively). Gray bars mark the presentation of the list items, and the
black bars mark the delay interval until the presentation of the probe for
the two-, three-, and four-item lists. The large tick at 21 sec marks the
onset of the orienting cue. a, Recording from a subdural electrode in the
parietal cortex (subject 3, Talairach coordinates are 252, 234, 138). b,
Recording from a depth electrode in left temporal lobe (subject 4, Ta-
lairach coordinates are 225, 272, 16). The rise subsequent to the end of
the trial is attributable to the onset of the next trial.

Figure 5. Gating of theta oscillations is evident in single trials of the raw
iEEG signal. a, Sample raw iEEG trace recorded from an electrode in the
parietal cortex (subject 3, Talairach coordinates are 252, 234, 138)
during a two-item list. The black bar below the trace marks the task
duration, whereas the ticks denote the presentation of the list items,
probe, and response, respectively. b, A 50 sec iEEG trace with five
consecutive trials from the same electrode shows clear enhancement in
theta activity for the duration of each trial. Bars and tick marks are as
above. c, Narrow-band power (7 6 1 Hz) for the 50 sec trace above shows
clear enhancement during trials relative to intertrial intervals.
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cannot be simply explained as a sensory or motor preparatory
response.

Although we have found a large number of gated sites (30), it
is difficult to make any strong conclusions about the distribution
of these sites on the cortical surface because of the sparse sam-
pling. It is important to understand that the electrode arrays were
placed in candidate seizure loci. While providing details within
the coverage area, the electrodes only covered a small fraction of
any one lobe. Thus, our failure to detect activity in a given lobe
of a subject does not imply that it was not present in that lobe.
Despite these limitations, it is important to document the location
of gated sites (Fig. 7). These appear to be distributed widely over
the cortex in frontal, temporal, parietal, and occipital lobes.
Furthermore, in two patients in which theta was detected with
large arrays, we found that many of the gated sites were clustered
near each other. However, closely spaced sites did not necessarily
show similar activity. Figure 8 shows average spectrograms (lef t
panels) and average power spectra (right panels) from each of
three nearby electrodes (1–2 cm separation; subject 3). Sites with
gated theta activity (middle row) sometimes occurred near other
sites with no clear task-related theta activity (top row). Further-
more, in this subject (subject 3), there were sites (bottom row in
Fig. 8) where theta activity was gated off by the task (i.e., the theta
power was suppressed throughout a trial and rebounded after the

response). Because such “off” gating was only detected in one
subject, we describe it here only because it provides further
evidence that large-amplitude theta can be very different at
closely spaced sites.

DISCUSSION
Theta in rats has been most reliably elicited by movement, and it
has therefore been suspected that theta may have a special role in
spatial processing. It was thus of considerable interest that the
first observation of large-amplitude theta in humans was during a
spatial task (Kahana et al., 1999b). However, this task also had a
memory component, leaving the possibility that theta might also
occur in memory tasks that lack a spatial component. We there-
fore obtained iEEG data from subjects performing a verbal work-
ing memory task to test whether this nonspatial, working memory
task also elicited large theta frequency oscillations. Using an
objective test for nonstationarity, we showed that the Sternberg
task evokes clear task-related changes in the iEEG in the theta
frequency band (Fig. 2) at some cortical and subcortical sites. The
power spectra showed a theta peak, the amplitude of which
increased markedly during the task compared with baseline lev-
els. Our finding that theta occurred during a task that lacked a
spatial component strongly argues against the view that human
theta is uniquely specialized for spatial computations. This con-

Figure 6. Theta activity not caused by
sensory stimulus or motor responses. Av-
eraged spectrogram for a site showing
gated theta activity (subject 1, Talairach
coordinates are 144, 111, 138). The tri-
als were aligned to the response. The bars
marked Feedback and Key denote the sen-
sory stimulus (visual feedback after the
response) and the mean time of the motor
response to initiate the subsequent trial,
respectively. One hundred trials of all list
lengths with a mean delay of 1 sec be-
tween the response and the key press (to
initiate the next trial) were used to com-
pute the spectrogram. Theta activity (;6
Hz peak frequency) has a sharp offset
after the response and stays off until the
beginning of the next trial (1.6 sec after
the key press). The small increase in theta
activity after the key press is caused by
averaging trials of different mean inter-
vals between the feedback and key press.
The color scale represents power in
square microvolts per Hertz.

Figure 7. Views of standardized brain showing electrode locations of gated sites. Filled symbols indicate electrodes in which theta was gated “on” by the
task. Open symbols indicate electrodes that did not meet our significance threshold. Different symbols indicate different subjects.
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clusion is consistent with several observations in rat (Macrides et
al., 1982; Givens and Olton 1990, 1995; Givens, 1996) and humans
(Gevins et al., 1997; Sarnthein et al., 1998; Klimesch, 1999;
Tesche and Karhu, 2000), indicating that theta can occur in
nonspatial contexts.

A second major finding of this study is that we detected a large
number of sites (30 in four subjects) in which the amplitude of
theta oscillations increased at the beginning of the trial, stayed
elevated through the entire trial, and decreased at the end (Fig.
3). We term this phenomenon “gating.” When the duration of the
trial was changed, theta gating changed accordingly (Fig. 4).
Although previous EEG studies indicated that theta could occur
during working memory tasks (Gevins et al., 1997; Klimesch,
1999), the timing of the involvement of theta was not investigated
because the structure of the tasks was not suited for the study of
timing issues. In contrast, the working memory component of the
Sternberg task has a well defined onset and offset, which allowed
us to detect a direct correlation of theta with task duration.

Although average theta power (across trials) was gated at these
sites, we confirmed that individual trials also exhibited this gating.
The high signal-to-noise ratio of the iEEG allowed us to deter-
mine that theta is continuous, relative to a baseline, at electrodes
with high-amplitude, gated theta (Fig. 5). This is in contrast to the
intermittent nature of theta observed in a spatial task (Kahana et
al., 1999b). However, it is possible that if we knew when the
memory demands occurred in the latter task, it would be contin-
uous during those periods. The continuous nature of theta has
important implications for models of working memory that are
based on oscillatory activity (see below).

Several findings indicate that activity observed at theta gated sites
cannot be a simple consequence of the sensory and motor compo-
nents of the task. In interleaved controls (Fig. 6), we found that a
sensory input or a motor response that was unrelated to working
memory did not evoke theta at gated sites. These results, along with
the tight temporal linkage of theta gating to the onset and offset of
the period of working memory, suggest that theta oscillations may
play an important role in human verbal working memory.

Spatial organization of theta
Our findings indicate that gated theta, although common, is not
uniformly present (Fig. 7). The locations of gated sites were
widely dispersed over the cortex. Although iEEG is uniquely well
suited to give a fine grained, high temporal resolution view of
theta, it is not well suited to establishing the regional localization
of theta, because the grid placement is sparse and determined
solely by clinical considerations. It is nevertheless tempting to try
to relate the limited data available to brain regions implicated in
working memory by fMRI methods (Ungerleider, 1995;
Goldman-Rakic, 1995; Smith and Jonides, 1998). However, we
caution against this for several reasons. First, recent work on
theta in rats indicates that periods of high and low theta have
nearly the same overall rates of firing (Csicsvari et al., 1999).
Thus, changes in theta amplitude may not be detected by hemo-
dynamic methods. A second point concerns the special methods
that are used in fMRI studies to isolate the brain regions that are
specifically involved in an aspect of brain function by subtracting
the activation evoked by a simpler task that controls for sensory
and other processes. In our case, all areas engaged by the task,
including purely sensory areas, might be expected to show task-
related oscillations. Indeed, the activation we observe in the
occipital cortex might be related to sensory processes rather than
memory processes. Our finding that widely distributed brain
regions generate theta during a working memory task is consis-
tent with EEG studies also show increased theta synchronization
between posterior and frontal regions (Sarnthein et al., 1998)
during a working memory task.

Oscillatory basis of working memory
Electrophysiological studies of working memory indicate that
persistent firing of cells underlies working memory (Goldman-
Rakic, 1995). Our results suggest that this firing may have an
oscillatory character. Oscillatory single unit activity has not gen-
erally been reported in the delayed response tasks in monkeys
(but see Nakamura et al., 1992), but it is not clear how to relate
animal electrophysiological studies on single-item nonverbal

Figure 8. Nearby regions (spacing ;1–2 cm)
can have dramatically different patterns of
theta activity. Left panels show averaged
spectrograms. Right panels show averaged
power spectra for the corresponding elec-
trodes (solid lines denote in-task power, dot–
dashed lines denote out-of-task). The white
bar in the top lef t panel marks the duration of
the trial from the onset of the orienting cue
until the presentation of the response. All
three electrodes show theta activity evi-
denced by the peaks in the power spectra.
The top panel shows an electrode with con-
tinuous, theta activity that is weakly modu-
lated by the task. Significant task-gated theta
increase in activity is evident for the elec-
trode in the middle panel. The bottom panels
show suppression of theta activity during the
trial. (Talairach coordinates from top to bot-
tom are 250, 214, 141; 254, 216, 129; 256,
224, 123.)
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working memory (Goldman-Rakic, 1995) to the multi-item verbal
working memory that we have studied in humans. It is possible
that verbal working memory is more complex than the simpler
forms used in animal studies (Baddeley, 1986) and that this may
explain why oscillatory activity has not generally been seen in
single units during simple working memory tasks in monkeys.

Relevance to models
Memory performance in the Sternberg task has been extensively
studied, and the behavioral results strongly constrain possible
models. Jensen and Lisman (1998) have proposed several variants
of oscillatory models that account for the details of response time
distributions in the Sternberg task. Their models were inspired by
the observation (in rat) that different spatial information is en-
coded at different phases of the theta cycle (see introductory
remarks). They propose that similar phase coding may be impor-
tant in multi-item working memory (Lisman and Idiart, 1995;
Jensen and Lisman, 1998) with different memory items active at
different phases of the theta cycle. The continuous nature of theta
during individual trials of the Sternberg task (Fig. 6) provides
support for such models. In one of the variants of the Jensen–
Lisman model, the frequency of theta oscillations was assumed to
decrease as a function of the number of items being held in
working memory. This model would seem to be ruled out by our
finding that theta frequency does not vary significantly with mem-
ory load (Fig. 3a) at gated sites. A second model was based on the
assumption that the phase of theta is reset by the arrival of the
probe, an assumption that is supported by recent MEG results
(Tesche and Karhu, 2000).

Although we have focused here on the possible role of theta in
multi-item working memory, there are other possible roles, none
of which are mutually exclusive. One possibility, for which studies
of long-term potentiation provide some evidence (Pavlides et al.,
1988; Huerta and Lisman, 1993), is that theta is used to rapidly
encode information directly into long-term memory by synaptic
modification. Another possible function of theta is to synchronize
different regions of the cortex that participate in the task (Sarn-
thein et al., 1998). Analysis of the synchronization of theta at
different sites during the Sternberg task is currently underway.

Concerns about the validity of data derived from
epileptic patients
Intracranial recordings from epileptic patients are increasingly
being used to study brain activity during cognitive tasks (Fried et
al., 1997; Fernandez et al., 1999; Kahana et al., 1999b; Caplan et
al., 2000; Kreiman et al., 2000). In such studies the possible
contribution of epilepsy to the conclusions needs to be addressed.
A number of observations suggest that the presence of theta
activity during the Sternberg task is not a result of seizure
activity. First, the precision of the gating (Fig. 3) and the high
degree of spatial localization (Fig. 7) are exactly the opposite of
what would be expected from an uncontrolled process like epi-
lepsy. Second, because the location of the seizure origin is not
known before the electrode implantation, iEEG from many re-
gions is sampled to identify the focus. Thus, many of the sampled
sites are far from the clinically determined epileptogenic foci. We
observed task-related theta in each of our subjects at sites that
were distant from the seizure foci, sometimes even in different
hemispheres (in subjects 1 and 4). Third, direct examination of
seizure activity in these subjects showed it to have a much higher
amplitude (.1 mV peak-to-peak) with different spectral structure
than even the largest amplitude theta signal during the task (200

mV peak-to-peak). Fourth, recent work using MEG has detected
theta activity in normal subjects during the Sternberg task
(Tesche and Karhu, 2000). Finally, the patients in this study had
behavioral performance similar to normals on the Sternberg task.
Thus, the task-related theta activity does not appear to be a
consequence of the pathology of the subjects.

Concluding remarks
Elucidation of the properties of theta in rats progressed rapidly
because spatial exploration is such a reliable task for eliciting rat
theta. The present findings indicate that a working memory task
is as good at eliciting theta in humans as spatial exploration is in
rats. The highly reliable way in which human theta can be elicited
by the Sternberg task and the ability to precisely control the
cognitive demands of the task make this an ideal experimental
system for the further study of the role of theta in memory and
cognition.
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Phase Locking of Single Neuron Activity
to Theta Oscillations during Working Memory
in Monkey Extrastriate Visual Cortex

activity” has been considered to play a major role in
the short-term maintenance of memories. Many studies
since then have provided support for this view and
greatly advanced our knowledge of the effects of stimu-
lus type and modality on delay activity and its temporal
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Tesche and Karhu, 2000), alpha (Gevins et al., 1997;Working memory has been linked to elevated single
Jensen et al., 2002), beta (Tallon-Baudry et al., 1999),neuron discharge in monkeys and to oscillatory
and gamma (Howard et al., 2003; Lutzenberger et al.,changes in the human EEG, but the relation between
2002; Tallon-Baudry et al., 1998) bands. There have alsothese effects has remained largely unexplored. We
been reports of working memory-specific increases inaddressed this question by measuring local field po-
synchronization between distinct brain regions, includ-tentials and single unit activity simultaneously from
ing elevation of synchronization in the beta band be-multiple electrodes placed in extrastriate visual cortex
tween signals recorded using iEEG at two occipital siteswhile monkeys were performing a working memory
(Tallon-Baudry et al., 2001) and elevation of synchroni-task. We describe a significant enhancement in theta
zation in the theta band between frontal and occipitalband energy during the delay period. Theta oscillations
EEG electrode signals (Sarnthein et al., 1998; Stam ethad a systematic effect on single neuron activity, with
al., 2002).neurons emitting more action potentials near their pre-

The relationship between these oscillatory phenom-ferred angle of each theta cycle. Sample-selective de-
ena in the EEG and the effects seen in the discharge oflay activity was enhanced if only action potentials
single neurons remains largely unexplored, yet it repre-emitted near the preferred theta angle were consid-
sents an important link between large-scale activationered. Our results suggest that extrastriate visual cor-
across neural populations and action potentials that aretex is involved in short-term maintenance of informa-
the fundamental computational elements that neuronstion and that theta oscillations provide a mechanism
use to communicate.for structuring the recurrent interaction between neu-

In this study, we investigate the relation between os-rons in different brain regions that underlie working
cillatory phenomena and single neuron activity duringmemory.
working memory by simultaneously recording the local
field potential (LFP)—a signal similar to the iEEG re-Introduction
corded in human patients—and single unit activity (SUA)
from awake behaving monkeys performing a workingWorking memory—the short-term maintenance of be-
memory task. The task required monkeys to retain infor-

haviorally relevant information—is an essential compo-
mation about a briefly presented visual stimulus over

nent for any higher cognitive function. It provides a
the course of a delay period. We presented visual stimuli

mechanism that allows the brain to delay action and at different contrast levels, chosen such that monkeys
gather further relevant sensory evidence or query long- performed well at high contrast but were unable to ex-
term memory stores to prepare an optimal behavioral ceed chance performance at low contrast. This allowed
response, rather than having to act immediately in reflex- us to compare conditions in which monkeys were, or
like fashion to sensory stimuli. Working memory thus were not, holding information in short-term memory. We
facilitates the coordination of multiple neural systems, recorded neural activity simultaneously from multiple
the integration of task-relevant information from a vari- electrodes placed in the occipital visual cortex (extrastri-
ety of sources, and the selection of appropriate actions. ate area V4) and focused our analyses largely on the
It also provides a mechanism by which current plans or theta frequency (4–8 Hz) band. We did this because
behavioral goals and contingencies can be maintained occipital visual cortex is an area where the iEEG is char-
(Asaad et al., 2000; Rainer et al., 1998) and if necessary acterized by high-amplitude oscillatory activity in the
rapidly modified (Asaad et al., 1998). Since the descrip- theta range during working memory (Raghavachari et
tion of neurons showing sustained elevated discharge al., 2001) and because synchronization between occipi-
of action potentials during delay periods (Fuster and tal and prefrontal EEG in the theta range has been impli-
Alexander, 1971; Fuster and Jervey, 1981; Kubota and cated in working memory (Sarnthein et al., 1998). Below,
Niki, 1971) several decades ago, this so-called “delay we perform a frequency analysis of the occipital visual

LFPs and describe their relationship to the activity of
single neurons during the maintenance of information*Correspondence: gregor.rainer@tuebingen.mpg.de
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but had little or no difficulty for high (25% and above)
contrast stimuli. Because sorting according to behav-
ioral performance separated trials into the two catego-
ries of low and high contrast, we grouped trials into these
two classes for some of our analyses of neural data.

Spectral Analyses
To examine whether there were any systematic varia-
tions in energy at different frequencies in the LFP signal,
we computed trial-averaged spectrograms of the LFP.
These are shown for an example recording site in Figure
2A for each contrast value separately. An increase in
low-frequency power during the delay period following
high-contrast sample stimuli is apparent in these spec-
trograms. To quantify this effect for this recording site,
we computed the trial-averaged magnitude of the Fou-
rier transform for the last 700 ms of the fixation (baseline)
and delay periods. We used the fixation period as a
baseline and compared it to corresponding values dur-
ing the subsequent delay period as a function of con-
trast. The fixation period provides a good baseline con-
dition, because the physical characteristics of the visual
stimulation are identical to those during the delay period.
While monkeys need to maintain a memory of the sample
stimulus during the delay period, there is no working
memory requirement during the fixation period. Thus,Figure 1. Behavioral Task and Performance
the main difference between these two periods is work-(A) The sequence of trial events and timing for the delayed-match-
ing memory demand. Comparing energy in the thetaing-to-sample (DMS) task. After a fixation period, a sample stimulus
band between fixation and delay period, we observed anS (one of eight natural images at one of six contrast levels) was

briefly presented. After a delay period, a full-contrast probe stimulus average 76% increase in theta energy at each individual
P was presented. In half of the trials, the probe matched the sample. contrast value of 25% or higher (t tests, p � 0.001), a
Monkeys were rewarded for making a lever response on these trials reduction for 5% contrast (t test, p � 0.001), and no
and for withholding a response for nonmatching probe stimuli. change at 10% contrast (t test, p � 0.12). Grouping(B) Behavioral performance on the DMS task is shown as a function

the trials into low versus high contrast, we observed aof sample stimulus contrast. Monkeys’ performance was at chance
significant increase at theta frequency for high contrast(50% correct) on low (5% and 10%) contrast trials (t tests, p � 0.1)

and significantly better than chance at contrasts of 25% and higher and a significant decrease at low contrast (t tests, p �
(t tests, p � 0.001). The error bars show the SEM. 0.01). We conclude that a robust characteristic of the

LFP at this recording site was an increase in signal
amplitude in the theta range (4–8 Hz) during the delay

in working memory, in order to better understand the period, when information about the sample stimulus
functional significance and the mechanisms by which needed to be maintained.
oscillations contribute to working memory. Working memory-specific theta frequency oscillations

were observed at many of the recording sites. In Figure
2B, we show LFP energy as a function of frequencyResults
during the delay period relative to fixation averaged
across all 37 recording sites. A peak in the theta (4–8Behavioral Performance

Monkeys performed a delayed-matching-to-sample Hz) range is apparent in these group data. Across this
population of recording sites, there was a significant(DMS) task summarized in Figure 1A. They were required

to view a sample stimulus and retain its identity over 20% increase in theta frequency amplitude during the
delay (t test, p �� 0.001). This enhancement in thetathe course of a 1 s delay period. After the delay, a probe

stimulus was presented, and monkeys had to release a amplitude was significant in each of the monkeys when
analyzed separately (monkey A: t test, p � 0.01; monkeylever if the probe matched the sample. Probe stimuli

were always presented at full contrast, whereas sample B: t test, p � 0.05). In addition, a significant majority of
recording sites showed increases in theta amplitude asstimuli were presented at one of six contrast levels.

Behavioral performance is shown as a function of con- opposed to decreases (28/37 increases versus 9/37; �2

test, p � 0.05). In the alpha band (8–12 Hz), on thetrast in Figure 1B. For low contrasts (5% and 10%),
performance was at the chance level of 50% correct (t other hand, we observed—on average—decreases in

amplitude for high-contrast sample stimuli at 6 out of 7tests, p � 0.1), whereas performance was significantly
above chance (at 83% correct or better) for high con- sites at which there was significant modulation (t tests,

p � 0.01) and an overall significant 5% average reduc-trasts (25%, 50%, 75%, and 100%; t tests, p � 0.001).
This suggests that monkeys were unable to identify the tion in amplitude (t test, p � 0.05). In the gamma band

(30–75 Hz), we observed a significant average 11% in-sample stimulus and/or maintain it in working memory
when it was presented at low (5% and 10%) contrast crease in amplitude (t test, p � 0.001), and significant
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Figure 2. Frequency Analysis of Local Field
Potential

(A) Trial-averaged spectrograms for frequen-
cies from 0 to 45 Hz for an example recording
site are shown for each contrast level sepa-
rately averaged across all objects. The fixa-
tion period, the sample stimulus presentation
from 0 to 350 ms, and the subsequent delay
period are shown.
(B) The change in energy between fixation
and delay periods for low- and high-contrast
sample trials averaged across all recording
sites (n � 37) is shown. This reveals energy
increases in the delta (0–4 Hz), theta (4–8 Hz),
and gamma (30–70 Hz) bands; decreases in
the alpha (8–12 Hz) band; and mixed effects
in the beta band (12–30 Hz) at high contrast.
Low-contrast sample stimuli by contrast led
to broad band decreases in energy.
(C) The theta frequency energy change from
fixation to delay period for high contrast (x
axis) is plotted against the corresponding low
contrast value (y axis) for all recording sites.
Empty symbols denote sites that (n � 14)
individually showed significant theta fre-
quency changes at high contrast.

modulations were apparent at 15 recording sites, with rather than simple upregulation of theta amplitude.
Taken together, these findings suggest that holding in-12/15 sites showing increases (t tests, p � 0.01). The

beta band appeared to be split into low beta showing formation in working memory is accompanied by oscilla-
tory changes in several frequency bands of the LFP inworking memory-dependent decreases and high beta

showing increases, so this band is not further analyzed extrastriate area V4, with increases in amplitude ob-
served mainly in the theta and gamma band and de-here. Elevations were also observed in these group data

in the delta band (below 4 Hz), but these are also not creases in the alpha band relative to a baseline of identi-
cal sensory input but absent memory load.further analyzed, because their cycle duration are of the

same order of magnitude as our analysis window of 700
ms. In Figure 2C, we directly compare for each recording Theta Oscillations and Behavior

We now focus on oscillatory activity in the theta bandsite how theta frequency LFP energy changed from fixa-
tion to the delay period for low- versus high-contrast and proceed with a detailed analysis of the time course

of energy in the theta band during the trial. A continuoussample stimuli. The empty symbols mark sites for which,
individually, the increase in theta frequency energy was estimate of theta frequency energy during the trial

E(LFP�) as a function of contrast is shown in Figure 3Asignificant for high contrast (25% and greater) sample
stimuli (t tests, p � 0.01). This occurred at 14 sites, and for a representative recording site. For sample stimuli

at 5% contrast, theta energy was reduced throughoutat all but one (13/14, or 93%) we observed more theta
frequency energy during the delay compared to the fixa- the delay relative to values during the fixation period.

For samples at high contrasts (25% or greater), thetation period. We found that a similar proportion (�2 test,
p � 0.1) of sites showed theta enhancement in each of energy increased during the delay period and tended

to peak 300–400 ms before the presentation of the probethe monkeys (monkey A, 7 of 19 sites; monkey B, 6 out
of 18 sites). The elevated theta band frequency energy stimulus. This pattern is similar to observations in hu-

mans using intracranial EEG recordings, where thetarepresented primarily oscillatory activity that varied from
trial to trial and was largely not tightly phase locked to energy during a multiple-item memory task also de-

creased toward the end of the delay (Raghavachari etthe presentation time of the sample stimulus. Accord-
ingly, the theta peak was attenuated in a frequency de- al., 2001). Whereas theta energy early in the delay varied

systematically with sample contrast, this was not thecomposition of the trial-averaged LFP. To demonstrate
this, we performed a Fourier analysis of the trial-aver- case during the later part of the delay around the time of

the peak. The trial-by-trial variability of theta frequencyaged LFP (i.e., FFT�LFP�) and computed how the mag-
nitude of this quantity changed from fixation to delay energy changes from fixation to delay period is shown

in Figure 3B for 100% contrast sample stimuli, compar-period. We then subtracted this quantity from the aver-
aged frequency energy across trials [i.e., �FFT(LFP)�] ing the last 700 ms of the two periods. More data points

fall above the diagonal, indicating greater theta energyas analyzed above. The difference between these quan-
tities [i.e., �FFT(LFP)� � FFT�LFP�] exhibited a signif- on average during the delay (t test, p � 0.01) on the

majority of trials. The opposite was true for 5% contrasticant increase in the theta range (t test, p � 0.05). This
indicates that elevated frequency energy in the theta sample stimuli shown in Figure 3C, where the majority

of data points lie below the diagonal (t test, p � �0.01).band was indeed largely non-phase locked. Thus, our
findings are consistent with a working memory-depen- On a trial-by-trial basis, the amount of theta energy was

not correlated with behavioral performance on that trial,dent theta process initiated during the delay period,
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Figure 3. Time Course of Theta Energy during the Trial

(A) The time course of theta frequency energy is shown as a function
of contrast at an example recording site. Relative to levels during the
fixation period, this shows that theta frequency energy decreased
during sample stimulus presentation (0–350 ms) and remained low
throughout the delay (350–1350 ms) at 5% contrast and behaved
similarly at 10% contrast. At higher contrasts, it began to rise during
the delay period and peaked around 300 ms before the end of the

Figure 4. Single Trial Local Field Potential and Single Unit Activitydelay. The trial-by-trial variability of (B) increased theta energy at
at Three Sites100% contrast and (C) decreased theta energy at 5% contrast during
(A) The raw LFP signals recorded simultaneously at three sites inthe delay is visualized by directly comparing the average levels of
extrastriate area V4 are shown for fixation, sample, delay, and probetheta oscillations during the fixation versus the delay period. Each
period, along with (B) the theta band-filtered versions of these sig-symbol represents one trial.
nals (LFP�) and (C) action potentials from single units (SUA) isolated
on each of these recording channels. The relation between action
potential timing for each of the neurons to the angle of their localneither in terms of reaction time nor correctness. Ac-
LFP� signal during the delay period averaged across all high-con-

cordingly, there was no significant difference between trast trials is shown in (D). Each of these neurons tended to emit
the distributions of theta energy for correct versus incor- action potentials preferentially in a particular range of theta angles.

The polar plots represent how many action potentials were emittedrect trials at any of the contrast levels (t tests, p � 0.1),
at each phase angle of the theta cycle. The bold number on theand reaction times for correctly executed match trials
upper right of each plot marks how many action potentials arewere uncorrelated with the amount of theta energy pre-
represented by the outer circle gridline. The colored radial line repre-ceding the probe presentation on that trial (t test, p �
sents the preferred theta angle for each neuron. The legend shows

0.1). Note that there were very few correctly executed an example theta cycle for reference.
match trials on low-contrast trials (three trials at low
contrast in this session), because monkeys almost never

correlated for this trial (Pearson r � 0.94 for the entireresponded to the probe stimulus after low-contrast sam-
raw LFP signal) as well as across all trials in the recordingples and thus made mostly false-negative errors (i.e.,
session (t test, p �� 0.001; �r� � 0.89). Such highomissions of required responses).
correlation of the raw LFP implies a similarly high corre-
lation of theta phase for nearby sites. The red trace also
exhibits several cycles of theta frequency oscillation,Theta Oscillations and Single Neuron Activity

Having established that theta frequency oscillations are which are phase shifted relative to the black/blue chan-
nel by about 90�. This trace was recorded from an elec-common and robust characteristics of the LFP during

working memory, we asked whether they had any sys- trode at a distance of about 3 mm away, and average
Pearson correlation between the signals was still signifi-tematic influence on the activity of single neurons re-

corded at those sites. Our results are based on a total cant but dropped sharply to �r� � 0.25 and �r� �
0.35 (for blue versus red and black versus red channels,of 72 recorded neurons (monkey A, 44; monkey B, 28).

We examined the relationship between the LFP and ac- respectively, t tests, p �� 0.001). In Figure 4B, the theta
band filtered signal (LFP�) is shown for the three chan-tion potentials emitted by single units isolated on the

same channels. An example of three raw LFP signals nels, demonstrating that the oscillatory activity during
the delay is reliably extracted.acquired simultaneously for a high-contrast sample is

shown in Figure 4A. Four cycles of oscillation in the To study the relationship between theta oscillations
and SUA shown in Figure 4C, we estimated the angletheta range are apparent in each of these signals. The

blue and black traces were recorded at a horizontal of the theta band oscillation LFP� during the delay period
and generated histograms in polar format of the phasedistance across the cortical surface of 1 mm and at

similar depth, and the signals are accordingly highly angles at which action potentials from isolated single
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Figure 5. Distribution of Single Unit Activity Alignment to Theta Os-
cillations

The distribution of preferred theta angles for each of the 72 neurons
in the population is shown in (A) polar and (B) histogram format,

Figure 6. Mean Population Single Unit Activity during the Trialrevealing a strong dependence of SUA on the phase of theta fre-
quency oscillations. The peristimulus time histogram averaged across all sample stimuli

and all 72 neurons in the population as a function of contrast, reveal-
ing robust visual responses during the sample and probe periods

neurons occurred relative to the theta-filtered LFP at at contrast levels higher than 10%. There was little difference in
the same cortical site. Such polar histograms, based on terms of mean firing rate comparing the fixation to the delay period.
all high-contrast trials, are shown for the three single The average fixation period activity level is marked by a horizontal

line at 15 Hz.neuron examples in Figure 4D. It is clear that action
potentials were not evenly distributed as a function of
theta angle, but tended to occur between angles of 90�
to 300�. Thus, action potentials tended to occur at times peristimulus time histogram averaged across all re-

corded neurons and all sample stimuli as a function ofwhen the LFP was decreasing from the peak of each
cycle at 90� to the cycle trough at 270�. We confirmed sample contrast shown in Figure 6 demonstrates that

there was little overall change in mean firing rate whenthat this phase-locking relationship between LFP� angle
and action potential timing was a highly significant and comparing fixation and delay periods. In fact, for high-

contrast trials, activity during the last 700 ms of therobust effect. Each unit on average emitted about twice
as many action potentials near its preferred theta angle fixation period, the average activity was 15.0 Hz and did

not significantly differ from the average activity of 14.5compared to its antipreferred angle, and statistical tests
confirmed that data were nonuniformly distributed (Ray- Hz during the last 700 ms of the subsequent delay

(paired t test, p � 0.08). Of the 25 neurons that did showleigh tests, p � 0.01). Indeed, action potential timing
varied systematically with LFP� angle for a great majority systematic changes in mean firing rate (t tests, p � 0.01),

about half showed increases from fixation to delay (15of the recorded neurons (65/72, or 90%, Rayleigh test,
p � 0.01). Considering each monkey separately, we con- neurons), with the rest showing decreases (10 neurons).

So, unlike neurons in prefrontal or inferior temporal re-firmed that a significant majority of neurons (�2 test,
p �� 0.01) showed this systematic variation of action gions (Fuster and Alexander, 1971; Fuster and Jervey,

1981), V4 neurons do not exhibit robust elevated dis-potential timing with respect to LFP� angle (monkey A,
43 of 44 neurons, or 98%; monkey B, 22 of 28 neurons, charge of action potentials during working memory de-

lays. Consistent with this observation, selectivity for theor 79%). Note that variation in LFP� phase among sites
can lead to neurons emitting action potentials at differ- information that is being held in mind (i.e., the sample

stimulus) was observed in relatively few V4 neurons. Weent absolute times, even though they show significant
alignment to their local LFP�. Accordingly, activity of the asked for how many neurons activity during the last 700

ms of the delay depended upon which stimulus hadred neuron shows similar theta phase dependence as
the blue or black neuron in Figure 4D but tends to emit been presented during the sample period. Considering

high-contrast trials, we found selective delay period ac-action potentials that are unsynchronized with those of
the blue or black neuron during the delay, as shown in tivity in 17/72 (24%) neurons (one-way ANOVA, pSAMPLE �

0.01). This number is slightly larger than the figure ofFigure 4C. We estimated the preferred angle for each
of the 72 neurons in the population with respect to the 11% previously reported (Chelazzi et al., 2001) at the

p � 0.05 significance level. However, our figure is basedLFP� recorded on the same electrode and show the
results in polar and histogram format in Figures 5A and on about 40 repetitions per stimulus condition. Basing

the ANOVA on similar trial numbers by restricting the5B, revealing that, although there was some variability
among neurons in terms of their preferred angle, with analysis to 100% contrast trials only (about ten repeti-

tions), we in fact obtain a statistically identical estimatevalues ranging from around 100� to 290�, the distribution
of preferred angles was unimodal exhibiting a peak near (significant delay activity in 5/72 neurons [6%]; �2 test,

p � 0.34) to that reported by Chelazzi and colleaguesa theta angle of 220�. Note that the increased theta
power in the LFP during the delay period and SUA phase (11/81 neurons, or 11%).

The fact that SUA tended to vary with theta anglelocking appear to be closely related phenomena.
It is interesting to note that phase locking of action raises the possibility that stimulus-selective signals dur-

ing the delay period might also vary with respect to thetapotentials to the LFP� signal occurred largely in the ab-
sence of modulations in mean firing rate. The mean angle. For a given single neuron, selective activity might
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and the difference in activity to its preferred compared
to its nonpreferred sample stimulus during its preferred
theta angle range (x axis) is plotted against the corre-
sponding value during its nonpreferred theta angle
range (y axis). The values are always positive, since they
represent increases in activity for the preferred over the
nonpreferred sample stimulus. The data points tend to
lie below the diagonal (paired t test, p � 0.001), indicat-
ing that stimulus-selective signals—that is, activity in-
creases for the preferred over the nonpreferred sample
stimulus—were greater near the preferred theta angle
than near the nonpreferred theta angle. We confirmed
that this was also the case when the data of each mon-
key were analyzed alone (monkey A: t test, p � 0.01;
monkey B: t test p � 0.05). In additional analyses, we
confirmed that sample-selective signals in the range of
�60� near the preferred theta angle were also greater
than sample-selective signals measured for the entire

Figure 7. Comparison of Sample Selectivity of Single Unit Activity 700 ms delay without considering LFP� (paired t test,
as a Function of Theta Angle

p � 0.001). The 42 neurons jointly modulated by theta
This scatter plot shows the trial-averaged difference in neural activ-

angle and sample stimulus (two-way ANOVA, pSAMPLE �ity for the preferred versus the nonpreferred sample stimulus (	SUA)
0.01 and pANGLE � 0.01) are shown as empty symbols inof each neuron, when considering only action potentials near the
Figure 7. For these neurons, sample selectivity was alsopreferred (x axis) and nonpreferred (y axis) theta angle. Each symbol

represents a single neuron; the empty symbols represent neurons greater near the preferred theta angle (paired t test,
that were significantly modulated by both sample stimulus identity p � 0.001), and sample selectivity was greater near the
and theta angle. The four large symbols represent the example preferred theta angle than the nonpreferred angle for a
neurons shown in Figure 8. Circle and square markers represent

greater fraction of these neurons (33/42, or 79%, com-neurons recorded in monkey A or B, respectively.
pared to 9/42, or 21%; �2 test, p � 0.01). The four large
symbols in Figure 7 represent four single neurons for
which the dependence of neural activity on theta anglepreferentially occur near its preferred angle of the theta
is shown in Figures 8A–8D. The left panels in each rowcycle. To evaluate if this occurs, we performed a two-
show the theta angle dependence of the SUA averagedway ANOVA on the activity of each neuron during the
across all high-contrast sample stimuli, and the radiallast 700 ms of the delay period. One factor was the
line represents the resultant vector or preferred thetaidentity of the sample stimulus (SAMPLE) being held in
angle for each neuron. All four of these neurons showedworking memory—as in the one-way ANOVA above—
significant theta angle dependence (Rayleigh test, p �and the other factor was theta angle (ANGLE). This anal-
0.01), with mean vectors between 180� and 270�. Theysis replicated the finding that the majority of neurons
right panels show the theta angle dependence of SUAshowed delay activity that varied systematically with
for the preferred and nonpreferred sample stimulus andtheta angle, as demonstrated by the fact that 54/72, or
demonstrate that robust sample selectivity tended to75%, of neurons showed a main effect of theta angle
occur near the preferred theta angle. Thus, more action(two-way ANOVA, pANGLE � 0.01), with only 1/72 neurons
potentials are emitted by V4 neurons during workingshowing a significant interaction (pINTER � 0.01). Over
memory delays around their preferred angle of the thetatwo-thirds of the neurons (51/72, or 71%) showed a main
oscillation, with the consequence of an enhancement ofeffect of sample stimulus (two-way ANOVA, pSAMPLE �
object-selective neural signals near this preferred theta0.01), and the activity of the majority of these neurons
angle. Taking into account the angle of the theta oscilla-(42/72, or 58%) varied significantly as a function of both
tion leads to an enhancement in stimulus-selective ac-sample stimulus and theta angle (two-way ANOVA,
tivity during the delay period, and stimulus-selectivepSAMPLE � 0.01 and pANGLE � 0.01). Thus, taking into ac-
signals could thus be extracted or decoded more accu-count the angle of the LFP� significantly increases (�2

rately by a downstream brain region if it takes into ac-test, p � 0.001)—and in fact more than doubles—our
count only action potentials emitted near the preferredestimate of how many V4 neurons contribute to working
theta angle.memory from 17/72 (24%) to 42/72 (58%).

The above statistical analysis revealed that over half
of the recorded V4 neurons were significantly modulated Discussion
by both theta angle and sample stimulus. We examined
the relation between these two influences on neural ac- We have described oscillatory activity in the local field

potential (LFP) during working memory in occipital visualtivity by assessing the difference in activity for its pre-
ferred and nonpreferred sample stimulus in two angular cortex of the monkey. Holding a stimulus “in mind” over

the course of a brief delay was associated with eleva-windows of the LFP� signal. The first window was chosen
to be �60� around each neuron’s preferred theta angle, tions at theta (4–8 Hz) and gamma (30–75 Hz) frequen-

cies and reduced activity at alpha (8–12 Hz) frequencies.and the second window shifted by 180� relative to the
first window. The results are shown in Figure 7 for all 72 We observed a relationship between theta oscillations

and the timing of action potential discharge of singleneurons, where each symbol represents a single neuron,
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Our findings of increases in theta and gamma fre-
quency oscillations during working memory are largely
in agreement with results obtained in humans. For exam-
ple, a relationship between theta frequency power and
working memory has been documented with high-reso-
lution EEG (Gevins et al., 1997), and coherence analyses
between scalp EEG signals have revealed increases in
synchronization between prefrontal and occipital sites
in the theta frequency range (Sarnthein et al., 1998; Stam
et al., 2002) during working memory. This finding is of
particular relevance to the results reported here because
it provides evidence for cooperation between prefrontal
and occipital sites (Klimesch, 1996) in the maintenance
of information in short-term memory and implicates spe-
cifically theta frequency oscillations in occipital cortex
in this maintenance. Recent work using intracranial EEG
(Kahana et al., 2001) and independent component analy-
sis applied to scalp EEG (Makeig, 2004) has provided
further evidence implicating theta frequency oscillations
in cognitive processing. In particular, one study reported
theta frequency oscillations at occipital cortical sites
while subjects were remembering lists of one to four
items over the course of a delay period (Raghavachari
et al., 2001)—findings which share many of the charac-
teristics seen in our data. For example, we note that the
time course of the theta elevation observed in that study
was similar to our results in the monkey, peaking in the
mid to late delay period and decreasing in anticipation
of the probe stimulus toward the end of the delay. InFigure 8. Single Neuron Examples Showing Sample Selectivity as

a Function of Theta Angle our study, the delay was always followed by a high-
For four example neurons (A–D) corresponding to the large symbols contrast probe stimulus. Since we observed no eleva-
in Figure 7, theta angle dependence of neural activity and sample tions—in fact, reductions relative to the fixation period
stimulus selectivity are shown. The modulation of activity averaged levels—of theta frequency energy for low-contrast sam-
across sample stimuli as a function of phase angle is shown on the ple stimuli, it follows that increased theta frequency os-left panel in each row. Dark lines represent means, thin lines repre-

cillations are unlikely to be due to anticipation of thesent standard errors for all high-contrast trials; radial thick lines
probe stimulus. We suggest, in agreement with Ragha-represent the preferred theta angle of each neuron. The number on

the top right of each panel represents the firing rate designated by vachari and colleagues, that theta frequency oscillations
the outer circle gridline. The right panel in each row shows the reflect a form of reverberation of activity related to the
activity for the preferred and nonpreferred sample stimulus for each memory or maintenance of the sample stimulus. These
neuron, along with the SEM. Asterisks denote statistical significance similarities suggest that theta frequency modulations
(t tests, p � 0.05). The upper and lower two panels represent data

recorded in monkeys and humans may be functionallycollected from monkeys A or B, respectively.
equivalent.

Similar to the effects at theta, we observed increases
in gamma frequency (30–75 Hz) energy during working

neurons during the delay period, such that single unit memory, replicating findings in humans. Using a de-
activity varied systematically with the angle of the LFP layed-matching-to-sample paradigm, elevations at gamma
theta oscillation. The observation that SUA was phase frequencies have been observed at both frontal and
locked to the theta oscillation allowed the definition of occipital sites in the scalp EEG (Lutzenberger et al.,
a preferred theta angle for each neuron. SUA reflecting 2002; Tallon-Baudry et al., 1998, 1999), MEG (Kaiser et
the identity of the remembered stimulus during the delay al., 2003), and iEEG (Howard et al., 2003). Published
was greatest near this preferred theta angle, and for findings in the alpha frequency (8–12 Hz) band appear
many neurons, stimulus-selective signals occurred only to be somewhat more variable, with reports of both
near the preferred theta angle. The alignment of SUA to increases (Jensen et al., 2002) and decreases (Gevins
theta oscillations and the associated effects on stimulus et al., 1997). In our study, we observed decreases at
selectivity occurred largely in the absence of overall alpha frequencies relative to baseline levels acquired
changes in mean firing rate of neurons during the delay while monkeys were waiting for the sample stimulus to
period. These findings suggest that theta oscillations be presented. Alpha frequency oscillations have been
observed in the LFP, which reflects aggregate activity reported to be correlated to attention and mental effort
of the local population of neurons, are accompanied by (Gundel and Wilson, 1992; Worden et al., 2000), so it
working memory-related signals in the activity of single appears at least possible that effects observed in the
neurons in the local population. Thus, theta oscillations alpha band reflect task contingencies other than the
during working memory can be interpreted as reflections working memory demands during the delay period.
of stimulus-selective signals occurring at the level of Studies of oscillatory phenomena in monkeys have

mostly focused on periods of sensory stimulation insingle neurons.
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occipital visual areas and described effects predomi- prominent role in prefrontal delay activity. However, for
nately in the gamma band, for example, as a function of a number of reasons, including the stochastic nature
attention (Fries et al., 2001), figure-ground segmentation of SUA, low firing rates, and the variability in terms of
(Gail et al., 2000), visual stimulus type (Rols et al., 2001), individual cycle duration of oscillations in a given fre-
or feature integration (Singer and Gray, 1995). There quency band, oscillations are not easily detectable from
has been far less work investigating oscillations during SUA alone (Csicsvari et al., 1999). It thus remains a
memory periods in monkeys. In one recent study, LFP possibility that oscillations at theta and/or other fre-
recordings were made from monkey V4 using an im- quencies might play a role during working memory also
planted recording grid (Tallon-Baudry et al., 2004), docu- in the prefrontal cortex.
menting a correlation between behavioral performance A systematic relation between theta oscillations and
and coherence in the beta frequency band. Another SUA is a well-known characteristic of neurons in the rat
study has reported direction-selective increases in hippocampus (Buzsaki, 2002; O’Keefe and Recce, 1993),
gamma frequency oscillations during a delayed saccade where pyramidal neurons that are sensitive to the ani-
task in parietal cortex (Pesaran et al., 2002). Generally mal’s location in the environment also discharge action
consistent with this, we observed elevations at gamma potentials systematically near a particular phase angle
frequencies at some sites. No changes in the theta band of the theta oscillation. Our study demonstrates a similar
were reported in that study. This might reflect differ- relationship in monkey occipital cortex. It has been sug-
ences between occipital sensory and parietal cortex, gested that multiple item memory might be supported
such as the low firing rates we observed during the delay by information packets aligned to different angles of
period in V4, or might be related to motor planning of the theta rhythm (Lisman and Idiart, 1995). We have
eye movements in the oculomotor task. Indeed, previous demonstrated that working memory for a single stimulus
studies have documented LFP oscillatory activity in the is indeed associated with SUA aligned to the angle of
20–40 Hz range and SUA synchronization in motor corti- the theta oscillation, a key prediction of that model.
cal areas (Murthy and Fetz, 1996; Riehle et al., 1997). Whether multiple item memory is indeed stored at dis-

At the level of single neurons, working memory has tinct theta angles, however, is an open but experimen-
been associated with delay activity—the elevated dis- tally addressable question.
charge of action potentials that is commonly observed Although it remains to be shown that downstream
in the prefrontal cortex (Funahashi and Takeda, 2002; brain regions take advantage of the variation in fidelity
Goldman-Rakic, 1996; Miller and Cohen, 2001; Rainer of neural signals as a function of the theta cycle, our
and Ranganath, 2002). One interesting observation re- findings demonstrate that behaviorally relevant signals
garding delay activity is that single neurons rarely show contained in action potential discharges of single neu-
stationary elevated discharge that is initiated by the rons are considerably enhanced when large-scale activ-
sensory stimulus and lasts throughout the delay. On the ity in the local population is taken into account. This
contrary, more detailed analysis of the delay activity provides evidence for the idea that the timing of action
time course indicates that delay activity is subject to potentials—in our case relative to the theta cycle—may
dynamics. One robust finding is that delay activity tends play an important role in the encoding of information
to increase toward the end of the delay, reflecting antici- (Abeles, 1982; Hopfield, 1995; Singer and Gray, 1995)
pation of the expected stimulus, action, or reward and structuring information flow among different brain
(Asaad et al., 1998; Rainer et al., 1999; Watanabe, 1996), regions (Diesmann et al., 1999; Salinas and Sejnow-
whereas activity early during the delay tends to reflect ski, 2001).
retrospective reverberation related to the previously
seen sample stimulus (Rainer et al., 1999). Together with Experimental Procedures
the results of the present study, this suggests that infor-

Subjectsmation held in working memory may initially be stored
Two adult male rhesus monkeys (Macaca mulatta) weighing 12 andin reverberating circuits that include prefrontal and oc-
13 kg were used in this study. Anatomical modified driven equilib-cipital cortices and in which theta frequency oscillations
rium Fourier transform (MDEFT) pulse sequence slices were ob-play an important role. Computational modeling work tained from each monkey (0.5 
 0.5 mm in-plane resolution, 0.5 mm

suggests that such reverberating activity might indeed slice thickness, 256 
 256 matrix with FOV 12.8 
 12.8 mm, 160
be important for maintenance of elevated neural activity slices, TR � 20 ms, TE � 4 ms, FA � 20�) on a 4.7 T vertical MRI
during working memory (Seung et al., 2000; Wang, 2001). scanner with 40 cm bore and 50 mT/m gradient coil (BIOSPEC 47/

40v, Bruker, Rheinstetten, D). Three-dimensional models of the skullThe information stored in reverberatory networks may
and brain were extracted from these scans using ANALYZE (Mayothen be converted into a prospective code in a task-
Foundation, Rochester, MN) software. These were used to locate thedependent fashion as the delay ends, in concert with
desired position of the recording chamber and headpost. Titanium

prospective coding in the prefrontal cortex and consis- implants were machined to fit the individual monkey heads using a
tent with the observed decrease in theta frequency oscil- CNC machine (Willemin-Macodel W428, Bassecourt, CH). The lower
lations ahead of probe presentation observed in humans parts of the implants were then coated (Medipure 22-00 and 22-
(Raghavachari et al., 2001) as well as in our study. 15, Medicoat, Mägenwil, CH) to ensure tissue compatibility. The

headpost, recording chamber, and a scleral search coil (Robinson,Our demonstration of theta-locked SUA in occipital
1963) were surgically implanted under aseptic conditions withoutvisual cortex raises the question of whether a similar
the use of dental acrylic. After injections of Robinul (0.01 mg/kg)relationship might hold in the prefrontal cortex. A recent
and Ketavet (15 mg/kg), we prepared monkeys for intubation by

study addressing this issue by examining SUA in the administering the analgesic Fentanyl (0.003 mg/kg), the barbiturate
prefrontal cortex found little evidence for oscillatory anesthetic Trapanal (5 mg/kg), and the paralytic Lysthenon (3 mg/kg)
structure in the timing of action potentials (Compte et intravenously. For the duration of the surgery, monkeys were main-

tained in anesthesia using Isoflurane. Postoperatively, monkeys re-al., 2003), suggesting that oscillations may not play a
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ceived antibiotics and analgesics. All procedures were approved by aged across all eight objects for each contrast separately, using an
FFT with length 256, windows length 250 ms, and overlap of 125 ms.local authorities (Regierungspraesidium Baden-Wuerttemberg) and

conducted in accordance with applicable guidelines of the European For the time course analyses, the raw LFP was filtered in the theta
range (4–8 Hz) using a zero-phase forward and reverse digital 4-poleCommission (EUVD 86/609/EEC) and the National Institutes of

Health for the care and use of laboratory animals. Butterworth band-pass filter to yield the signal LFP�. A continuous
estimate of the energy was then computed as E(LFP�) � real(H )2 �

image(H )2, where H is the Hilbert transform of the LFP� signal, withRecording Technique
the real part of H being LFP� itself and the imaginary part of H a 90�Neural activity was recorded from two to eight tungsten microelec-
phase-shifted version of LFP�. The Hilbert transform provides atrodes (UEWLGDSMNN1E, FHC INC, Bowdoinham ME) with imped-
convenient continuous estimate of signal energy without the needance of 1–2 M� at 1 kHz, which were moved up or down in pairs
for low-pass filtering that is typically performed if only (LFP�)2 isusing custom-made mini-microdrives mounted on a plastic grid
used as an energy estimate.(Crist Instruments, Hagerstown MD) allowing a minimum interelec-

We used a Rayleigh test (Fisher, 1993) to ask whether actiontrode separation of 1 mm. The signal from each electrode was ini-
potential timing varied systematically with the angle of the thetatially preamplified (
20, Thomas Recording, Giessen, D) using the
band-filtered LFP. We first computed the mean resultant length R asrecording chamber as reference and then split into two signals which

were filtered and amplified separately (BAK electronics, German-
R � √C2 � S2/n,town, MD) to yield local field potential and single unit activity. The

LFP was obtained by high-pass filtering the raw signal above 0.1 where
Hz and digitizing at 4464 Hz. The analyses in this study were per-

C � �i cos�iformed on the LFP in units of the analog/digital (A/D) converter.
Note that a 1 A/D sample corresponds to 4.9 
V. For the analyses

andpresented here, we used a digitally low-pass filtered (4-pole Butter-
worth, cutoff 100 Hz) version of the LFP downsampled to a sampling S � �i sin�i
rate of 200 Hz. SUA was obtained by first band-pass filtering the
raw signal from 300 Hz to 4 kHz and digitizing the signal at 22.231 where n is the number of trials and �i is the angle at which a given
kHz and sorting action potentials into clusters corresponding to action potential occurred. The significance probability for rejecting
signals from single isolated neurons (Datawave, Longmont, CO). uniformity was P � e�Z[1 � (2Z � Z2)/(4n ) � (24Z � 132Z2 � 76Z3 �

During each recording session, we advanced each pair of electrodes 9Z4)/(288n2)], with Z � nR2. We computed the preferred angle for
until the activity of one or more neurons was well isolated and began each neuron as the direction of the resultant vector:
data collection after a wait period of about 1 hr.

�̂ � �tan�1 (S/C)............S � 0, C � 0
tan�1 (S/C) � �....C � 0
tan�1 (S/C) � 2�..S � 0, C � 0Behavioral Task

Monkeys performed a modified version of delayed-matching-to-
sample. Each trial, shown schematically in Figure 1A, began when
the monkey grasped a lever. After fixating on a fixation point for a Acknowledgments
period of 1 s, a sample stimulus (S) was presented for 350 ms. The
sample was 10� 
 10� in size, presented at the center of gaze, and This work was supported by the Max Planck Society. G.R. is a DFG
could be one of eight different stimuli at one of six different contrasts Heisenberg Investigator (RA1025/1-1).
(100%, 75%, 50%, 25%, 10%, and 5%). Contrast was modulated
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contrast condition, and then adding back the mean that was origi- Published: January 5, 2005
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A growing body of animal research suggests that neurons represent information not only in terms of their firing rates but also by varying
the timing of spikes relative to neuronal oscillations. Although researchers have argued that this temporal coding is critical in human
memory and perception, no supporting data from humans have been reported. This study provides the first analysis of the temporal
relationship between brain oscillations and single-neuron activity in humans. Recording from 1924 neurons, we find that neuronal
activity in various brain regions increases at specific phases of brain oscillations. Neurons in widespread brain regions were phase locked
to oscillations in the theta- (4 – 8 Hz) and gamma- (30 – 90 Hz) frequency bands. In hippocampus, phase locking was prevalent in the delta-
(1– 4 Hz) and gamma-frequency bands. Individual neurons were phase locked to various phases of theta and delta oscillations, but they
only were active at the trough of gamma oscillations. These findings provide support for the temporal-coding hypothesis in humans.
Specifically, they indicate that theta and delta oscillations facilitate phase coding and that gamma oscillations help to decode combina-
tions of simultaneously active neurons.

Key words: phase locking; theta; gamma; intracranial EEG; navigation; local field potential

Introduction
Many recent neurobiological theories of human memory and
perception rely critically on brain oscillations to coordinate the
timing of neuronal spiking. For example, Buzsáki (2005) pro-
posed a theory of episodic memory in which theta oscillations
(4 – 8 Hz) act as a timing signal to ensure that neurons represent-
ing related stimuli spike nearby each other in time. In addition,
other researchers have suggested memory models that rely on
theta for different functions such as separating the memory-
encoding and the memory-retrieval processes (Hasselmo et al.,
2002) or maintaining stimuli representations in working mem-
ory (Lisman and Idiart, 1995). In addition to theta, gamma oscil-
lations (30 –90 Hz) play a role in a different set of models in which
they bind together sets of neurons to represent complex stimuli
(for review, see Fries, 2005).

The experimental data supporting these theories come from
simultaneous recordings of neuronal spiking and local-field po-
tentials (LFPs) in animals. For example, the discovery that some
rodent hippocampal neurons spike at different phases of the theta

oscillation depending on the animal’s behavioral state or spatial
location suggested that theta may be a general mechanism for
phase coding (Fox et al., 1986; O’Keefe and Recce, 1993). There is
also considerable evidence for the role of gamma oscillations in
animal cognition and behavior. For example, in olfactory and
visual cortices, the amplitude and synchrony of gamma oscilla-
tions indicates properties of external stimuli (Freeman and
Schneider, 1982; Gray et al., 1989). Furthermore, recent research
indicates that gamma oscillations play a role in cognitive behav-
iors such as maintaining stimuli representations in working
memory (Pesaran et al., 2002) and selectively attending to one
visual stimulus in a crowded scene (Fries et al., 2001). Although
excitatory and inhibitory neurons spike at different phases of the
gamma oscillation (Eeckman and Freeman, 1990; Csicsvari et al.,
2003), there are no reports of gamma-band phase coding in
which a single neuron would spike at different phases of gamma
according to behavior.

Consistent with these striking observations of brain oscilla-
tions in animals, there is now a large body of work demonstrating
functional correlates of theta and gamma oscillations in the hu-
man brain (for review, see Kahana, 2006). These studies have
used a variety of methods including scalp electroencephalogra-
phy and magnetoencephalography, as well as LFPs recorded in-
tracranially in patients undergoing neurosurgical treatments. Al-
though brain oscillations, particularly in the theta band, are
prominent both in humans and in animals, it has sometimes
proven difficult to link human and animal research findings. The
theta oscillation most often studied in humans is in the neocortex
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and has many distinct local generators (Raghavachari et al.,
2006), whereas the theta oscillation typically studied in animals is
in the hippocampus and is primarily driven by one of a small
number of sources (Buzsáki, 2002). To date, no human studies
have compared brain oscillations to the timing of neuronal
spiking.

Our goal in the present study was to characterize the temporal
relationship between single-neuron activity and LFP oscillations
in the human brain. Going beyond previous animal work, we
sought to characterize this relationship across a wide range of
frequencies and across a number of disparate brain regions. To
accomplish this, we recorded simultaneous spiking activity and
LFPs from intracranial microelectrodes in 20 patients undergo-
ing treatment for drug-resistant epilepsy (see Materials and
Methods). In these recordings, we identified a total of 1924 neu-
rons, and compared the activity of each neuron with LFP oscilla-
tions recorded at the same microelectrode. During recording,
subjects played “Yellow Cab,” a virtual taxi driver video game.
We selected this task because it induces task-related brain oscil-
lations at a range of frequencies, including the theta band, in
cortical and limbic structures (Ekstrom et al., 2005).

Materials and Methods
We examined data from intracranial microelectrodes in patients under-
going surgical treatment for drug-resistant epilepsy. Electrodes were po-
sitioned by clinical teams to isolate the epileptic seizure focus for subse-
quent potential surgical resection (surgeries performed by I.F.).
Microelectrode coverage included hippocampus (377 neurons), para-
hippocampal region (Witter and Wouterlood, 2002) (421 neurons),
amygdala (404 neurons), frontal regions (438 neurons), and occasionally
temporal and parietal cortices (284 neurons). This study conformed to
the guidelines of the Medical Institutional Review Board at University of
California, Los Angeles. We examined data from a total of 46 recording
sessions from 20 different subjects (individual subjects participated in
1– 4 sessions) (for details, see supplemental Table 1, available at www.
jneurosci.org as supplemental material). These recording sessions took
place in patients’ free time between medical treatments. During each
recording session, subjects played “Yellow Cab” (Ekstrom et al., 2005) on
a bedside laptop computer for 25– 60 min. During the game, �75% of
the participants’ time was spent actively moving to particular landmarks
in the environment. The remainder of the time was spent reading in-
struction screens and planning routes.

Each patient was implanted with 6 –12 clinical intracranial depth elec-
trodes. Each clinical electrode terminated with a set of nine 40 �m plati-
num–iridium microwires (Fried et al., 1999). The first eight microwires
were insulated except for their tip and were used to record single-unit
action potentials and LFPs. The ninth microwire had its insulation
stripped for �1 cm and served as the recording reference for the other
eight microwires on that depth probe. We recorded from each microwire
at sampling rates of 28 –32 kHz using a Cheetah recording system (Neu-
ralynx, Tucson, AZ). Action potentials were manually isolated using
spike shape, clustering of wavelet coefficients, and interspike intervals
(Quiroga et al., 2004). Typically we isolated zero or one distinct neuron
from each microwire, but in rare cases we observed up to three distinct
neurons from a single microwire.

For analyses of LFP oscillations, we downsampled recordings to 2 kHz
and then applied 60 and 120 Hz second-order Butterworth notch filters.
To minimize the contribution of low-frequency components of spikes
toward spectral calculations, we removed the samples from 2 ms before
to 8 ms after each spike and replaced them with a linear interpolation of
the underlying LFP signal. Then, we computed oscillatory phase and
power of the LFP using Morlet wavelets (wave number, 4) at frequencies
between 1 and 100 Hz (2x/8 Hz for x � 0, . . . , 53). We considered a
neuron phase locked at frequency f if the hypothesis of uniformity for its
LFP f hertz phase distribution could be rejected at p � 0.001 using a
Bonferroni-corrected Rayleigh test (Fisher, 1993). This Bonferroni cor-
rection compensated for our application of the Rayleigh test across each

of 54 frequencies. In summary statistics, if a neuron fulfilled this phase-
locking criterion at multiple frequencies, we considered it phase locked at
the frequency at which its phase distribution was most nonuniform ac-
cording to the Rayleigh statistic.

We studied neuronal spiking activity during different levels of LFP
oscillatory power by first calculating the phase and power of the LFP of
each phase-locked neuron throughout the entire recording session, at the
frequency at which it was phase locked. We then labeled each point of the
recording session according to whether the LFP exhibited high, medium,
or low power. To perform this labeling, first we removed any potential
artifacts caused by movement or electrical noise by discarding the 10% of
the recording session corresponding to the lowest fifth percentile and the
highest 95th percentile of LFP power throughout the recording session.
Then, we labeled the remaining time points into one of three groups
(high, medium, or low) according to the instantaneous log-transformed
power (at the phase-locked frequency). The boundaries for these groups
were equally spaced across log-transformed power values. Finally, sepa-
rately for the time points in each group, we calculated the instantaneous
firing rate of each neuron as a function of oscillatory phase. (The phase
was divided into 16 groups equally spaced between 0 and 2�.)

Results
We identified 1215 neurons whose spiking was phase locked to
LFP oscillations. This phenomenon was prominent in the theta
band (4 – 8 Hz). Figure 1A illustrates the behavior of a neuron in
the right superior temporal gyrus of subject 2 that was phase
locked to 7.3 Hz theta oscillations. This firing rate of the neuron
varied by more than twofold according to the instantaneous theta
phase: it had a firing rate of 7.9 Hz at its preferred phase (5.7 rad)
just before the peak of the oscillation and a firing rate of 3.7 Hz
near the trough of the oscillation (Fig. 1A, right). Figure 1B
shows the activity of a neuron from subject 1’s right temporal
cortex that was phase locked to the trough of 6.2 Hz theta
oscillations.

In addition to the theta band, we also identified neurons that
exhibited phase-locked spiking to oscillations in the delta- (1– 4
Hz), alpha- (10 –16 Hz), beta- (16 –30 Hz), and gamma- (30 –90
Hz) frequency ranges. Thus, human neuronal phase locking is a
general phenomenon that is not isolated to a narrow frequency
range. For example, Figure 1, C and D, depicts the activities of
neurons in entorhinal and orbitofrontal cortices that were phase
locked to oscillations at 3.4 and 3.7 Hz, respectively. Figure 1, E
and F, shows the behavior of hippocampal neurons that were
phase locked to gamma oscillations.

An additional pattern we observed was that neurons could be
phase locked to oscillations at multiple frequencies. For example,
Figure 1E shows the activity of a neuron from the right posterior
hippocampus of subject 4 that was primarily phase locked to 70
Hz gamma oscillations but also exhibited moderate phase locking
to delta oscillations. Figure 1H presents the activity of a neuron
from the left amygdala of subject 3 that exhibited significant
phase locking to both 9.5 and 1.8 Hz oscillations. Figure 1C de-
scribes a neuron from the left entorhinal cortex that was phase
locked to oscillations at 3.4 and 12 Hz.

In the rodent hippocampus, the prominent oscillatory pattern
is the 4 – 8 Hz theta rhythm (Buzsáki, 2002). However, in our
recordings, we found that hippocampal phase locking was more
prevalent in the 1– 4 Hz range than in the 4 – 8 Hz range. For
example, Figure 1G depicts the activity of a hippocampal neuron
that was phase locked to oscillations at 1.1 Hz. In addition, the
hippocampal neurons highlighted in Figure 1, E and F, also ex-
hibit significant phase locking at 1– 4 Hz.

Animal studies have identified neurons that were phase locked
to local oscillations in hippocampus (Fox et al., 1986; Skaggs et
al., 1996; Csicsvari et al., 2003) and entorhinal (Chrobak and
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Buzsáki, 1998), parietal (Pesaran et al., 2002), and visual cortices
(Fries et al., 2001; Lee et al., 2005): this phenomenon was notably
absent from frontal cortex (Siapas et al., 2005). Because our data-
set included recordings from widespread brain regions, we had
the opportunity to determine whether the prevalence of phase
locking in particular frequency ranges localized to particular
brain regions. We found that the prevalence of phase locking
significantly varied across brain regions in the delta- [�2(4) � 89;

p � 0.001], theta- [�2(4) � 78; p � 0.001], and gamma- [�2(4) �
71; p � 0.001] frequency bands. (For details, see supplemental
Table 1, available at www.jneurosci.org as supplemental mate-
rial.) Figure 2A shows that phase locking was especially prevalent
at theta frequencies in temporal and parietal cortices [�2(1) � 64,
p � 0.001, Bonferroni-corrected] and at delta frequencies in hip-
pocampus [�2(1) � 47, p � 0.001, Bonferroni-corrected]. In
hippocampus, significantly more neurons were phase locked to
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Figure 1. A, Activity of a neuron from subject 2’s right superior temporal gyrus, which was phase locked to the peak of 7.3 Hz theta oscillations. Left, Spike-triggered LFP average. Spike onset
occurred at 0 ms. Middle, Z score from Rayleigh test evaluating the hypothesis of a uniform LFP phase distribution at the moment of spike onset. Shifts along the horizontal axis indicate the relation
between spiking and phase of time-shifted LFP oscillations. The white � symbol indicates the frequency at which phase locking at 0 ms is most statistically significant. Right, Firing rate as a function
of phase at 7.3 Hz (the frequency marked by the � in middle panel). The circular mean resultant vector length R� (Fisher, 1993) of this 7.3 Hz LFP phase distribution is 0.19. The inset example
waveform is a reminder that the phases of the peak and trough of an oscillation are 0 (or 2�) radians and � radians, respectively. B, Activity of a neuron from subject 1’s right temporal gyrus that
was phase locked to the trough of 6.2 Hz theta oscillations (R� � 0.24). C, Behavior of a neuron from subject 20’s left entorhinal cortex, which was primarily phase locked to 3.4 Hz oscillations (R� �
0.2), but also exhibited some phase locking to oscillations at 9.5 Hz. D, A neuron from subject 18’s right orbitofrontal cortex, which was phase locked to 3.7 Hz oscillations (R� � 0.17). E, Behavior of
a neuron from subject 4’s left posterior hippocampus that was phase locked to the trough of 70 Hz gamma oscillations (R� � 0.17). Inset in left panel depicts a zoomed plot of the spike-triggered
average of this neuron. F, Behavior of a neuron from subject 12’s left anterior hippocampus that exhibited phase-locked spiking near the trough of 49 Hz gamma oscillations (R� � 0.2). G, The activity
of a neuron from subject 1’s left anterior hippocampus, which was phase locked to the peak of 1.1 Hz oscillations (R� � 0.1). H, Activity of a neuron from the left amygdala of subject 3 that was phase
locked to oscillations primarily at 1.8 Hz (R� � 0.11), but also at 9.5 Hz.
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delta oscillations than to theta oscillations
[�2(1) � 51; p � 0.001]. Note that unlike
some recent studies in animals (Siapas et
al., 2005), we report some phase locking to
theta oscillations in orbitofrontal cortices
(20 of 438 cells) (see also Fig. 1D). Figure
2C depicts the strength of phase locking
across all phase-locked neurons by plot-
ting the circular mean resultant vector
length R� , which is a measure of relative
increase in firing rate of each neuron at its
preferred phase (Fisher, 1993). The me-
dian R� across the population of phase-
locked neurons is 0.1.

The phase-coding hypothesis predicts
that neurons encode information via the
oscillatory phase at which they spike
(Huxter et al., 2003). This theory thus pre-
dicts that different neurons would spike at
varied phases of ongoing oscillations. To
test the phase-coding hypothesis in hu-
mans, we labeled the preferred phase of
each neuron as the oscillatory phase at
which its firing rate was highest. (The peak
and trough of each oscillation correspond
to 0 [or 2�] radians and � radians, respec-
tively.) Figure 2B shows the preferred
phase of each phase-locked neuron. Neu-
rons that were phase locked to delta or
theta oscillations had varied preferred
phases (Fig. 2D; see also Fig. 1A–D,G,H).
However, neurons phase locked to gamma
oscillations had preferred phases at or just
after the trough of the oscillation (Fig. 2E;
see also Fig. 1E,F). These dissimilar
preferred-phase patterns ( p � 0.001,
Mardia–Watson–Wheeler test) indicate that neurons phase
locked to gamma oscillations behave differently from those phase
locked to delta or theta oscillations.

Although recent work indicates that the power of brain oscil-
lations related to mean neuronal firing rates (Logothetis et al.,
2001; Mukamel et al., 2005; Niessing et al., 2005), it is unknown
how this phenomenon relates to the activity of phase-locked neu-
rons. To study this relationship, we analyzed the firing rate of
each phase-locked neuron during high-, medium-, and low-
power oscillations (see Materials and Methods). We identified a
number of neurons that exhibited excitation (i.e., increased fir-
ing) at their preferred phase during high-power oscillations,
compared with their activity during low oscillatory power (Fig.
3A,B). Some neurons displayed the opposite pattern and were
primarily inhibited (i.e., decreased firing) at nonpreferred phases
during high-power oscillations (Fig. 3C). Finally, other neurons
responded to high-power oscillations with substantial firing-rate
changes at all phases (Fig. 3D).

This led us to ask whether, across all neurons, phase locking
was primarily related to excitation at preferred phases or inhibi-
tion at nonpreferred phases. Our analysis showed that neurons
exhibited significantly greater firing rates during high-power os-
cillations than during periods of low oscillatory power (mean
increase, 0.7 Hz; p � 0.001, t test). This effect was especially
robust at the preferred phase of high-power oscillations at which
the mean firing rate was elevated by 3.8 Hz compared with peri-
ods of low oscillatory power ( p � 0.001, t test). This indicates

that the phase-locking phenomenon is primarily related to in-
creased firing during high-power oscillations. This is consistent
with the in vitro finding that some neurons act as bandpass filters
by spiking in response to experimentally induced electrical oscil-
lations at particular frequencies (Pike et al., 2000).

Discussion
Our results indicate that the neuronal phase-locking phenome-
non is present in various brain regions of humans engaged in
cognitive tasks. This phenomenon, in conjunction with the well,
studied and diverse relationship between brain oscillations and
human and animal learning (Berry and Thompson, 1978; Riz-
zuto et al., 2003; Jacobs et al., 2006), indicates that oscillation-
modulated temporal coding plays a role in human cognition.
Furthermore, our data suggest that gamma oscillations facilitate a
different type of information coding compared with delta or
theta oscillations. Delta and theta oscillations may facilitate
phase-based temporal coding because we found that individual
phase-locked neurons had widely varied preferred phases. This is
consistent with the observations that different rodent hippocam-
pal neurons were phase locked to varied theta phases (Fox et al.,
1986; O’Keefe and Recce, 1993) and that the amplitude of gamma
oscillations varies according to the instantaneous theta phase
(Mormann et al., 2005). In contrast to delta and theta oscilla-
tions, neurons that phase locked to gamma oscillations consis-
tently had preferred phases near the trough of the oscillation;
thus, it seems unlikely that these oscillations facilitate phase cod-

Figure 2. A, Probability of a neuron exhibiting significant phase locking as a function of frequency (Freq.), grouped by region.
Hippo, Hippocampus; PR, parahippocampal region; Amyg, amygdala; Fr, frontal region; Cx, temporal and parietal cortices. See
Materials and Methods for phase-locking criteria. Total area under each curve indicates the fraction of neurons in each region that
were phase locked (63, 70, 67, 49, and 72%, in hippocampus, parahippocampal region, amygdala, frontal region, and temporal
and parietal cortices, respectively). Each curve is smoothed with a Gaussian kernel. B, Distribution of preferred phases (i.e., the
phase in which firing rate was highest) of all 1215 phase-locked neurons. The region of each neuron is indicated using color scheme
from A. C, Histogram of the circular mean resultant vector length (R�) (Fisher, 1993) of each phase-locked neuron. D, Preferred-
phase probability density for all neurons that were phase locked at delta or theta frequencies (1– 8 Hz). Coloring within each curve
indicates the preferred-phase distributions of neurons in different regions. E, Preferred-phase probability density for all neurons
that were phase locked to gamma oscillations (30 – 90 Hz).
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ing. This trough-locked spiking is similar to data from animal
studies demonstrating that neurons in both neocortex and hip-
pocampus spike at or just after the trough of gamma oscillations
(Eeckman and Freeman, 1990; Csicsvari et al., 2003). In these
systems, it is believed that information is encoded by the combi-
nation of neurons that spike at least once in each oscillation cycle,
rather than the phase of each spike. Thus, our findings are con-
sistent with the idea that human neuronal networks oscillating at
gamma frequencies encode information by the combination of
active neurons in each 10 –50 ms oscillation cycle (Harris et al.,
2003; Fries, 2005).

One important difference between our human results and an-
imal electrophysiological literature is our observation of promi-
nent hippocampal oscillations at 1– 4 Hz (see Figs. 1E–G, 2A)
rather than the 4 – 8 Hz theta oscillation prominent in rodent
hippocampus (Buzsáki, 2002). Although this human hippocam-
pal oscillation falls into the delta range (1– 4 Hz), it shares several
characteristics with the 4 – 8 Hz rodent theta oscillation. For ex-
ample, we found that individual hippocampal neurons were
phase locked to widespread phases of this 1– 4 Hz oscillation (Fig.
2D) and that some hippocampal neurons simultaneously phase
locked both to these 1– 4 Hz oscillations and to gamma oscilla-
tions (Fig. 1E,F). Analogous trends have been observed with
rodent hippocampal theta (Fox et al., 1986; Bragin et al., 1995).
An additional link between these two oscillatory patterns comes
from Bódizs et al. (2001), who report that during rapid-eye-
movement sleep, the human hippocampus exhibits robust 1.5–3
Hz delta-band oscillations, whereas animals in this state display
4 – 8 Hz theta oscillations. Based on this evidence, we suggest that
the frequency range of human hippocampal theta may extend to
�1 Hz.

The existence of neuronal phase locking helps to interpret
behavior-related changes in brain recordings. For example, after

humans view visual stimuli, theta oscillations reset to particular
phases in response to task demands (Rizzuto et al., 2003). This
phase reset simultaneously occurs throughout multiple brain re-
gions; thus, it may cause phase-locked neurons throughout the
brain to spike in precise temporal patterns. Thus, our findings
suggest that oscillatory phase resetting temporally synchronizes
phase-locked neurons in widespread brain regions. This is con-
sistent with reports of behavior-related changes in the coherence
of oscillations in different brain regions (Jones and Wilson, 2005;
Hyman et al., 2005). These patterns of inter-region oscillatory
synchrony may be elaborate because our findings suggest that
neuronal phase locking spans a broad range of frequencies (Fig.
2A), and that some brain regions exhibit oscillations at multiple
frequencies (Fig. 1C,E,F,H) (Chrobak and Buzsáki, 1998). Fi-
nally, recent imaging studies showed that hemodynamic activity
closely relates to both power of gamma oscillations and mean
neuronal firing rates (Logothetis et al., 2001; Mukamel et al.,
2005; Niessing et al., 2005). Our findings substantially add to
these results by indicating that during high-power gamma oscil-
lations, neuronal activity is phase locked to these oscillations.
Thus, we suggest that reports of increased hemodynamic activity,
in regions in which they are correlated with the amplitude of
gamma oscillations, should be interpreted both in terms of in-
creased neuronal firing and increased neuronal gamma-band
synchrony.
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Timecourse of object-related neural activity in the primate
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Abstract

We studied the timecourse of neural activity in the primate (Macacca mulatta) prefrontal (PF) cortex during an object delayed-

matching-to-sample (DMS) task. To assess the effects of experience on this timecourse, we conducted the task using both novel
and highly familiar objects. In addition, noise patterns containing no task-relevant information were used as samples on some

trials. Comparison of average PF ensemble activity relative to baseline activity generated by objects and noise patterns revealed

three distinct activity periods. (i) Sample onset elicited a transient sensory visual response. In this sensory period, novel objects
elicited stronger average ensemble activity than both familiar objects and noise patterns. (ii) An intermediate period of elevated

activity followed, which began before sample offset, and continued well into the delay period. In the intermediate period, activity

was elevated for noise patterns and novel objects, but near baseline for familiar objects. (iii) Finally, after average ensemble

activity reached baseline activity at the end of the intermediate period, a reactivation period occurred late in the delay.
Experience had little effect during reactivation, where activity was elevated for both novel and familiar objects compared to noise

patterns. We show that the ensemble average resembles the activity timecourse of many single prefrontal neurons. These results

suggest that PF delay activity does not merely maintain recent sensory input, but is subject to more complex experience-
dependent dynamics. This has implications for how delay activity is generated and maintained.

Introduction

The prefrontal (PF) cortex contains many neurons that show elevated

activity during delay periods in cognitive tasks (Fuster, 1993;

Goldman-Rakic, 1995; Miller & Cohen, 2001). Studies have impli-

cated delay activity in short-term memory for spatial locations

(Funahashi et al., 1989; Funahashi et al., 1993) and objects (Fuster &

Alexander, 1971; Miller et al., 1996; Rainer et al., 1998a). Delay

activity has also been associated with anticipatory or prospective

coding for object stimuli (Rainer et al., 1999) and reward (Kubota &

Niki, 1971; Watanabe, 1996), as well as target selection (Rainer et al.,

1998b; Hasegawa et al. 2000), behavioural rules (White & Wise,

1999; Asaad et al. 2000) and motor preparation (Bruce & Goldberg,

1985; Watanabe, 1986; di Pellegrino & Wise, 1993). PF neurons

exhibiting delay activity thus play an important role in bridging the

gap between a sensory stimulus and a temporally delayed response

during cognitive tasks. Lesion and electrophysiological studies have

also shown that the PF cortex plays an important role in learning

(Petrides, 1985; Parker et al., 1998), and that PF neural response

properties can be modi®ed strongly by experience (Bichot et al.,

1996; Rainer & Miller, 2000).

In addition to this in vivo work correlating PF delay activity with

various cognitive functions, several recent computational studies

have investigated by which mechanisms delay activity might be

generated and maintained. Models used to describe delay activity

have focused typically on persistent activity, i.e. the prolongation of a

neural response to a sensory stimulus after the removal of sensory

stimulation (Durstewitz et al. 2000a; Wang, 2001). Approaches used

to model persistent activity include discrete attractor models based on

recurrent excitation and inhibition (Amit & Brunel, 1997; Amit et al.,

1997) and detailed biophysical models (Compte et al. 2000;

Durstewitz et al. 2000b). Other work has focused on networks with

bistable solutions with a resting and an active state based on long

NMDA-channel (Wang, 1999) or short AMPA-channel (Laing &

Chow, 2001) activation timescales. While these models have

contributed substantially to our understanding of delay activity and

the mechanisms that may give rise to it, the electrophysiological

studies suggest that activity in the monkey PF cortex is far more

varied and complex than simple persistence of sensory information.

Here, our aim is to provide a comprehensive account of the

timecourse of neural ensemble activity during a simple cognitive

task requiring short-term memory for objects.

We examined neural activity in a delayed-matching-to-sample

(DMS) task (Fig. 1). When objects were used as samples, monkeys

needed to retain this object information for a short delay to correctly

perform the task. On some trials, noise patterns were used as samples.

Although these noise patterns had similar image statistical properties

as the objects, they did not provide any task-relevant information and

did not need to be retained over the course of the delay. This allowed

us to compare activity speci®c to processing and maintenance of task-

relevant object information, with activity elicited by noise patterns

that needed to be processed but not maintained in short-term memory.
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Furthermore, we addressed effects of experience on the timecourse of

object processing by conducting the experiment with familiar as well

as novel objects (see next section).

Materials and methods

Two adult rhesus monkeys, Macacca mulatta (monkey A, female,

8 kg; monkey B, male, 11 kg), participated in the experiments. All

procedures were performed in accordance with National Institutes of

Health guidelines and the recommendations of the Massachusetts

Institute of Technology Animal Care and Use Committee.

Behavioural task

The behavioural paradigm was a modi®ed version of delayed-

matching-to-sample (see Fig. 1). Each trial began when the monkey

grasped a metal lever. A ®xation point (0.3 3 0.3°) was then

presented at the centre of a computer screen positioned in front of the

animal. After attaining ®xation, monkeys were required to maintain

®xation within 6 1.25° of this ®xation point throughout the rest of the

trial. After 1000 ms of ®xation, a sample object was presented for

650 ms. This sample object could be either one of ®ve natural images

(objects), one of four noise patterns (noise). During the experiment,

intermediate images between objects and noise patterns generated by

Fourier phase interpolation were also employed. The purpose of this

was to study the ability of prefrontal neurons to communicate

information about degraded images. Details about how these

degraded images were generated as well as relevant behavioural

and neural data have been described elsewhere (Rainer & Miller,

2000), and will not be further discussed here. After a brief delay

period, one of the ®ve natural images was presented as a test object.

Monkeys had to release the lever if this test object matched the

sample, or hold the lever for the entire test object duration in case of a

nonmatch. In the nonmatch case, a brief second delay (200 ms)

followed, which was always followed by a correct match object

requiring a lever release. This second delay was included only to

ensure that monkeys made a behavioural response on every trial and

was not used in any of the analyses. Match and nonmatch trials

occurred equally often. Monkeys received apple juice as a reward for

correct performance on trials with object samples. On trials with

noise patterns as the sample, half the trials were designated arbitrarily

as match trials, the other half as nonmatch trials. Monkeys were thus

rewarded randomly on half the trials, independent of whether they

held or released the lever on trials with noise pattern samples. This

reward protocol was chosen to ensure that monkeys were motivated

to attempt identi®cation of intermediate interpolated patterns. Both

monkeys had extensive experience over several years with delayed

matching tasks prior to participation in the present experiments.

Stimuli

Natural images were selected from a large database containing

pictures of animals, faces, ¯owers and outdoor scenes. After adjusting

the images to have equal mean intensity, we computed the Fourier

amplitude spectrum for each image, and averaged the amplitude

spectra to obtain a mean amplitude spectrum (MAS). The MAS had

the spatial frequency (f ±a) dependence characteristic of natural

images (Field, 1987). The Fourier phase spectra of the images were

then converted back into image space using the MAS. This ensured

FIG. 1. Sequence of trial events. After a ®xation period (FIX), a SAMPLE image (either one of ®ve objects or one of four noise patterns) was presented.
After a brief DELAY, a TEST image (one of the ®ve objects) was presented, and monkeys had to release a lever if this TEST image matched the SAMPLE
or in the case of a nonmatch hold the lever for the entire test duration and release to a subsequently presented correct match (not shown).
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that all ®ve objects had identical power at all spatial frequencies.

Noise patterns were created by ®rst generating random phase spectra

(i.e. each phase coef®cient was randomly assigned within the range

±p to +p). These random phase spectra were then transformed to

image space with the natural image MAS computed previously.

Transformations were performed using custom-written software

(MATLAB, Mathworks, Natick, USA). Noise patterns were thus

matched to the natural images in terms of luminance and spatial

frequency content. Stimulus size was 4° 3 4°, and mean luminance

of each entire image was 14 cd/m2. Stimuli were always presented at

the centre of gaze on a 17-inch computer monitor after appropriate

gamma correction to ensure linearity of the display.

Novelty/familiarity

To assess effects of visual experience, monkeys performed the task

using familiar and novel objects. During `familiar object' sessions,

we used objects that were highly familiar to the monkeys. They had

FIG. 3. Recording locations. (a) The box shows the general recording area on a lateral view of a generic Macacca mulatta brain. Abbreviations: M, medial;
L, lateral; A, anterior; P, posterior. (b) Electrode penetration sites for each of the two monkeys are shown. Recordings were made from a region around and
lateral to the principal sulcus (ps), anterior to the arcuate sulcus (as) of the prefrontal cortex. The size of the circles indicates the number of selective neurons
recorded at that site; dots represent sites where nonselective neurons were isolated. A neuron was termed selective if it showed a signi®cant difference in
activity in response to objects vs. noise patterns in any of the three task periods (sensory, intermediate or reactivation). Signi®cance was assessed using a
Wilcoxon signed rank test (evaluated at P < 0.01, see Materials and methods). The number of selective neurons is shown at the bottom left for each of the
monkeys, expressed as a fraction of the total number of neurons recorded in that animal with familiar and novel objects. (a) Drawing published with
permission from The Max Planck Institute for Biological Cybernetics. Drawn by Mr. K. Lamberty for the Institute.

FIG. 2. Behavioural performance ± behavioural performance pooled across a
total of 25 sessions from two monkeys, with corresponding standard
deviations.
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extensive training with this particular set of objects for at least ten

training sessions conducted prior to the experiments described here.

A different set of familiar objects was used for each of the two

monkeys. When familiar objects were used, noise patterns were

always novel every session (i.e. we generated four new noise patterns

for each session). During `novel object' sessions, monkeys were

presented with a new set of ®ve objects, which they had never seen

before. This set of novel objects did not change throughout the

session. Thus, monkeys saw several repetitions of these novel objects

during course of the session, but they did not have extensive prior

experience with them, as was the case for familiar objects. For novel

object sessions, noise patterns were kept constant across days such

that the same four noise patterns were presented repeatedly while

objects were changing across days.

Recording technique

A scleral search coil Robinson (1963), head restraint and recording

chamber were implanted under aseptic conditions while the animals

FIG. 4. Average population activity. Neural activity averaged across all
recorded neurons in (a) the familiar and (b) the novel object experiments
after subtraction of baseline activity. The vertical black bars represent the
boundaries of the sensory (S, 80±450 ms), intermediate (I, 450±1150 ms)
and reactivation (R, 1150±1650 ms) periods. Sample presentation occurred
at 0 ms, the delay period started at 650 ms and ended at 1650 ms. Green
curves represent activity to objects, and red curves represent activity to
noise patterns. The number of neurons contributing to the graphs is shown
on the upper left of each panel. Error bars represent standard deviations of
mean activity to all ®ve objects or all four noise patterns across the
population, and are shown for illustrative purposes. Bin width, 50 ms.

FIG. 5. Neural preference for objects or noise patterns. (a) Mean activity to
objects and noise patterns is shown for each of the experiments in the three
task periods for the entire population of neurons (familiar objects n = 164,
novel objects n = 160) after subtraction of baseline activity. Standard errors
(SEM) are shown for illustrative purposes (data are generally not distributed
normally). A W-test (P < 0.01) revealed comparisons between objects and
noise patterns that reached statistical signi®cance. P-values are shown
adjacent to the associated pair of datapoints. The abbreviations `fam obj'
and `nov obj' refer to the familiar and the novel object experiments,
respectively. (b) Each bar represents the number of neurons, a subset of the
total population in each experiment that showed signi®cant differences
between objects and noise patterns during each of the three periods
(W-tests, P < 0.01). The grey portion of each bar represents the fraction of
neurons that preferred noise patterns (i.e. responded more on average to the
four noise patterns than to the ®ve objects), and the black portion represents
the fraction of neurons that preferred objects.
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were anaesthetized using iso¯urane. Postoperatively, the animals

received analgesics and antibiotics and were kept alive for partici-

pation in further experiments. During recording sessions, monkeys

were seated in primate chairs within sound-attenuating enclosures

(Crist Instruments, Damascus MD, USA). Their heads were

restrained, and a juice spout was placed near their mouth for

automated delivery of reward (apple juice). For extracellular

recordings of action potentials, we employed a grid system (Crist

Instruments, Damascus MD, USA) with custom-made modi®cations

that allowed us to use eight tungsten electrodes (FHC instruments,

Bowdoin ME, USA) simultaneously. Penetrations were made

perpendicular to the surface of the skull, and the minimum separation

between adjacent electrodes was 1 mm. Recording sites near the

principal sulcus of the lateral prefrontal (PF) cortex were localized

using magnetic resonance imaging (see Fig. 3). We did not screen

neurons for involvement in the task, but instead advanced the

electrodes until the activity of one or more neurons was well isolated.

After a suitable wait period of 1±2 h, we then commenced recording.

This was performed to ensure an unbiased estimate of PF neural

activity. Due to the number of conditions required and the limitations

on the number of trials a monkey can work on a given day, it was not

possible to complete both the familiar and the novel object

experiment during a single recording session. However, care was

taken to record neurons at similar locations in the two experiments in

each of the monkeys, and at similar recording depths. Monkeys

completed an average of 865 trials during 25 recording sessions

(familiar objects, 14 sessions; novel objects, 11 sessions), resulting in

on average over 20 repetitions for each of the ®ve objects and about

30 repetitions for each of the four noise patterns. Analyses were

conducted on data from all attempted trials (both correct and

incorrect), excluding only trials on which the monkey broke ®xation

or failed to respond at all. We did this because behavioural choice

occurred only upon test object presentation, which happened after the

trial period that we analysed. Using all attempted trials yielded about

FIG. 6. Temporal dynamics of neural activity sorted by sample period preference. For each experiment, we selected neurons that during the sample period (S)
showed statistically signi®cant (W-test, P < 0.01) preference for (a and b) objects vs. noise patterns and (c and d) vice versa. Error bars represent standard
deviations of the mean responses to objects or noise patterns across the population. The number of neurons contributing to each panel is shown in the upper
left. Black vertical lines represent the boundaries of the sensory (S), intermediate (I) and reactivation (R) periods. The P-values represent signi®cance of
paired Wilcoxon tests comparing average activity to objects against average activity to noise patterns in each of these periods, for the neurons contributing to
each graph.

FIG. 7. Single neuron responses to objects and noise patterns. Four single neuron examples from the familiar object experiment (a±d), and four single neuron
examples from the novel object experiment (e±h) are shown. Responses to each of the objects and noise patterns are shown separately, with red curves
representing the ®ve objects and green curves representing the four noise patterns. Neural activity is shown relative to baseline ®ring rate. The symbols in the
upper left part of each panel refer to the scatterplots showing activity for all neurons in Fig. 8. Black vertical lines represent the boundaries of the sensory
(S), intermediate (I) and reactivation (R) periods. The top two rows represent single neuron examples from monkey A; the bottom two rows represent single
neurons from monkey B. The stars drawn beside the period identity symbols (S, I or R) denote signi®cant differences between average activity to objects
relative to noise (W-tests, P < 0.01).
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twice the data for the noise pattern condition, allowing more accurate

quanti®cation of neural activity. However, our results did not depend

on this choice; we repeated the major analyses performed in the

present study using correct trials only, which yielded very similar

results to the ®ndings presented here.

Data analysis

Neural activity was analysed relative to a baseline of activity during

the ®xation period prior to sample object onset. Baseline activity was

assessed during a period lasting 800 ms, starting 200 ms after onset

of ®xation (to exclude visual transients related to acquisition of

®xation) and ending at sample onset. This baseline activity was

subtracted from task-related activity for all the analyses in this study.

This was performed to facilitate averaging activity for neurons with

different baseline ®ring rates. Baseline ®ring rates were similar in the

two experiments (familiar objects: median, 10.9Hz; range, 0.1Hz-

39.2Hz; novel objects: median, 12.9Hz; range, 0.5Hz-37.1Hz).

Statistical tests

To evaluate whether there were signi®cant differences in ®ring rate,

to objects and noise patterns in the different task periods, we used the

Wilcoxon signed rank test for equality of medians. Unlike the t-test,

the Wilcoxon test makes no assumptions about the underlying

distributions. To evaluate whether there was a signi®cant difference

in average activity between objects and noise patterns, we ®rst

computed average ®ring rates across all objects and all noise patterns

for each neuron. Then we performed a matched pairs Wilcoxon

signed rank test, assessing signi®cance of the differences between

these two values across the population. When assessing whether

single neurons showed signi®cant differences between objects and

noise patterns, we grouped trials into two groups ± the ®rst one

comprised of trials with one of the ®ve objects as sample, and the

second one comprised of trials with one of the four noise patterns as

sample. We then performed an unmatched pairs (as object and noise

pattern data is generated on different trials) Wilcoxon test, examining

whether there were signi®cant systematic differences in neural

activity between these two groups of trials. In this text, we refer to

these statistical tests as W-tests. Tests were performed on average

activity during the three task periods: sensory (S), from 80 to 450 ms

after sample onset; intermediate (I), from 450 to 1150 ms after

sample onset and reactivation (R), from 1150 to 1650 ms after sample

onset. For the major statistical analyses, P-values are given for the

entire population as well as for each of the monkeys separately to

demonstrate consistency of the results across the two animals.

To examine whether an observed fraction of neurons preferring

objects to noise patterns was signi®cantly different from even

proportions, we performed a c2-test comparing the observed ratio to

an even split. For example, for a case where 50 neurons preferred

objects and 22 preferred noise patterns, we tested whether this

[50 : 22] was a signi®cantly different distribution from 36 : 36.

When comparing fractions of selective neurons between the two

experiments, we used a standard c2-test examining equality of

distributions.

Results

Behaviour

Behavioural performance is summarized in Fig. 2. We found that

monkey's behavioural performance was near ceiling when objects

were used as sample stimuli in both the familiar and the novel object

experiment (95% and 92% correct, respectively; t-test, P > 0.1).

Thus, they were able to perform the DMS task equally well with

novel objects as with highly familiar objects. However, when noise

patterns were used as sample stimuli, monkeys' performance was

near chance level of 50% correct in both experiments, because noise

patterns did not contain any task-relevant information.

Neural activity

We recorded neural activity from 164 neurons in the familiar object

experiment (monkey A, n = 79; monkey B, n = 85), and 160 neurons

in the novel object experiment (monkey A, n = 104; monkey B,

n = 56). Sites where neurons showing signi®cant differences in

activity in response to objects and noise patterns relative to baseline

®ring rate are shown in Fig. 3 for the two monkeys separately. As can

be seen, most neurons were found near, as well as ventral to the

principal sulcus.

Mean population response

The mean response of the entire unscreened neural population for

each of the two experiments relative to baseline ®ring rate is shown in

Fig. 4. Taking the experiments together, three distinct periods were

evident in these average response histograms. Stimulus presentation

evoked a transient sensory visual response (S), lasting from 80 to

450 ms after sample onset. This was followed by an intermediate

period (I), lasting from about 450±1150 ms after sample onset.

Finally, after a brief return to baseline activity, there was a

reactivation period (R) during the last 500 ms of the delay

characterized by an increasing `climbing' activity pro®le. We

observed several trends in these population histograms, which are

quanti®ed (paired Wilcoxon test, see Materials and methods) in

Fig. 5a. (i) There was great similarity between neural responses to

noise patterns in the two experiments, despite the fact that noise

patterns were actually novel each day in the familiar object

experiment and kept constant across days in the novel object

experiment (W-tests, P > 0.1). Thus, familiarity of the noise did not

affect the neural response. Accordingly, we henceforth use the term

noise patterns regardless of whether they were employed in the

familiar or novel object experiment. (ii) While during the sensory (S)

period familiar objects elicited similar average activity as noise (W-

test, P > 0.1; monkey A, P = 0.06; monkey B, P > 0.1), activity was

greater in response to novel objects compared to noise patterns (W-

test, P < 0.001; monkey A, P = 0.047; monkey B, P = 0.007). (iii)

During the intermediate (I) period there was no difference in activity

between novel objects and noise (W-test, P > 0.1; monkeys A and B,

P > 0.1), while there was signi®cantly less activity on average to

familiar objects than to noise patterns (W-test, P < 1 3 10±10;

monkey A, P < 1 3 10±6; monkey B, P < 1 3 10±5). (iv) During

the reactivation (R) period, both familiar (W-test, P < 0.05; monkey

A, P = 0.052; monkey B, P < 1 3 10±5) and novel (W-test, P < 0.01;

monkey A, P > 0.1; monkey B, P < 1 3 10±5) objects elicited higher

average activity than noise patterns, although this effect reached

signi®cance in only one animal.

These trends were con®rmed by examining the number of neurons

showing signi®cant differences in activity between objects and noise

patterns. In Fig. 5b we summarize for how many neurons this

difference was signi®cant in each of the task periods for both

experiments. Signi®cance was assessed using an unpaired Wilcoxon

test (see Materials and methods). Comparing the familiar and novel

object experiments, similar numbers of neurons showed signi®cant

differences in activity to objects and noise patterns during the

intermediate and reactivation periods (c2-test, P > 0.1), whereas,

during the sensory period, more neurons showed such differences in
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the novel object experiment (c2-test, P < 0.001). During the sensory

period, preference for objects vs. noise patterns was evenly distrib-

uted in the familiar object experiment (c2-test, P > 0.1), while more

neurons preferred novel objects to noise patterns (c2-test, P < 0.05).

This indicates that although there was no systematic difference

between activity to familiar objects and noise patterns during the

FIG. 8. Distribution of neural responses to objects and noise patterns. The columns display data from the familiar and novel object experiments. Each panel
summarizes the response of the entire population of single neurons to objects and noise patterns during the sensory, intermediate and reactivation periods
(familiar objects, n = 164; novel objects, n = 160). Each circle represents a single neuron, and large symbols represent the single neuron examples from
Fig. 7. Neural activity is plotted relative to baseline response, such that positive values depict increases from the activity during the ®xation period and
negative values depict decreases. The signi®cance level of a Wilcoxon test comparing mean activity between objects and noise patterns is shown at the
bottom right of each panel for reference (same values as in Fig. 5a).

Timecourse of prefrontal object-related activity 1251

ã 2002 Federation of European Neuroscience Societies, European Journal of Neuroscience, 15, 1244±1254



sensory period, many single neurons actually did distinguish between

familiar objects and noise. These subpopulations are analysed

separately in the next section. During the intermediate period, a

similar number of neurons preferred novel objects or noise patterns

(c2-test, P > 0.1), while many more neurons showed greater activity

to noise patterns than to familiar objects (c2-test, P < 0.0001).

Finally, during reactivation, there was a trend for preference for

objects over noise patterns in both experiments that reached

signi®cance only for novel objects (familiar objects, c2-test,

P = 0.12; novel objects, c2-test, P < 0.01).

Mean response of neurons preferring objects or noise patterns

To examine the timecourse of the neural response in more detail, we

plotted separately the temporal development of average activity for

neurons that showed signi®cant preference for objects over noise

patterns and vice versa in each of the experiments. In Fig. 6a we

show average activity for neurons that preferred familiar objects to

noise patterns. Although these neurons were selected to show greater

activity for objects during the sensory period, this activity preference

was not maintained through the intermediate period but only

reappeared during the reactivation period towards the end of the

delay. During the intermediate period, neural activity was similar for

objects and noise patterns (W-test, P = 0.14). For neurons that

preferred novel objects to noise during the sensory period (Fig. 6b),

this sensory preference was prolonged through the intermediate

period and was also present during reactivation. Noise-preferring

neurons showed similar trends in both experiments, as shown in

Fig. 6c and d; preference for noise patterns during the sensory period

was maintained during the intermediate period. During reactivation,

these neurons did not show signi®cant differences in response to

objects and noise patterns (W-tests, P > 0.1).

Single neuron examples for familiar and novel objects

The above population results suggest that the temporal dynamics

present in the average population do not appear to be a result of

averaging together distinct neural populations, but rather might

characterize response pro®les of single neurons. Indeed, the devel-

opment of neural activity over time seen in many single neurons

resembled that of the average population. Single neuron examples for

the familiar object experiment are provided in Fig. 7a±d, where each

object and noise pattern is shown separately to allow assessment of

the variability of neural activity among, as well as between, objects

and noise patterns. In general, neurons were active during all three

task periods, although Fig. 7a provides an example neuron that did

not participate in sensory period processing. Consistent with the

trends observed in the population, some single neurons preferred

objects (e.g. Figure 7c), while others preferred noise patterns

(Fig. 7b) during the sensory period. During the intermediate period,

these neurons tended to prefer noise patterns, whereas, during

reactivation, they tended to ®re more vigorously to objects. Four

examples for the novel object experiment are shown in Fig. 7e±h.

During the sensory period, most neurons preferred objects (Fig. 7e

and g) or showed no consistent preference (Fig. 7f and h). There was

however, no consistent trend during the intermediate period, while

there was systematic preference for objects during the reactivation

period.

Distribution of neural preferences for objects or noise patterns

Scatterplots showing mean activity to objects and noise patterns for

all neurons recorded in each experiment are shown in Fig. 8. The

large symbols depict the single neuron examples shown in Fig. 7,

demonstrating that this is a representative subset of the entire

FIG. 9. Shifts in object preference. The vectors
represent the shift in activity preference (a and
c) from the sensory to the intermediate period
(S®I) and (b and d) from the intermediate to
the reactivation period (I®R), where the dots
represent vector end points. Each vector
represents a single neuron, and its' vertices
represent that neuron's mean response to
objects and noise patterns in the source and
the target periods. For example, the vectors in
Fig. 9a connect the vertices corresponding to
each contributing neuron in Fig. 8a and
Fig. 8b. Only neurons that showed shifts in
preference between objects and noise patterns
larger than 7 Hz are included in this analysis,
i.e., neurons with a projection onto the bold
vector beside the pie chart larger than 7Hz in
length. The number of cases is shown in the
upper left. The bold vector labelled `M'
represents the average shift for the population.
The pie chart reports the fraction of neurons
for which the vectors pointed in the same
direction as the bold vector shown above the
pie charts, which represents a systematic shift
towards noise preference in (a and c), and a
systematic shift towards object preference in (b
and d).
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population. These plots summarize the activity of all recorded

neurons and demonstrate directly the main ®ndings of this study.

During the sensory period, many neurons showed transient visual

responses in both experiments. While there was no consistent

preference for familiar objects over noise patterns, neurons did tend

to prefer novel objects relative to noise. During the intermediate

period by contrast, there was no consistent trend for novel objects, but

familiar objects led to markedly less activity than noise patterns.

During reactivation, neurons in both experiments again showed

preference for objects.

Using these population scatterplots, we assessed directly how

relative preference between objects and noise changed between the

three task periods. We ®rst identi®ed neurons that showed shifts in

preference between objects and noise patterns [e.g. from the sensory

(S) to the intermediate (I) period] greater than an arbitrary threshold

of 7 Hz. We did this to eliminate neurons that showed little or no

preference shift. The vector shifts for these neurons are shown in

Fig. 9a for familiar objects. The mean vector points to the left and

slightly downward, consistent with a general decrease in activity from

S to I, and a shift towards a preference for noise patterns over objects.

Indeed, the majority (77%) of neurons shifted towards noise

preference. Interestingly, the same was true in the novel object

experiment (Fig. 9c), both in terms of the mean vector shift and the

proportion of neurons shifting towards preference for noise. Analysis

of the shift between the intermediate (I) and the reactivation (R)

periods revealed a strikingly different result. For familiar objects

(Fig. 9b), all (100%) of the shifting neurons shifted towards object

preference, and the direction of the mean vector suggests that there

was little change in mean ®ring rate. The results were similar for

novel objects (Fig. 9d), although shifts towards object preference

were apparent for 74% of neurons and the mean shift vector revealed

a modest decrease in mean activity from I to R.

Discussion

In this study, we examine the timecourse of the activity of an

ensemble of PF neurons in a delayed-matching-to-sample (DMS)

task. We compare population activity evoked by objects, which

needed to be retained during a short delay, to activity evoked by noise

patterns that contained no task-relevant information and did not need

to be retained. To assess effects of experience on this timecourse, we

conducted the experiment with novel and highly familiar objects.

Three distinct periods were evident in the average population

timecourse. During an initial visual sensory period, novel objects

elicited greater activity than noise patterns while there was no

systematic difference between activity to familiar objects and noise

patterns. This ®nding is not surprising, as familiarity tends to cause a

decrease in neural activity in many primate brain regions including

the inferior temporal (Li et al., 1993), the perirhinal (Fahy et al.,

1993) and the prefrontal (Asaad et al., 1998) cortices, as well as the

hippocampus (Cahusac et al., 1993) and amygdala (Wilson & Rolls,

1993). Indeed, results from a selective lesion disconnecting the

frontal from the temporal lobe suggest that the preference for novel

objects in PF neurons may be a consequence of feed-forward activity

from temporal cortical areas (Parker & Gaffan, 1998; Parker et al.,

1998).

During an intermediate period, there was elevated activity for both

noise patterns and novel objects, but not for familiar objects. In fact,

even PF neurons that preferred familiar objects vs. noise during the

sensory period did not maintain this preference in the form of

elevated activity during the intermediate period (Fig. 6a).

Intermediate period activity could not be ascribed to the offset of

the visual stimulus, as it began well before the stimulus was turned

off (see Fig. 4a). Neither was it a result of spike-frequency dependent

adaptation of neural activity, as novel objects elicited the largest

transient visual response but also showed robust activity during the

intermediate period (Fig. 4b). Object information needed to be

maintained through the intermediate period for both familiar and

novel objects, yet we found sustained elevated activity through this

period only for novel objects and noise patterns that did not need to

be maintained (Fig. 7h), but not for familiar objects. Thus, mainten-

ance of sensory information as elevated activity does not characterize

the intermediate period well. This suggests that some other type of

processing might occur during the intermediate period; but what

might it be? One possibility is that intermediate period activity

provides a signal that is instrumental in learning and causes changes

in prefrontal or related cortical networks. This signal may be absent

for familiar objects because no further leaning is required, whereas it

may be evoked both by novel objects, which have not been

overlearned, as well as noise patterns. Perhaps experience leads to

the formation of inhibitory circuits within the PF cortex, which

silence learning-related processing when a highly familiar input

pattern is detected. Another possibility is that a dopaminergic or

cholinergic signal up-regulates the excitability of PF neurons and thus

produces more spiking during the intermediate period for novel

stimuli or noise patterns but not for highly familiar over-learned

patterns. dopamine, by causing an elevation in NMDA-current, and

acetylcholine by causing in increase in the voltage activated calcium

current can both lead to transient increases in spike generation and

could thus underlie the additional activity seen in the intermediate

period for novel stimuli or for the ambiguous noise patterns.

Consistent with this hypothesis, robust learning-related differences

have been described in the dopamine neurons which project to wide

cortical target regions including the prefrontal cortex (Schultz et al.,

1993; Schultz et al., 1997).

A reactivation period occurred in the late delay during which

activity was elevated for both novel and familiar objects relative to

noise patterns. It is activity during this reactivation period that

resembles what is classically known as delay or persistent activity

(Goldman-Rakic, 1990). For example, information about the sample

object was maintained as elevated activity, and in many neurons

activity also showed an increasing trend as the end of the delay

approached. Previous work has implicated such PF climbing activity

in anticipatory coding for objects (Rainer et al., 1999), reward

(Watanabe, 1996) as well as motor preparation (Bruce & Goldberg,

1985). As in the present study, over 90% of trials with object samples

were rewarded, compared to about 50% for trials with noise pattern

samples (Fig. 2), it is possible that differential anticipatory coding for

reward played a role during the reactivation period. Note that reward

asymmetry between objects and noise patterns cannot explain results

during the intermediate period, however, as familiar and novel

objects were rewarded equally. The example neuron shown in Fig. 7g

exhibited reactivation period activity consistent with reward expect-

ancy, in that it was systematically more active on object-sample trials

than on noise-sample trials. More generally though, activity during

the reactivation period was modulated differentially according to the

identity of the sample object, consistent with a role in short-term

memory for objects, as in the example neurons shown in Fig. 7a, b, f

and h. Motor preparation is unlikely to have played much of a role in

the reactivation period, as monkeys could decide whether to release

the lever only when presented with the test object after the delay.

The shift analyses presented in Fig. 9 demonstrate most directly

the dynamics in preference for objects vs. noise patterns during the
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three task periods. From the sensory to the intermediate period, there

was a similar shift for the two neural populations towards noise-

preference (Fig. 9a and b). For familiar objects, this shift resulted in a

marked and highly signi®cant preference for noise during the

intermediate period (Fig. 8b). For novel objects, however, preference

for objects vs. noise patterns was distributed evenly during the

intermediate period (Fig. 8e), despite this similar vector shift. The

reason for this is the difference in the sensory period distributions in

the two experiments. In the novel object experiment, the vector shift

towards noise-preference abolishes the ensemble preference for

objects evident during the sensory period. For familiar objects, evenly

distributed ensemble preference during the sensory period is shifted

towards noise-preference. The shifts from the intermediate to the

reactivation period were, again, quite similar for the two experiments

(Fig. 9b and d), yielding distributions that were biased signi®cantly

towards object preference. Thus, the population dynamics were

actually quite similar between the two experiments, the major

differences being a result for neural population preference for objects

during the novel object experiment.

Taken together, the present results indicate that prefrontal delay

activity ± at least as assessed in the present study ± is more complex

than simple maintenance, and is subject to experience-dependent

dynamics. Computational models of delay activity need to be

extended to capture such dynamics, and provide more realistic

accounts of activity pro®les in different tasks to gain further insight

into how the prefrontal cortex contributes to memory storage and

manipulation.

Acknowledgements

We thank N. Brunel, D. Durstewitz, S. Fusi, B. Gutkin and X.J. Wang for
comments on the manuscript. This work was supported by the RIKEN-MIT
Neuroscience Research Center and by the National Institute of Neurological
Disorders and Strokes.

Abbreviations

AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazole propionate; PF, prefrontal;
NMDA, N-methyl D-aspartate.

References

Amit, D.J. & Brunel, N. (1997) Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cereb.
Cortex, 7, 237±252.

Amit, D.J., Fusi, S. & Yakovlev, V. (1997) Paradigmatic working memory
(attractor) cell in IT cortex. Neural Comput., 9, 1071±1092.

Asaad, W.F., Rainer, G. & Miller, E.K. (1998) Neural activity in the primate
prefrontal cortex during associative learning. Neuron, 21, 1399±1407.

Asaad, W.F., Rainer, G. & Miller, E.K. (2000) Task-speci®c neural activity in
the primate prefrontal cortex. J. Neurophysiol., 84, 451±459.

Bichot, N.P., Schall, J.D. & Thompson, K.G. (1996) Visual feature selectivity
in frontal eye ®elds induced by experience in mature macaques. Nature,
381, 697±699.

Bruce, C.J. & Goldberg, M.E. (1985) Primate frontal eye ®elds. I. Single
neurons discharging before saccades. J. Neurophysiol., 53, 603±635.

Cahusac, P.M., Rolls, E.T., Miyashita, Y. & Niki, H. (1993) Modi®cation of
the responses of hippocampal neurons in the monkey during the learning of
a conditional spatial response task. Hippocampus, 3, 29±42.

Compte, A., Brunel, N., Goldman-Rakic, P.S. & Wang, X.J. (2000) Synaptic
mechanisms and network dynamics underlying spatial working memory in a
cortical network model. Cereb. Cortex, 10, 910±923.

Durstewitz, D., Seamans, J.K. & Sejnowski, T.J. (2000a) Neurocomputational
models of working memory. Nature Neurosci, 3, 1184±1191.

Durstewitz, D., Seamans, J.K. & Sejnowski, T.J. (2000b) Dopamine-mediated

stabilization of delay-period activity in a network model of prefrontal
cortex. J. Neurophysiol., 83, 1733±1750.

Fahy, F.L., Riches, I.P. & Brown, M.W. (1993) Neuronal activity related to
visual recognition memory: long-term memory and the encoding of recency
and familiarity information in the primate anterior and medial inferior
temporal and rhinal cortex. Exp. Brain Res., 96, 457±472.

Field, D.J. (1987) Relations between the statistics of natural images and the
response properties of cortical cells. J. Opt. Soc. Am.[a], 4, 2379±2394.

Funahashi, S., Bruce, C.J. & Goldman-Rakic, P.S. (1989) Mnemonic coding of
visual space in the monkey's dorsolateral prefrontal cortex. J.
Neurophysiol., 61, 331±349.

Funahashi, S., Chafee, M.V. & Goldman-Rakic, P.S. (1993) Prefrontal
neuronal activity in rhesus monkeys performing a delayed anti-saccade task.
Nature, 365, 753±756.

Fuster, J.M. (1993) Frontal lobes. Curr. Opin. Neurobiol., 3, 160±165.
Fuster, J.M. & Alexander, G.E. (1971) Neuron activity related to short-term

memory. Science, 173, 652±654.
Goldman-Rakic, P.S. (1990) Cellular and circuit basis of working memory in

prefrontal cortex of nonhuman primates. Prog. Brain Res., 85, 325±326.
Goldman-Rakic, P.S. (1995) Cellular basis of working memory. Neuron, 14,

477±485.
Hasegawa, R.P., Matsumoto, M. & Mikami, A. (2000) Search target selection

in monkey prefrontal cortex. J. Neurophysiol., 84, 1692±1696.
Kubota, K. & Niki, H. (1971) Prefrontal cortical unit activity and delayed

alternation performance in monkeys. J. Neurophysiol., 34, 337±347.
Laing, C.R. & Chow, C.C. (2001) Stationary bumps in networks of spiking

neurons. Neural Comput., 13, 1473±1494.
Li, L., Miller, E.K. & Desimone, R. (1993) The representation of stimulus

familiarity in anterior inferior temporal cortex. J. Neurophysiol., 69, 1918±
1929.

Miller, E.K. & Cohen, J.D. (2001) An integrative theory of prefrontal cortex
function. Annu. Rev. Neurosci., 24, 167±202.

Miller, E.K., Erickson, C.A. & Desimone, R. (1996) Neural mechanisms of
visual working memory in prefrontal cortex of the macaque. J. Neurosci.,
16, 5154±5167.

Parker, A. & Gaffan, D. (1998) Memory after frontal/temporal disconnection
in monkeys: conditional and non-conditional tasks, unilateral and bilateral
frontal lesions. Neuropsychologia, 36, 259±271.

Parker, A., Wilding, E. & Akerman, C. (1998) The Von Restorff effect in
visual object recognition memory in humans and monkeys. The role of
frontal/perirhinal interaction. J. Cogn. Neurosci., 10, 691±703.

di Pellegrino, G. & Wise, S.P. (1993) Visuospatial versus visuomotor activity
in the premotor and prefrontal cortex of a primate. J. Neurosci., 13, 1227±
1243.

Petrides, M. (1985) De®cits on conditional associative-learning tasks after
frontal- and temporal-lobe lesions in man. Neuropsychologia, 23, 601±614.

Rainer, G., Asaad, W.F. & Miller, E.K. (1998a) Memory ®elds of neurons in
the primate prefrontal cortex. Proc. Natl Acad. Sci. USA, 95, 15008±15013.

Rainer, G., Asaad, W.F. & Miller, E.K. (1998b) Selective representation of
relevant information by neurons in the primate prefrontal cortex. Nature,
393, 577±579.

Rainer, G. & Miller, E.K. (2000) Effects of visual experience on the
representation of objects in the prefrontal cortex. Neuron, 27, 179±189.

Rainer, G., Rao, S.C. & Miller, E.K. (1999) Prospective coding for objects in
primate prefrontal cortex. J. Neurosci., 19, 5493±5505.

Schultz, W., Apicella, P., Ljungberg, T., Romo, R. & Scarnati, E. (1993)
Reward-related activity in the monkey striatum and substantia nigra. Prog.
Brain Res., 99, 227±235.

Schultz, W., Dayan, P. & Montague, P.R. (1997) A neural substrate of
prediction and reward. Science, 275, 1593±1599.

Wang, X.J. (1999) Synaptic basis of cortical persistent activity: the importance
of NMDA receptors to working memory. J. Neurosci., 19, 9587±9603.

Wang, X.J. (2001) Synaptic reverberation underlying mnemonic persistent
activity. Trends Neurosci., 24, 455±463.

Watanabe, M. (1986) Prefrontal unit activity during delayed conditional Go/
No-Go discrimination in the monkey. II. Relation to Go and No-Go
responses. Brain Res., 382, 15±27.

Watanabe, M. (1996) Reward expectancy in primate prefrontal neurons.
Nature, 382, 629±632.

White, I.M. & Wise, S.P. (1999) Rule-dependent neuronal activity in the
prefrontal cortex. Exp. Brain Res., 126, 315±335.

Wilson, F.A. & Rolls, E.T. (1993) The effects of stimulus novelty and
familiarity on neuronal activity in the amygdala of monkeys performing
recognition memory tasks. Exp. Brain Res., 93, 367±382.

1254 G. Rainer and E. K. Miller

ã 2002 Federation of European Neuroscience Societies, European Journal of Neuroscience, 15, 1244±1254


	Nielsen_et_al.06a.pdf
	Discrimination Strategies of Humans and Rhesus Monkeys for Complex Visual Displays
	Results and Discussion
	Experimental Procedures
	Subjects
	Task and Stimuli
	Setup
	Data Analysis

	Supplemental Data
	Acknowledgments
	References


	Nielsen_et_al.06b.pdf
	Nielsen_Rainer.08.pdf
	Rainer.08.pdf
	Localizing Cortical Computations during Visual Selection
	References


	Monosov_et_al.08.pdf
	Measurements of Simultaneously Recorded Spiking Activity and Local Field Potentials Suggest that Spatial Selection Emerges in the Frontal Eye Field
	Introduction
	Results
	Visual Response Latencies and Spatial Selection Times of LFPs and Spikes
	Relationship of LFP Visual Response Latency to Selection Times
	Comparison of Directional Tuning

	Discussion
	Experimental Procedures
	Data Collection
	Behavioral Tasks
	Data Analysis
	Selection Time
	Visual Response Latency during Visual Search
	Spatial Tuning

	Supplemental Data
	Supplemental Data
	Acknowledgments
	References


	Raghavachari_et_al.01.pdf
	Lee_et_al.05.pdf
	Jacobs_et_al.07.pdf
	Rainer_Miller.02.pdf



